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Figure 1: Effective comparative visual designs we identified for trade-off analysis: (a1) Juxtaposition of metrics with (a2)

explicitly encoded invariance for high-level metric comparison; (b) Juxtaposed views with linked highlighting for global

embedding comparison; (c) Superimposed projections with explicitly encoded trajectories and animations for class embedding

comparison; (d) Juxtaposed doughnut charts for class metric comparison; (e1) Juxtaposed images with superimposed heatmaps

and (e2) explicitly computed perturbation for instance comparison; (f) “shine-through” interaction for model comparison.

Abstract

Despite the effectiveness of adversarial training (AT) in enhancing
model robustness, it suffers from the accuracy-robustness trade-off
and the “robust fairness” problem. To strategize effectively, practi-
tioners have the need to explore and compare model performance
in both standard and adversarial settings concurrently. This work
presents a design study with 11 experts to explore effective compar-
ative visual techniques for multi-level trade-off analysis. We first
collaborated with five adversarial machine learning (AML) experts
in an iterative design process, based on which we developed a visual
analytics design probe, VATRA, that employs an augmented hybrid
comparative design to support concurrent accuracy and robustness
evaluations for assessing model trade-offs. Further, we conducted
user studies with six domain experts and derived two in-depth
use cases of VATRA, providing empirical knowledge about how
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1 Introduction

Rapid advancements in Computer Vision (CV) [28, 34, 37] have
resulted in increasing deployment of vision-based classifiers in ap-
plications such as autonomous driving [27], facial recognition [36],
and healthcare diagnostics [18]. Nonetheless, it has been observed
that state-of-the-art (SOTA) classifiers like deep neural networks
(DNNs) are extremely brittle to adversarial examples [24, 56], i.e.,
input data crafted maliciously with minor perturbations to produce
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model mistakes, known as evasion attacks. These adversarial exam-
ples, though often indistinguishable from the original dataset, can
significantly undermine model accuracy, raising safety concerns
[11, 24, 41, 42, 62, 62]. As such, building adversarially robust models
has become a key design goal and a frequently studied topic of the
ML community [14, 41]. Currently, the standard and most effective
defense is adversarial training (AT), which trains a classifier with
adversarial examples close to the training data, such as adding ad-
versarial examples to the training set [41] or integrating adversarial
methods into regularization [65].

However, AT is known to come with a two-fold trade-off, which
introduces critical decision-making challenges for ML practitioners.
First, while AT improves a model’s robustness on adversarial exam-
ples, it lowers the model’s clean accuracy on natural examples—the
accuracy-robustness trade-off problem [59]. Second, AT exacerbates
the inter-class discrepancy for both accuracy and robustness, mean-
ing that an AT model may significantly underperform in certain
classes compared to a natural model [5]. This is defined as the robust
fairness problem. Recent papers suggest that these two costs are
unavoidable consequences of existing AT methods [5, 7, 21, 59].
Therefore, ML practitioners are faced with a dilemma: should they
pursue greater accuracy, aim for robustness, or achieve a balance
between the two for optimal outcomes?

Presented with this dilemma, ML practitioners need to thor-
oughly explore and evaluate their models in both natural and adver-
sarial settings, and investigate existing attack strategies to identify
potential trade-offs. A comparative visual paradigm is well-suited
for this high-level need, as one can utilize it to 1) identify and link
object differences (e.g., clean vs. perturbed datasets) to performance
outcomes, 2) compare individuals to dissect how similar patterns
(e.g., model characteristics) lead to positive performance (e.g., in-
creased accuracy/robustness), and 3) assess overall patterns to de-
termine if the performance meets expectations (e.g., if the model is
satisfactory in both natural and adversarial conditions) [19, 22, 23].
We thus aim to explore comparative visual techniques for model
trade-off analysis across levels and develop a visual analytics design
probe to provide empirical insights on using hybrid comparative
visualizations for real-world model trade-off assessment. Although
several works have explored visual analytics for adversarial attacks,
they either do not meet our objective or have a completely different
focus. For example, Cao et al. [8] focused on using visual analytics
to explain the causes of misclassifications rather than trade-offs,
VATLD [25] is non-comparative and restricted to traffic light detec-
tors, and Ma et al. [40] focused solely on data poisoning attacks in
binary classifications.

To fill in this gap, we carried out a design study involving a
total of 11 experts to investigate visual comparative techniques for
trade-off analysis, consisting of three main phases. First, we collab-
orated with five experts in adversarial machine learning (AML, i.e.,
the study of adversarial attacks and their defenses) in an iterative
co-design process to explore user tasks, levels of comparisons, and
design goals for developing effective visual comparative techniques.
Second, based on our findings, we created VATRA, a visual analytics
design probe that employs an augmented hybrid comparative ap-
proach to support concurrent accuracy and robustness evaluations
for assessing model trade-offs. Finally, we conducted a user study

with six domain experts, deriving two use cases of VATRA that pro-
vide further empirical insights into the application of comparative
visualizations for trade-off analysis.

In summary, we make the following contributions:
• An iterative co-designwith five AML experts that explored var-
ious comparative approaches, providing insights into user goals,
tasks, and effective comparative visual techniques for model
trade-off analysis at different levels.

• A visual analytics design probe, VATRA, developed through
our iterative design process, that employs an augmented hybrid
comparative approach to support trade-off analysis.

• A user study with six experts from two application domains
that derived two use cases of VATRA, as well as further empiri-
cal insights on how ML practitioners can leverage comparative
visualizations for trade-off evaluation in AML.

2 Related Work

2.1 Adversarial Attacks & Defenses

Recently, a growing body of research has been done on adversar-
ial attacks and their defenses. A white-box attack assumes that
attacker has full access to model internals, which includes the Fast
Gradient Sign Method (FGSM) [24], Basic Iterative Method (BIM)
[35], and Projected Gradient Descent (PGD) [41]. A black-box at-
tack assumes the attacker only has access to the inputs and outputs
of a targeted model. Query-based black-box attacks include ZOO
[11] and HopSkipJump [10], while transfer-based attacks include
substitute model [45] and ensemble attacks [39].

Presently, adversarial training (AT) [24, 41, 56] is the standard
and most effective approach for building robust models that can
withstand strong attacks, which involves training a model with
adversarial examples. The most well-known AT is by Madry et
al. [41], which formulates the task as a saddle point (min-max)
optimization problem. More advanced methods also exist, such
as TRadeoff-inspired Adversarial DEfense via Surrogate-loss min-
imization (TRADES) [65], which captures the observed accuracy-
robustness trade-off through a regularized surrogate loss, robust
self-training (RST) [48], a robust variant of self-training that lever-
ages extra unlabeled data, and “free” adversarial training (Free-AT)
[52], which recycles the model’s gradient information for producing
adversarial examples.

The abundance of existing research on adversarial attacks (e.g.,
[2, 41, 48, 59, 64, 67, 68]) and defenses (e.g., [47, 48, 61, 64, 65]) at-
tests to their relevance as AML methodologies. In this paper, we
primarily explored comparative visual approaches with attacks in-
cluding PGD [41] and SimBA [26], and defenses including TRADES
[65] and RST [48], though our design probe supports analysis of
different AT methods under any evasion attack. We selected these
methods to examine how practitioners can leverage comparative
visual analytics for both white-box and black-box attacks, focusing
on SOTA ATs to ensure our insights reflect the most effective AT
approaches available.

2.2 Exploring Properties in Adversarial

Training

Despite AT’s success inmodel defense, it comes with a two-fold cost,
including 1) accuracy-robustness trade-off, a reduction in the model’s
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natural accuracy, and 2) the robust fairness problem, a reduction
in the model’s class-wise fairness. Raghunathan et al. [49] showed
that while both standard and AT CIFAR-10 [33] models achieved
100% training accuracy, the latter had a notable drop in testing
accuracy despite its improvements in robustness. Xu et al. [63]
applied natural and adversarial training on a CIFAR-10 PreAct-
ResNet18 model [29], and noticed that a standard model’s class
performance was more consistent while an AT model displayed a
severe class-wise performance discrepancy.

Existing literature have explored these properties of AT, but the
trade-offs remain largely ill-understood. Several pessimistic papers
suggest the trade-off may be intrinsic. For instance, there may exist
an inherent tension between the goal of adversarial robustness and
that of standard generalization that provably manifests even in
simple settings [59]. Hu et al. [30] conducted a theoretical analysis
of the impact of robustness from AT, and attributed the decline in
accuracy to an inevitable change in the model’s decision boundary.
More optimistic works also exist. Yang et al. [64] presented an
alternative perspective, claiming that the trade-off is not inherent
but a consequence of the current training methods due to a large
gap between theory and practice.

In light of these observations and theoretical analyses, the dual
trade-offs seem inevitable. ML practitioners thus have the need to
navigate these trade-offs by concurrently exploring model perfor-
mance on clean and adversarial datasets, a task well-suited for a
comparative visual paradigm. Our work seeks to address this need
by exploring various comparative visual techniques, identifying
those effective for trade-off analysis at different granularities, and
examining how ML practitioners can utilize our design probe.

2.3 Visualizations in Adversarial Machine

Learning

In general, AML visual analytics remains relatively under-explored.
While some visual analytics tools have been proposed, they either
lack a comparative approach designed for trade-off explorations
or completely diverge in focus. Cao et al. [8] used a river-based
metaphor to visualize datapaths of clean and adversarial examples
but lacks support for trade-off analysis. VATLD [25] is designed to
assess the accuracy and semantic robustness of traffic light detectors
but also overlooks the consequential trade-offs that may arise. The
tool also focuses on evaluating “semantic robustness” that is human-
interpertable, which differs from the traditional definition of adver-
sarial robustness targeted in our work. Sietzen et al. [53] developed
a tool for exploring CNN activations under 3D scene alterations
but focus solely on adversarial attacks in 3D and instance-level
evaluation without addressing trade-offs. Ma et al. [40] proposed a
framework for exploring model vulnerabilities, but it is specialized
for analyzing attacks that poison training data instead of producing
adversarial examples, in binary classification tasks.

Additionally, though some of these works include simple com-
parative elements [8, 25, 53], such as basic juxtaposition, none
investigated effective comparative designs that can be integrated
into trade-off analysis. These tools are largely limited to juxtaposed
instance-level comparisons, such as placing natural and adversarial
images or feature heatmaps side by side, which, based on insights
from our later design study, are insufficient for effective trade-off

analysis. Furthermore, to better support the workflow, our study
revealed that analyzing models at multiple levels of detail is es-
sential. Other AML visualizations that target non-experts include
Bluff [16], which highlights the abstracted activation pathways of
InceptionV1 [55] exploited by attacks, and Adversarial Playground
[44], which juxtaposes a natural MNIST image and its adversarial
counterpart alongside classification probabilities. While both vi-
sualizations effectively explain attack logic to learners, our work
focuses on exploring comparative visual approaches that support
experienced ML practitioners in trade-off analysis at multiple levels,
and thus diverges in focus.

2.4 Comparative Visualization Approaches

As a common task in data analysis, comparison involves looking
for differences and similarities between objects, and identifying
trends or patterns that shed light on their relationships [22]. Visu-
alizations have been shown to be highly effective in assisting users
with comparison [3, 22, 23, 31]. The visual designs for comparison
can be divided into three categories, including 1) juxtaposition, 2)
superposition, and 3) explicit encoding [22]. Juxtaposition involves
placing items separately in different spaces, often next to each other.
Some examples include Sequence Surveyor [1], which juxtaposes
large-scale multiple genome sequences as rows. Superposition in-
volves placing items in the same space, often on top of each other.
For instance, ContraNA [20] utilizes a contrastive representation
view that compares target and background networks in the same
space. Lastly, explicit encoding involves explicitly visualizing the re-
lationships between the compared objects. For example, Mauve [15]
visualizes connections between aligned genome blocks by drawing
lines that logically connect the homologous collinear blocks from
each genome. The three designs may also be combined to create
hybrid designs [6, 13, 22, 23, 50]. In addition, Tominski et al. [57]
showed that the three designs can also be augmented to form in-
teraction techniques, including the side-by-side arrangement (i.e.,
juxtaposition), shine-through (i.e., superposition), and folding meth-
ods (i.e., explict encoding). An interactive prototype integrating all
three interaction techniques was implemented to support compar-
isons of table and matrix visualizations [57].

Inspired by these works, we aim to investigate effective compar-
ative visual designs, augmented by interaction, for model trade-offs
through an iterative design process. We believe that identifying
these approaches will help ML practitioners more effectively per-
form AML comparison tasks, such as assessing differences in model
performance between datasets, recognizing similarities that en-
hance accuracy and robustness, and verifying overall patterns to
ensure the model meets expectations [22].

3 Design

We employed an iterative user-centered design process with AML
experts to explore various comparative designs. This section details
our co-design process, design requirements, and empirical insights
into the effective comparative approaches for trade-off analysis.



GI ’25, May 26-29, 2025, Kelowna, British Columbia, Canada Yuzhe You and Jian Zhao

3.1 Design Process

Our co-design process involves five experts (E1 ∼ E5; all men), all of
whom are experienced AML practitioners skilled in designing ad-
versarial defenses or training models adversarially. All participants
are knowledgeable about the trade-offs, and four have conducted re-
search specifically related to them. Specifically, our design process
consisted of four stages as detailed below.

3.1.1 Design Requirement & Task Formulation. To first understand
the design requirements, we conducted an extensive literature sur-
vey (Section 2) and interviews with E1 ∼ E5 on trade-off analysis.
The 90–120 minute semi-structured interviews covered topics in-
cluding experts’ trade-off analysis workflows, tools, challenges, de-
sired visualization tasks, and visualization integration preferences.
Each interviewee was compensated $20/hour. We transcribed and
analyzed the interviews using a combined approach of open and
closed coding. Through affinity diagramming, we confirmed the
need for a multi-level comparative approach and identified key
recurring themes. These insights informed our high-level domain
tasks (Section 3.2) and design goals (Section 3.4) for our comparative
visualizations and design probe.

3.1.2 Comparative Approach Exploration. Based on the workflows
described by our experts, we identified a set of multi-level compari-
son tasks that can help them achieve the established high-level goals.
Guided by our design guidelines and expert input, we explored var-
ious combinations of comparative designs (visual + interaction
techniques) to support these comparison tasks. We created low-
fidelity prototypes (e.g., sketches, mock-ups) and presented them
to E1 ∼ E5 during our co-design sessions, discussed the pros and
cons of each comparative approach, and collected their feedback.
Our insights on effective comparative visual designs for trade-off
analysis, including findings from the high-fidelity prototype, are
detailed in Section 3.3. From our preliminary design exploration,
we selected the initial design for our design probe, VATRA, and
defined the view components for each comparison task.

3.1.3 Design Probe Development. After selecting an initial design,
we engaged E1–E5 via email, sharing updates and gathering feed-
back to refine our design probe and comparative visualizations.
Incorporating expert insights, we subsequently implemented HF
versions. Then, we hosted remote sessions to engage experts in HF
prototype walkthroughs, during which we asked them to perform
AML domain tasks (T1 ∼ T4; see Section 3.2) on their preferred
datasets. After the walkthrough, we conducted a semi-structured
interview to gather expert feedback on the design probe and sugges-
tions for further improvement. Each session lasted between 60 to 90
minutes. Experts were compensated $20/hour, and their provided
insights were incorporated into the final design.

3.1.4 User Studies with Experts. To explore how VATRA’s compara-
tive visual analytics fit into theworkflows ofML practitioners across
various application domains, we conducted 90-minute interviews
with six domain-specificML experts. Based on the collected insights,
we created two detailed use cases to offer empirical knowledge into
how ML practitioners can leverage comparative visualizations to
perform trade-off evaluation in AML. Details about the studies will
be described in Section 5.

3.2 Tasks to Support in Trade-off Analysis

From our interviews (Section 3.1.1), we found that none of the AML
experts use existing visual analytics for model trade-offs due to lim-
ited comparative capabilities. E1, E2, and E5 rely on simple coding
libraries for basic visualizations like tables and bar charts. However,
these methods are often cumbersome, tedious, and insufficient. All
interviewees recognized the value of adopting comparative visual
approaches in their workflows and expressed interest in exploring
them. While some AML visual tools exist (e.g., [8, 25, 53]), none are
designed for trade-off analysis or integrate well into their work-
flows. Experts noted these tools focus on low-level analyses, like
instance features or neuron pathways, lacking support for dataset-
or class-level comparisons needed for trade-off identification.

Based on expert insights, we identified four essential high-level
domain tasks to guide the design of our visual comparative ap-
proach. These tasks included:

T1 Exploring models’ behaviors in standard and adversarial condi-
tions to understand their trade-offs.

T2 Locating interesting insights related to model trade-offs or the
underlying causes of these trade-offs.

T3 Identifying the optimal model for their specific dataset, or alter-
natively,

T4 Determining directions to improve the existing models or address
their trade-offs.

T1 is the first step to identify “howmuch” of a trade-off exists, which
typically involves directly comparing how the model’s performance
differs across metrics. T2 involves examining the model’s character-
istics at each level to analyze how they differ under each conditions
to generate insights. E2 and E3 mentioned examining feature space
proximity to assess instance vulnerability, while E4 used feature
heatmaps to determine if the model focuses on objects or noise. T3
involves comparing models with different defenses, and identifying
those that are most aligned with the target dataset, as “different
ATs vary in their effectiveness across different types of data” -E2. T4
involves devising potential strategies to improve model trade-offs
based on insights gathered from comparative assessments.

3.3 Effective Visual Comparative Techniques

for Trade-off Analysis

During our interview, our experts emphasized the need to perform
comparison tasks at multiple granularities to gain a comprehensive
understanding of the trade-offs. Therefore, the visual techniques
should be designed to support comparison at different levels for
users to perform T1 ∼ T4. To achieve this, we explored how each
domain task could be supported with multi-level comparisons in
our design exploration and prototype walkthroughs. This led to the
identification of six levels of comparisons that align with the high-
level objectives and our experts’ workflows (C1 ∼C6). Through our
iterative design process, we explored various comparative visual
techniques with our experts, and based on their feedback, identi-
fied those effective for supporting these comparison tasks. Below
we present a report of our empirical insights into the effective
comparative visual methods for trade-off analysis.

C1: High-level metric comparison. For comparing high-level
performance metrics (e.g., overall accuracy/robustness), juxtapo-
sition is a simple but effective strategy (Figure 1a1). Since these
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Figure 2: Examples of other comparative visual designs we

explored during our iterative co-design process.

metrics are numerical data, superposition is less ideal for lack-
ing a shared coordinate system for overlaying them (Figure 2a1).
While explicit encoding can visualize trade-offs more explicitly (Fig-
ure 2a2), the experts preferred juxtaposition for its better context
when assessing individual models. Our interviews and prototype
walkthroughs also revealed that the experts were generally not
interested in knowing the precise accuracy/robustness difference
from explicit encoding, as simple juxtaposition already helps them
compare and identify key trade-off patterns and differences [23].
Placing metrics close together also avoids the issue of object sepa-
ration in juxtaposition, since accuracy and robustness are simple
metrics that are easy to compare [17, 23]. However, when com-
paring conditions within a single model, explicit encoding offers
another layer of representation for understanding object relation-
ships (Figure 1a2). For instance, displaying the average model in-
variance between two datasets emphasizes the trade-off to viewers
by visualizing it as a computed relationship. For class precision and
recall (considered C1 as it compares overall class metrics), juxtapo-
sition with color-coding supports identification of class unevenness
through comparison of high-level visual features such as color dif-
ferences (Figure 2b). E3 noted that this comparison is particularly
helpful for quickly finding fairness irregularities across classes.

C2: Global-level embedding comparison. We found that a
hybrid of juxtaposition + explicit encoding is highly effective for
this comparision (Figure 1b). Juxtaposing the global embeddings of
natural and adversarial datasets, with interactive highlighting of
corresponding selections—a form of explicit encoding [23]—ensures
that each dataset is fully visible and comparable. The experts found
this hybrid approach particularly valuable in this context, because
they were comparing complex objects (e.g., scatterplots with many
data points) and each comparative technique effectively compen-
sates for the other’s limitations. Specifically, juxtaposition main-
tains original data by displaying them independently in separate
spaces, but we found that users struggled to make connections
between them due to the complexity of embedding projections.
Explicit encoding directly visualizes object differences but loses the
context of the original objects. By combining these two approaches,
the hybrid design leverages juxtaposition to maintain context and
explicit encoding to highlight object differences [23]. Superposi-
tion creates visual clutter and difficulty in interpretation due to a
large number of instances, making it more suitable for class-level
embedding comparison with fewer data (Figure 2c).

C3: Class-level embedding comparison. From our explo-
ration, we found that a hybrid design of superposition + explicit
encoding is particularly effective for embedding comparison at a
class level (Figure 1c). In global embeddings, where a large number
of data points can lead to visual clutter, juxtaposition was preferred
as it separates datasets into different spaces for clearer comparison.
However, with class embeddings, we found that the smaller number
of instances makes superposition more advantageous. Specifically,
by superimposing natural and adversarial instances in the same
space, users could directly compare and identify trade-offs based
on spatial proximity, reducing the cognitive load of shifting atten-
tion between separate views [23]. During walkthroughs, experts
confirmed that superposition helps them quickly determine data
relationship: overlapping indicates similarity, while spatial differ-
ences reveal dissimilarity. Furthermore, when explicit encoding is
added thoughtfully, it reveals additional embedding relationships.
Specifically, we observed that superposition reveals general dis-
tribution differences, while explicit representations, like instance
trajectories or embedding movement animations, highlight finer
trade-offs between individual instances from the two datasets. In
one walkthrough example, proximity revealed that a class cluster
broke into smaller clusters after an attack, but explicit encoding
helped users trace which parts of the original cluster shifted into
these smaller clusters.

However, juxtaposition proved useful when used to address nav-
igation challenges. Specifically, it can organize class instances from
both datasets into side-by-side columns in a separate linked view, al-
lowing for “quick comparison of instance prediction correctness before
and after an attack.” -E5 (Figure 2d). This immediate visual feedback
reduces user burden by supporting efficient instance navigation
based on model correctness [22, 23].

C4: Class-level metric comparison. For metric comparison
at a class level (e.g., false positives, false negatives), juxtaposition by
itself proves to be an intuitive design (Figure 1d). By placing class
performance side by side in a consistent spatial layout, our experts
noted that they can efficiently compare metric trade-offs without
cognitive overload [23]. Visual elements from simple charts (e.g.,
doughnut charts) are sufficient to help them retain context and rely
less on memory to make comparisons.

C5: Instance-level image comparison. For this task, we found
the hybrid design of juxtaposition + superposition and explicit en-
coding particularly useful. Juxtaposition and superposition comple-
ment each other well in this context to address the common imper-
ceptibility of adversarial attacks (Figure 1e1). Juxtaposition allows
users to directly compare input images from both datasets close
together, making it easy to spot any visible semantic differences.
When the images appear visually indistinguishable, superposition
becomes useful to highlight model perception trade-offs by over-
laying feature-based visual explanations. One effective example,
which we found through our design exploration, is juxtaposing
natural and adversarial versions of an image with the option to
interactively toggle heatmap overlays to highlight model percep-
tion differences. Many heatmap visualizations (e.g., saliency maps)
are already widely used by AML practitioners for instance-level
analysis [9, 32, 66], and these visual explanations themselves act
as a form of superposition. When mixed with juxtaposition, this
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creates “comparisons of comparisons” [23], visualizing how signifi-
cant features perceived by models differ before and after the attack.
E5 found this design valuable as it allows for first comparing raw
images and then overlaying heatmaps to observe model perception
trade-offs. Explicit encoding is less effective for heatmaps as it ob-
scures original images, but can be effectively used to visualize the
image differences as the applied perturbation, which highlights the
image features the attack specifically targets (Figure 1e2).

C6: Model-level comparison. For model comparison, an effec-
tive design is a hybrid approach augmented by interaction, using
the “blink” and “shine-through” techniques. We consider these tech-
niques to incorporate elements of all three designs: juxtaposition,
superposition, and explicit encoding. During the initial design explo-
ration, both our team and experts originally leaned toward using
a small multiples design, where models are compared side by side
using juxtaposition, with either superposition or explicit encod-
ing to compare the two conditions within each model (Figure 2e1).
However, prototype walkthroughs revealed that this approach led
to cognitive overload, especially when combined with comparisons
from other levels (C1 ∼ C5), making it too visually overwhelming.
This led us to explore more dynamic designs [23, 57].

Through our exploration, we found that the “blink” interaction
[23] allows users to toggle between models while retaining con-
text, such as maintaining focus on a specific class or instance when
switching models (Figure 2e2). This method effectively combines
elements of superposition and juxtaposition by allowing compar-
ison within the same coordinate system, but sequentially in time
rather than space. We found that it worked well for simpler com-
parisons like C1, C4, and C5, as it still predominantly relies on
users’ memory to make comparisons. However, our experts noted
that with this technique, comparing complex objects (C2 & C3)
was more challenging due to the mental effort required to track
shifts across models. From further exploration, we found that the
“shine-through” interaction can effectively address this problem
(Figure 1f). Proposed in [57], it allows users to overlay embeddings
from different models with the ability to control the transparency of
each model’s embeddings. This flexibility lets users retain as much
context from each model as needed, and fine-tune comparisons
to reveal subtle trade-offs between models without overwhelming
the display. Though the original work [57] largely views this as an
augmented form of superposition, we consider it to incorporate
elements of all three visual comparison designs: superposition by
overlaying embeddings in the same space, juxtaposition in time
through the ability to transition between models, and transparency
control as explicit encoding to emphasize model differences. As
such, from our exploration of C6, we verified that, beyond pro-
viding comparison assistance (e.g., in C1 ∼ C5), interaction can
address inherent issues in basic visual comparative designs. An
interaction-heavy design effectively mitigates visual clutter and
cognitive overload that arise in other hybrid approaches.

3.4 System Design Goals

To support the designs of a complete system, we performed addi-
tional qualitative analysis on our expert interviews (Section 3.1.1) to
extract further design requirements. Here, we present the complete
set of design goals for VATRA:

G1: Utilize a comparative visual approach. Given the known
trade-offs [49, 59, 65], all interviewees confirmed that a compara-
tive visual approach is needed to assess models on both datasets
concurrently. E3 commented, “Focusing on a single metric can be
misleading, since many models perform well only in either standard or
adversarial condition.” E2 agreed, “Visually comparing is important
to guide us in turning model parameters and seeing how much we
can trade accuracy for robustness.”

G2: Visualize trade-offs at multiple levels of details. Many
ATs demonstrate effectiveness by reporting their overall accuracy
and robustness [47, 52, 65]. However, to assess real-world viability,
trade-offs should be visualized at different granularities, as “models
with strong overall performance can still reveal trade-offs at specific
instances or classes” -E3. Additionally, all interviewees agreed that
class-wise comparison should be specifically supported to assess
fairness trade-offs [4, 5, 63]. E5 stated, “When examining safety-
critical classes like stop signs, if the visualization shows a fairness
trade-off in misclassifying them under poor lighting, I would prioritize
addressing it by training on poorly-lit signs.”

G3: Facilitate interactive exploration of trade-off causes.

The experts believed that the visualizations should be augmented
with interaction to support dynamic exploration. E4 explained, “If
users can interactively explore the embedding space pre- and post-
attack, they can navigate to the most affected areas for a close-up to
investigate trade-off reasons and be more informed.” E2 agreed, “If
users can interactively drill down into class overlaps between datasets,
it can reveal subtle patterns and help users explore why certain class
performances decline sharply compared to benchmark models.”

G4: Adapt to various evasion attacks, ATs, and image clas-

sification tasks. As many attacks [10, 11, 24, 35, 41] and ATs
[24, 41, 48, 56, 65] exist, the experts emphasized having a visual
framework that can be generalized to different attacks and defenses.
E1 stated, “To find the best method in our workflow, we compare
various AT methods to see how each holds against perturbed data.” E1
and E2 also stressed that the framework should be generalizable to
domain-specific image classification tasks. E2 explained, “Certain
images, such as medical ones, are much susceptible to attacks than
others. Users should be able to explore their own datasets to better
assess models’ reliability in their use cases.”

4 VATRA

Here, we describe the details of our design probe, VATRA, guided
by our empirical insights into effective comparative approaches
(Section 3.3) and developed through the aforementioned design
process (Section 3.1).

4.1 Design Probe Overview

VATRA is a visual analytics design probe divided into two system
components: 1) a backend analytic pipeline (Section 4.2) and 2) a
frontend user interface (Section 4.3).

The backend analytic pipeline generates adversarial examples
and evaluates models for trade-off analysis. The Perturber module
applies user-selected attacks and processes images for metric eval-
uation and embedding analysis (G4). The Feature Analyzer extracts
embeddings from both inputs, using a dual DR approach combining
independent and conjoint methods (Section 4.2.2). It also employs
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Figure 3: VATRA’s interface, consisting of: (a) Summary View, a high-level metric comparison of model performance; (b)

Global Dual Projection View, enabling the comparison of global embeddings between natural and adversarial datasets; (c) Class

CoProjection View, allowing for class-wise comparison of local embedding relationships; (d) Class Overview Display, offering a

statistical comparison of the current class; (e) Instance View, highlighting specific data instances; and (f) Model Comparison

feature, which supports model comparison through interactive techniques.

Grad-CAM [51] to highlight key image regions and quantifies in-
variance to assess accuracy-robustness balance.

The frontend user interface includes the followings: 1) a Summary
View (Figure 3a), 2) a Global Dual Projection View (Figure 3b), 3)
a Class CoProjection View (Figure 3c), 4) a Class Overview Display
(Figure 3d, 5) an Instance View (Figure 3e), and a 6) Model Compari-
son feature (Figure 3f). An overview of the interface components,
along with their comparison levels, visual comparative designs, and
a summary of their functionalities, is provided in Table 1.

4.2 Backend Analytic Pipeline

We first describe the backend’s role in data preparation and analy-
sis, including adversarial example generation, standard/adversarial
evaluations, and embedding analysis for trade-off assessment.

4.2.1 Perturber. The Perturber generates adversarial data by con-
ducting the chosen attack with user-defined parameters. The mod-
ule first analyzes model predictions using standard inputs to extract
perturbation-relevant information (e.g., gradients). It then adjusts
pixels within 𝜖 bounds to generate adversarial examples aimed
at deceiving the model. We adopted an attack-agnostic approach,
allowing for generalization across different attacks (G4). Users can

add new attacks by defining functions that adhere to the required
interface, such as model parameters and input data.

While the Perturber can be swappedwith different attackmethod-
ologies, here we use PGD [41] and SimBA [26], two well-known
attacks (one white-box and one black-box), to demonstrate the de-
sign probe. We chose PGD because it is considered the strongest
attack using local first order information [41], which is known
to be effective against many classifiers [41, 59, 67] and frequently
used to evaluate other attacks and defenses [48, 64, 65]. The second
method, SimBA [26], is one of the most efficient black-box attacks
and commonly taught in AML classes, as mentioned by our experts.

4.2.2 Feature Analyzer. This module evaluates models in the latent
space by extracting, reducing, and comparing models’ perceived fea-
tures of standard and adversarial examples, and transforming them
into interpretable representations. It maps each input (i.e., 𝑥 , 𝑥adv)
to a latent vector by temporarily detaching the final output layer
to extract embeddings, then applies users’ choice of DR method
(e.g., t-SNE [60], PCA [46]) to prepare them for 2-D visual inter-
pretation. We apply reduction in a two-fold approach to support
multi-level embedding comparison (G2): 1) Independent reduction,
in which natural and adversarial datasets are processed separately
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Interface Component Level Comparative Designs Summary

Summary View C1 Juxtaposition, Explicit
Encoding

A comparison overview of model metrics w.r.t the benchmark; key dataset and attack information;
class-wise precision + recall.

Global Dual Projection View C2 Juxtaposition + Explicit
Encoding

Reveals global embedding patterns; direct comparisons of the structural similarities and differences
between nat. and adv. embeddings against the decision boundaries.

Class CoProjection View C3 Juxtaposition, Superposition +
Explicit Encoding

Comparison of dynamics and trajectories between nat. and adv. embeddings within the same
class in a unified projection space.

Class Overview Display C4 Juxtaposition Statistical metric comparison of the class currently investigated by the user between nat. and adv.
datasets.

Instance View C5 Juxtaposition + Superposition,
Explicit Encoding

Provides comparison of raw images and visual feature explanations on the selected instance.

Model Comparison C6 Juxtaposition, Superposition,
Explicit Encoding

Model comparison of performance metrics via “blinking” [57]; comparison of dataset- and class-
level embeddings between models via “shine-through” interaction [57].

Table 1: An overview of VATRA’s interface components.

to analyze global structural patterns, and 2) Conjoint reduction, in
which both datasets’ instances within a class are reduced together
in a combined feature space.

To quantify how closely adversarial examples mimic the natural
inputs, the analyzer also calculates the average invariance between
natural and adversarial examples, i.e., 1

𝑁

∑𝑁
𝑖=1



v𝑖 − vadv,𝑖


2. Here,

v𝑖 represents the latent space vector of the 𝑖-th natural input, and
vadv,𝑖 represents the latent space vector of the corresponding ad-
versarial example. This provides a metric for the model’s degree of
balance between accuracy and robustness. A Grad-CAM compo-
nent computes gradients of the output class w.r.t key feature layers,
producing a localization map highlighting important image regions
for its prediction.

4.3 Frontend User Interface

Here, we detail the frontend interface, which includes several inter-
active components designed to support exploration and comparison
of model trade-offs through multi-level comparative visualizations.

4.3.1 Summary View (Figure 3a) - C1. This view utilizes juxtapo-
sition and explicit encoding to compare the current model’s high-
level performance statistics w.r.t the benchmark, and presents key
dataset and attack information. From left to right in Figure 3a1,
the view presents total data instances, juxtaposed model accuracy
and robustness, explicitly encoded embedding invariance, and the
attack method. Through attention shifting across metrics, users can
compare between models to understand the high-level accuracy-
robustness trade-off patterns (G1, G2).

The two matrices (Figure 3a2) utilize juxtaposition with color-
coding to display class-wise precision and recall in both condi-
tions (G2). The rows are juxtaposed, with the first showing natural
dataset metrics and the second reflecting adversarial dataset metrics
(G1). The value at 𝑖th column represents the cell’s class value, and
the color intensity witin each cell indicates the magnitude. This
visual comparison offers an at-a-glance view of variations in color
distribution, enabling quick identification of vulnerable classes for
further inspection (G1, G2).

4.3.2 Global Dual Projection View (Figure 3b) - C2. This view has a
selection panel and two juxtaposed scatterplots mixed with explicit
encoding to support comparison of global embeddings (G1). It is
designed to support exploration of trade-off causes in separate
latent coordinate systems (G2, G3).

Class Selection Panel (Figure 3b1). This panel lets users select
specific classes for analysis. Clicking “Filter List” reveals available
classes, displaying all embedding points in neutral gray. Users can
assign distinct colors to up to 12 classes [43], and consistent colors
are ensured across all views for unified comparison.

Dual Scatterplot View (Figure 3b2). This view includes two
side-by-side scatterplots with linked highlighting (i.e., juxtaposition
+ explicit encoding) to support comparison of global embeddings
from both datasets (G1). The upper scatterplot displays the global
structure of natural data, while the lower plot shows the global
adversarial structure. When users highlight a cluster in one scatter-
plot, the same instances are automatically highlighted in the other.
Correct predictions are rendered as circles and incorrect predictions
as squares. Users can interactively zoom and pan to highlight spe-
cific points or clusters, maintaining mental models of each dataset’s
context while comparing their structural trade-offs (G3).

Users are provided with two navigation methods: 1) instance-by-
instance by selecting any point, and 2) class-by-class by clicking
on a class centroid (G2). A hexagonal binning map is integrated
in the backgrounds, which depicts the model’s estimated decision
boundaries (i.e., abstraction as a form of explicit encoding [23]). We
introduced it based on our experts’ suggestions to help users infer
the predicted class of instances by examining colors of surrounding
hexagons. By maintaining a consistent hexbin map within both
natural and adversarial projections, the view enables more explicit
comparisons of how embedding distributions shift in response to an
attack (G1, G3). This comparison reveals data migration between
decision regions, informing trade-off mitigation such as prioritizing
training for classes more susceptible to adversarial shifts.

4.3.3 Class CoProjection View (Figure 3c) -C3. This view leverages
juxtaposition and a hybrid of superposition + explicit encoding to
support exploration of models’ class perception at a more fine-
grained level (G1, G2).

Instance Selection Panel (Figure 3c1). This panel updates
with instances from the selected class, displaying rows with three
juxtaposed columns: image name, a natural image with its label and
prediction, and an adversarial image with its updated prediction
(G1). Colored hatching indicates prediction correctness—green for
correct, red for incorrect. Juxtaposition with color-hatching enables
quick comparison of instance classifications and supports efficient
instance navigation based on model correctness.
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CoProjection Scatterplot View (Figure 3c2). This view sup-
ports comparison of local relationships between natural and ad-
versarial embeddings within a class (G2). A hybrid design of su-
perposition + explicit encoding is employed to project both datasets
into the same spatial context with visual cues and animations to
explicitly highlight instance movements (G1). The view also dif-
ferentiates correct and misclassified instances using circles and
squares. Each square’s left half indicates its label, while the right
half shows its misclassification. Users can choose either dataset as
the "foreground," where larger points highlight it as the primary
investigation focus, while the "background" dataset is displayed
with smaller points for contrast. Each background instance has an
explicitly encoded tail tracing its movement from the foreground
(G1). When a point is highlighted, an animated line connects it to
its counterpart, visualizing embedding shifts between datasets to
identify class-level trade-off causes (G1, G3). An animation high-
lights background instances moving into the foreground (a form of
explicit encoding; Figure 3c3), showing class migration within the
projection space during an attack (G2, G3).

4.3.4 Class Overview Display (Figure 3d) - C4. This view offers a
juxtaposed metric summary of the class being investigated (G2).
The right column displays the class name, an example image, class
category, and the number of class instances. The left column fea-
tures a series of juxtaposed doughnut charts that summarize the
model’s class metrics under both conditions (G1). This column has
two rows displaying natural and adversarial class metrics. It dis-
plays false positives, precision, false negatives, and recall from left
to right, enabling class comparison through linked visual elements
without cognitive overload.

4.3.5 Instance View (Figure 3e) - C5. This view utilizes a hybrid
design of juxtaposition + superposition and explicit encoding to pro-
vide detailed information on an instance (G2). It depicts the attack
process by juxtaposing the followings: the natural image and the
applied noise (i.e., explicitly encoded image difference), the model’s
original prediction and its correctness, the adversarial image, and
the model’s new prediction and its correctness. Beyond comparing
pixel differences andmodel correctness, users can toggleGrad-CAM
(Figure 3e1) to compare heatmaps of significant image features for
the two predictions (G1), overlaid on the original images. By juxta-
posing the model’s decision-making for individual instances with
superimposed heatmaps, this view helps assess trade-offs on a case-
by-case basis, informing users’ strategies to balance robustness,
accuracy, and fairness across different instances.

4.3.6 Model Comparison (Figure 3f) - C6. To support trade-off
comparisons between models acrossC1∼C5, we incorporated an in-
teraction feature designed specifically for model comparison. Based
on our design considerations for C6 (Section 3.3), this feature com-
bines all three comparative designs: juxtaposition, superposition, and
explicit encoding. It includes two key comparative interactions. The
first is the “blink” interaction [23], which allows users to toggle be-
tween models while retaining the selection focus of a specific class
or instance. This allows for quick comparisons of simple metrics
(e.g., overall accuracy/robustness, class precision/recall) by seam-
lessly alternating between models. For comparing more complex

objects like embeddings, the second interaction, i.e., the "shine-
through" feature [57], offers a transparency control mechanism.
This lets user overlay the embedding projections and control the
visibility of each model’s embeddings with a slider, allowing them
to retain context and reducing the cognitive load of attention shift-
ing between models. Together, these interactions offer a flexible and
intuitive way to compare models without leading to visual clutter.

5 User Studies

To explore how the comparative visualizations from VATRA can
be integrated into the workflows from different ML application
domains, we conducted 90-minute interviews with six experts (E6
∼ E11). We developed two comprehensive use cases and provide
empirical insights into how AML practitioners can leverage our
comparative visual approaches for trade-off analysis. We aim to
answer the following questions:

RQ1 How do AML practitioners utilize comparative visual designs to
effectively gather trade-off insights?

RQ2 How do these comparative designs enhance existing workflows
for AML model evaluation and improvement?
Each interview began with an introduction to the research and

a tutorial on the design probe. Experts received access to VATRA
along with tasks and scenarios in PDF format for free-form inter-
action. They explored classifiers with the same architecture but
varying AT levels, assessing performance under both conditions to
understand trade-offs (T1). Initial tasks familiarized them with the
interface, but they were encouraged to identify as many trade-off
insights and their causes as they could (T2). Based on findings,
they either selected the best classifier for their application (T3) or
explored ways to improve models and mitigate trade-offs (T4). A
think-aloud protocol was used, with an experimenter taking notes
and assisting with technical questions. Sessions concluded with
a follow-up interview for additional feedback. Participants were
compensated $20/hour.

5.1 RQ1: Insight Gathering

Entry model identification. AML practitioners begin their in-
sight gathering by first identifying an entry model as their analysis
starting point through high-level visual comparisons. Practitioners
typically start with the Summary View (Figure 3a), which presents
overall model accuracy and robustness w.r.t the benchmark model.
Occasionally, they complement this by utilizing the Global Dual
Projection View (Figure 3b), where they toggle between models
and rely on their memory to compare differences in the global
embedding distribution across models. Though VATRA offers a
“shine-through” feature (Figure 3f2) for superimposing model dis-
tributions, we found that practitioners mostly use it to examine
more fine-grained distribution patterns. When identifying an entry
model, practitioners find model toggling and viewing juxtaposed
scatterplots sufficient, as they only require a high-level overview
of the distribution at this stage.

Back-and-forth insight refinement. After identifying an en-
try model, practitioners proceed to refine their insights iteratively
by leveraging a combination of views. This phase involves transi-
tioning between the Global Dual Projection View, Class CoProjec-
tion View (Figure 3c), and Instance View (Figure 3e), depending on
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the nature of the insight being pursued. Practitioners often switch
back and forth between these views, using the Global Dual Projec-
tion View to compare overall patterns or shifts in data distributions,
the Class CoProjection View to analyze feature-specific relation-
ships, and the Instance View to compare natural and adversarial
instances. This back-and-forth comparison enables practitioners
to balance high-level overviews with targeted deep dives to un-
cover meaningful insights into model performance. For example,
practitioners may begin by comparing the overall distribution to
identify clusters of commonly misclassified instances. Then, they
transition to the Class CoProjection View to examine how close the
instances are to each other within the shared feature space. From
there, they use the Instance View to compare specific instances
and investigate the correlation between spatiality and semantic
features, such as lighting, colors, or textures, that may explain why
the model struggles with these instances.

Guidance for next steps. Some comparative designs in VATRA
are not primarily used for direct insight gathering, but instead serve
as guidance for determining the next steps in the analysis work-
flow. For example, from our interviews, the experts agreed that the
Class Overview display (Figure 3d) provides useful insights into the
common classes that the current class tends to be confused with.
However, in practice, we observed that they rely on this view the
least for direct insight gathering. Instead, the practitioners use it to
guide their strategy after completing a round of insight gathering
with other views. For instance, once they identify an entry model
and gather insights using the embedding and instance compari-
son views, the Class Overview helps them decide which class or
instances to analyze next using the same comparative workflow.
Similarly, the Instance Selection Panel (Figure 3c1) within the Class
CoProjection View plays a guiding role. When loading a class into
the Class CoProjection View, practitioners rely on the juxtaposed
color differences in the Instance Selection Panel to inform their
next steps, i.e., which instances to focus on next. These guiding
views help practitioners navigate their analysis more effectively to
ensure a more structured approach to gathering trade-off insights.

5.2 RQ2: Workflow Enhancement

Refining and structuring workflows. From our user interviews,
we identified that the workflows of AML practitioners generally
follow a high-level structure: first, assessing the extent of a trade-
off (T1); next, gathering insights and understanding the causes
behind these trade-offs (T2); and finally, deciding on actions such as
selecting the best model for their scenario (T3) or identifying areas
for improvement (T4). While VATRA’s comparative visual designs
align with this general workflow, they also help refine and structure
practitioners’ approaches, making their workflows more defined
and goal-oriented. In traditional workflows, practitioners often
lacked a fixed starting point or clear strategy, with insight gathering
varying greatly depending on individual preferences. Typically, they
would begin with high-level metrics like accuracy and robustness,
but proceed in a more open-ended manner, often unsure about their
specific goals. In contrast, with VATRA, practitioners developed
workflows that were both more structured and flexible, adapting to
their objectives while leveraging its comparative features.

For instance, E6 began their workflow by selecting traffic sign
classes they deemed most critical based on their background knowl-
edge, independently of other views. From this starting point, they
gathered insights and worked their way back to compare additional
classes relevant to these critical signs. Meanwhile, E7 used the
Global Dual Projection View to identify classes that appeared more
vulnerable and focused their analysis on these areas. Others lever-
aged embedding distributions to select classes that were visually
or semantically similar for further exploration. These examples
suggest that VATRA’s comparative designs not only align with the
high-level workflow logic of AML model evaluation, but also guide
practitioners in creating workflows that are structured, goal-driven,
and tailored to their specific needs.

Introducing an iterative workflow. Another way VATRA en-
hances existing workflows is by facilitating an iterative approach,
which contrasts with the more linear workflows practitioners de-
scribed in their prior processes. In our initial interviews, many
practitioners mentioned that their existing workflows typically in-
volve looking at high-level statistics, such as overall accuracy and
robustness, followed by generating some graphs to gather trade-off
insights. However, with VATRA, we observed that practitioners’
workflows became more iterative, involving repeated transitions
between views after completing the initial high-level comparison
(T1). For example, practitioners would perform tasks T2, T3, and
T4 through a dynamic and iterative workflow. In the most straight-
forward scenario, this iterative process followed a high-level-to-
low-level structure. Practitioners began with “high-level metrics to
identify trade-offs, then move down into lower-level views for embed-
ding and instance comparisons” -E8, and finally “returned to higher
levels to iteratively refine the analysis and repeat the process.” -E11.
However, we also observed workflows that did not follow this high-
to-low structure. In some cases, practitioners began their analysis
with the global distribution to identify misclassified instances di-
rectly, then jumped straight to the instance view. From there, they
selected classes to investigate further based on interesting patterns
or outliers observed at the instance level. This flexibility suggests
that VATRA’s comparative designs could adapt to the unique needs
and goals of practitioners, allowing them to iteratively explore
trade-offs and uncover insights at multiple levels of detail.

5.3 Case Study #1: Traffic Sign Recognition

This case study involves three researchers (E6 ∼ E8; all men) with
ML/CV backgrounds in autonomous driving and traffic modeling.
E6 and E7 have six years of ML experience, while E8 has five. E6
has two years of AML experience, E8 has one, and E7 is familiar
with AML concepts. Domain-wise, E6 specializes in traffic sign
recognition and integrating image-LiDAR models for pedestrian
and vehicle detection. E7 researches CV and image processing for
autonomous driving, and E8 specializes in ML-driven traffic mod-
eling. We loaded VATRA with three ResNet-101 models trained
with various degrees of TRADES [65], a SOTA AT method recom-
mended by our AML experts, on the German traffic sign recognition
benchmark (GTSRB) dataset [54], and used PGD [41] as our attack.
Based on our observations and interviews, we distilled a use case
to provide insights on how practitioners can leverage comparative
visualizations to analyze model trade-offs for sign recognition.
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Understanding model-level overview. The expert wants to
compare three classifiers: Model 0, a standard model, Model 2, a
model trained with TRADES (1/𝜆 = 1), and Model 3 trained with
a higher degree of TRADES (1/𝜆 = 6). Model 0 is first selected to
explore its trade-offs when no AT is applied. From the Summary
View, juxtaposed metrics direct the expert’s attention between two
contrasting values, revealing that Model 0 has a high accuracy of
99.07%, but low robustness of 6.36%. Concerned about its safety,
the expert toggles the other models with the “blink” interaction.
By focusing on the alternating metrics superimposed in the same
view, the expert discerns with little memory load that Model 1
achieves significantly higher robustness (61.59%), despite relatively
lower accuracy (94.93%) (Figure 3a1). Meanwhile, Model 2 exhibits
marginally better robustness (62.79%) but much lower accuracy
(88.65%). The expert recognizes that the accuracy-robustness trade-
off persists even with SOTAmethods like TRADES. FindingModel 1
the most promising yet hoping to alleviate the trade-offs, the expert
decides to take a closer look at its embeddings.

Exploring global-level embeddings. The expert navigates
to the Global Dual Projection View (Figure 3b) to display the em-
bedding distributions of all 43 signs. By carefully adjusting the
“shine-through” (Figure 3f2) back and forth to compare Model 0
and Model 1’s global embeddings (Figure 3f3), the expert manages
to retain both data distributions in their mental model, making
several observations. First, the juxtaposed embeddings of Model
1 highlight a similar layout under both conditions. This suggests
that Model 1 perceives both datasets as alike, contributing to its
robustness. Second, since juxtaposition preserves the context of the
original embeddings, the expert knows that Model 1 relies more on
human-interpretable features for prediction, as “speed limit signs
cluster at the top left, triangular signs group on the right, and blue
signs concentrate at the bottom.” -E8. However, by skimming across
the class matrices (Figure 3a2), the significant variations in color
intensity between juxtaposed squares show that “Model 1 experi-
ences a significant fairness trade-off among speed limit signs.” -E6.
Linked highlighting reveals the issue in both adversarial and natu-
ral embeddings, leading practitioners to suspect it as the cause of
the accuracy trade-off. The expert assigns each speed limit sign an
unique color to focus the analysis more on them (Figure 3b3).

Investigating class-level local relationships.With non-speed
limit signs hidden, the expert pans and zooms in on the scatter-
plots to focus solely on speed limit sign clusters. The expert begins
with “Class 3: Speed Limit (60km/h)” by clicking on its natural
class centroid. The Class Overview Display (Figure 3d) and Class
CoProjection View (Figure 3c) updates, with natural embeddings as
the “foreground” and adversarial embeddings as the “background.”
Superimposed projections enable comparison of structural shifts,
revealing that adversarial data from Class 3 form distinct smaller
sub-clusters. Observing the explicitly encoded trajectories, the ex-
pert also notices that “after” cluster data points were previously
scattered throughout the “before” cluster. Aiming to identify the
patterns behind the clustering, the expert selects individual data
points to examine their actual natural and adversarial images.

Examining instance-level trade-off causes. From the In-
stance View, the expert notices that instances within the same
“after” cluster tend to share similar lightings (Figure 3c2). For exam-
ple, within the natural dataset, “all misclassifications share a common

bluish tint with no direct sunlight.” -E7. The expert therefore consid-
ers using data augmentations or generative AI to simulate various
lighting conditions to enhance model robustness. The expert also
notes that under adversarial conditions, “PGD modifies the semantic
visual features of sign numbers in Model 1” -E7—a departure from its
usual tactic of adding imperceptible noise. To address the severe
fairness trade-off in speed limit signs, the expert considers using
semantic integrity checks to look for inconsistencies in identifiable
attributes such as shape, size, or colors. By examining the local sim-
ilarities among instances and their actual appearances, the expert
continues to gather new insights, aiding in the development of new
solutions to enhance the model.

5.4 Case Study #2: Skin Lesion Recognition

This case study involves three researchers (E9 ∼ E11; all women)
in healthcare CV. E9 is knowledgeable about AML through past
courses and projects; E10 and E11 is familiar with the concepts
from reading AML literature. E9 collaborates with hospitals to ap-
ply vision models for tumor classification in medical videos. E10
researches CV and image processing in healthcare. E11 specializes
in CV-based disease prediction and neuroscience data visualization.
We loaded VATRA with three VGG-16s trained with different de-
grees of robust self-training (RST) [48], another SOTA AT method
[64], and used the HAM10000 skin lesion dataset [58] with SimBA
attack [26]. We devised another use case within the context of
healthcare CV to further demonstrate the workflow of our aug-
mented comparative approach.

Observing global shift across decision boundaries. An ex-
pert aims to investigate three VGG-16s: the standardModel 0,Model
1 trained with RST (𝛽 = 0.5), and Model 2 trained with RST (𝛽 = 4).
They begin with Model 0 to assess standard training, noting from
the Summary View that it achieves 84.28% accuracy but only 5%
robustness. Intrigued, they navigate to the Global Dual Projection
View, and examine global embeddings to explore reasons behind the
trade-off. By explicitly highlighting classes in the linked juxtaposed
scatterplots, they note a pronounced shift: under attack, many in-
stances of "Class 4: Melanocytic Nevi" move to the border of the
prediction region, crossing the decision boundary and approaching
other class clusters (Figure 4a). “This shift results in the misclassifi-
cation of most melanocytic nevi in adversarial conditions.” -E10.

Identifying causes of distribution change. To investigate the
reason for the shift, the expert clicks on the centroid of melanocytic
nevi, which populates the Class CoProjection View. Upon examin-
ing the distance of explicitly encoded links between the foreground
and background data, and comparing the overlaid heatmaps in the
Instance View, they note that Model 0’s attention to image features
dramatically shifts to different areas post-perturbation. Yet, even
without perturbation, the superimposed heatmaps show that the
model’s focus does not consistently align with the actual locations
of skin lesions in the image (Figure 4b). The expert realizes that
Model 0 relies on non-human-interpretable features rather than
actual visual characteristics of skin lesions—“a mistake that could
be deemed critical from a medical professional’s perspective.” -E9

Analyzing trade-offs from data imbalance. Discontent with
Model 0, the expert shifts focus to Model 1. They note from juxta-
posed views thatModel 1 exhibits lower accuracy (79.28%) but much
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Figure 4: A healthcare CV expert leverages the comparative visualizations from VATRA to explore and compare trade-offs of

three VGG-16s trained with varying degrees of RST.

improved robustness (40.57%). Nonetheless, the inconsistent color
distribution in the class matrices indicates a pronounced fairness
trade-off (Figure 4c). Specifically, the model demonstrates much
higher precision/recall for melanocytic nevi compared to other
classes. The expert returns to the Global Dual Projection View to
explore these trade-offs. From the scatterplots, the expert observes
a unique property of this class: a clear imbalance, with melanocytic
nevi having significantly more instances than other classes. The
test set, sampled from the whole dataset, reveals class imbalance in
training, causing the model to “excel in classifying melanocytic nevi
but struggle with other classes due to insufficient data.” -E9. The ex-
pert realizes that to reduce the fairness trade-off of Model 1, several
approaches could be adopted. These include cost-sensitive learning
to penalize minority class misclassifications and data augmentation
to expand underrepresented classes.

Investigating trade-off causes case by case. To explore the
accuracy-robustness trade-off inModels 1 & 2, the expert decides to
examine the local embeddingsmore closely, startingwithmelanocytic
nevi. As the expert alternates betweenModels 1 & 2 with the “blink”
interaction, they notice from the superimposed Class Overview
Display that the more robust the model becomes, more standard
instances are misclassified as “Class 6: Melanoma.” Reviewing im-
ages often misclassified as melanoma, the expert notes their similar
lesion shapes and colors (Figure 4d). Thus, beyond generic data aug-
mentation for class imbalance, targeted augmentations can generate
diverse melanocytic nevi and melanoma examples, emphasizing
shape and color differences. The expert continues their investiga-
tion by analyzing the distributions of various classes, gaining new
insights to address the model’s trade-offs during the process.

6 Discussion

Here, We discuss emerging themes from our study, providing addi-
tional insights and design implications, and outline study limita-
tions with future research directions.

Interaction in comparative visual design. From prototype
walkthroughs and user studies, we show that interaction plays a
dual role in visual comparison: it can assist users to better perform
existing comparison tasks (C1∼C5), but also addresses issues in-
herent in comparative visual designs (C6). One example of using

interaction to support existing comparative designs is linked high-
lighting, a form of explicit encoding powered by interaction. On
the other hand, interaction techniques like “blinking” and “shine-
through” [23, 57] help mitigate the cognitive overload and visual
clutter in traditional comparative designs. While most visual an-
alytics [1, 3, 12, 23] focus on spatial comparisons, we argue that
time-based comparisons remain underexplored and can be effec-
tively achieved through interaction. By incorporating temporal
elements like blinking or shining through objects in a sequential
order, this addresses limitations in space-based design and adds
another layer of visual comparison without cluttering the interface.
Further, though the original taxonomy of comparative visual de-
sign [23] stated that a hybrid of all three designs (i.e., juxtaposition,
superposition, and explicit encoding) was possible but not encoun-
tered, our findings suggest that this can be realized through the
integration of interaction. By leveraging interactions, users can
combine elements of comparative strategies within one design to
achieve a more comprehensive comparison, as shown in VATRA’s
Model Comparison feature (Figure 3f).

Key design learnings beyond AML. The development and
evaluation of VATRA revealed several design principles that can
be applied to comparative workflows for AML and beyond. First,
VATRA demonstrates the importance of balancing structure and
flexibility. While its design provides a structured framework for
practitioners to follow, it allows them to adapt their workflows
to specific goals and insights. Second, the iterative nature of VA-
TRA’s workflow proved valuable for insight gathering, as it enables
users to transition easily between views and revisit earlier steps to
refine their understanding. Third, we observed that some compara-
tive designs, such as the Class Overview (Figure 3d) and Instance
Selection Panel (Figure 3c1), were particularly effective as guid-
ance, helping users determine their next steps rather than directly
serving as views to collect knowledge. Lastly, VATRA’s ability to
integrate insights across multiple levels, from high-level summaries
to instance-level comparisons, helped practitioners connect global
patterns with specific examples. These design principles not only
enhance AML workflows but also provide a foundation for creating
effective visualization tools in other domains requiring iterative
exploration and decision-making.
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Limitations and future work. One limitation of our study is
the sample size. A larger sample ofML experts from diverse domains
would provide deeper insights into how our comparative approach
could integrate into diverse workflows. Another potential concern
is scalability. While our system has proven effective with large
datasets, recent deep-learning models trained on billions of images
pose a challenge. To visualize such large-scale data, we might need
additional approaches like binned aggregation and hierarchical
clustering [38]. Additionally, our study focuses primarily on evasion
attacks, without fully exploring other attack types, such as data
poisoning. Future exploration of comparative designs for trade-off
analysis under these attack types could provide design implications
for visual analytics in other AML sub-domains. While we explored
various interaction techniques to enhance comparative designs,
the system’s multi-layered design and complex interactions could
present a steep learning curve for less experienced users. Additional
user guidance or simplified modes for non-experts might improve
accessibility. While we explored various interaction techniques to
enhance comparative designs, other methods, such as analytical
and statistical automatic comparisons, could further augment visual
comparison [23]. Future work could examine how integrating these
techniques might better support or improve comparative trade-off
exploration. Finally, although this work centers on comparative
approaches for trade-off exploration, other aspects of visual design,
such as color schemes and layout configurations, could also be
explored to enhance AML visual analytics. Future research could
investigate how these visual elements contribute to or hinder tasks
in trade-off analysis.

7 Conclusion

We have explored effective comparative visual designs for trade-off
analysis through a design study with 11 experts. First, an iterative
design process with five AML experts generated insights for our
development of a visual analytics design probe, VATRA, which
employs an augmented hybrid comparative design to support multi-
level comparison of model trade-offs. Moreover, a user study with
six ML experts from two application domains derived two in-depth
use cases of VATRA, providing empirical insights into how ML
practitioners can effectively leverage comparative visualizations
to analyze model trade-offs, informing design considerations for
future AML visual analytics.
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