
To Search or To Gen? Design Dimensions Integrating Web Search
and Generative AI in Programmers’ Information-Seeking Process

Ryan Yen

University of Waterloo

Waterloo, Ontario, Canada

MIT CSAIL

Cambridge, Massachusetts, USA

ryanyen2@mit.edu

Yimeng Xie

University of Waterloo

Waterloo, Ontario, Canada

y329xie@uwaterloo.ca

Nicole Sultanum

Tableau Research

Seattle, Washington, USA

nsultanum@tableau.com

Jian Zhao

University of Waterloo

Waterloo, Ontario, Canada

jianzhao@uwaterloo.ca

Abstract

Programmers now use both generative AI (GenAI) and traditional

web search for information-seeking, yet how these tools are used

individually or in combination remains unclear. To answer this,

we conducted a multi-phase investigation, including retrospective

interviews to identify foraging behaviours and challenges and an

observational study with a technology probe to analyze how contex-

tual information flows across tools. Our findings reveal that effective

information-seeking requires adaptable strategies and varying lev-

els of contextual detail. Building on these insights, we propose five

design dimensions for developing tools that integrate web search,

GenAI, and code editors. We further demonstrated the generative

power of these design dimensions with a proof-of-concept proto-

type, validated through a user study, offering actionable design

implications for enhancing integrated information-seeking work-

flows across web search and GenAI in programming.

CCS Concepts

• Information systems → Web searching and information dis-

covery; • Human-centered computing → Interaction paradigms;
Empirical studies in HCI.

Keywords

Information-Foraging, Information Seeking, Human-AI, Code Gen-

eration

ACM Reference Format:

Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao. 2025. To Search or

To Gen? Design Dimensions Integrating Web Search and Generative AI in

Programmers’ Information-Seeking Process. In . ACM, New York, NY, USA,

23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Programmers invest significant time in seeking and synthesizing ex-

ternal information to address programming tasks [57]. Traditionally,

they have relied on web search to gather the necessary informa-

tion [6, 35]. Recently, advances in generative AI have introduced

an alternative approach. Programmers can type in more complex

queries in natural language and generate tailored solutions [55].

Despite the convenience of GenAI-based information seeking,

issues such as hallucinations, misinformation, and lack of trans-

parency pose significant challenges that prevent programmers from

fully relying on these tools [33, 37, 39, 60]. To address these issues,

techniques such as retrieval-augmented generation (RAG) have

been proposed to contextualize GenAI with web search results,

enhancing factuality and reliability [42, 67]. At first glance, this

approach appears to “solve” the problem by enabling programmers

to find answers more quickly, with cited sources available for fact-

checking. However, this approach overlooks a critical aspect of

the information-foraging process [51, 64]. This process, in which

programmers manually search, collect, and organize information

from diverse sources, is crucial for building domain knowledge,

developing problem-solving mental models, and evaluating the ap-

propriateness of results [26, 36, 56, 64]. Thus, before automating

these processes or fully integrating such features, it is crucial to first

understand how programmers currently use web search and GenAI

individually or in combination, and how these tools influence their

information-foraging behaviours and problem-solving workflows.

We explore how programmers seek information using web search

and generative AI, focusing on how they transfer context between

these tools. By context, we mean a dynamically negotiated, rela-

tional property that programmers actively construct and sustain

within each specific activity, rather than a static body of information

that merely surrounds their actions [13]. Rather than comparing the

two tools in isolation, we investigate how programmers weave them

together, capitalizing on each one’s strengths or using one as a fall-

back when the other falls short. Our research (see Figure 1) begins

with a retrospective interview with 𝑁 = 8 programmers to under-

stand how programmers forage information using these tools—the

extent that they use them complementarily or alternately—and to

identify the challenges that arise. We present interview findings

organized around three major decision-making stages that detail

how programmers carry information within or across tools.

A major challenge we identified is the difficulty of translating
information extracted from web search or GenAI into formats suit-

able for the other tool, largely due to their differing interaction

paradigms and the varying levels of formality with which informa-

tion is encoded in each medium. To explore the design requirements

1

https://orcid.org/0000-0001-8212-4100
https://orcid.org/0000-0001-8608-1427
https://orcid.org/0000-0001-5008-4319
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

Figure 1: Overview of the study procedure. The process begins with an interview study to explore programmers’ practices of

using both web search and GenAI. Then, an observational study identified information flows, information types, and translation

patterns. Finally, we synthesize these insights into design dimensions and validate them through a designed prototype.

for transferring information across tools, we conducted an observa-

tional study with 𝑁 = 16 programmers using a technology probe to

gain deeper insights into how information flows between tools and

how information is transmitted and translated in situ. Our findings

revealed diverse patterns of information flow and demonstrated

that the transferred information extends beyond simple search re-

sults or generated outputs. Programmers frequently transferred

high-level concepts, interaction histories, rationales, and verbatim

snippets of text and code, employing various strategies to translate

this information for subsequent rounds of problem-solving.

Building on these insights, we propose five dimensions for future

tool design, enhancing information flowing between web search

and GenAI. These dimensions include: (1) Interoperability, reducing

resistance between tools through integration; (2) Adaptability, sup-

porting dynamic navigation across linear, branching, and parallel

flows of information; (3) Contextual Awareness, externalizing and

preserving task context to facilitate reuse and cross-tool transi-

tions; (4) Translatability, enabling context-centric translation with

a balance of automated and manual processes; and (5) Traceability,

maintaining clear provenance to support validation and workflow

continuity. To explore the generative power of these dimensions,

we developed a prototype and validated it through a subsequent

user study with 𝑁 = 12 participants, reporting changes in their

workflows and key insights for future tool design. We conclude with

design implications for developing advanced tools that integrate

web search and GenAI, aiming to better support programmers in

seeking information to solve complex programming problems.

2 Related Work

We reviewed the literature on programmers’ information-seeking

behaviours and discussed the current approaches to integrating

web searches with generative AI tools. Our work builds on this

foundation by investigating the complementary roles of these tools

and how they can be intertwined to support programming tasks.

2.1 Information Foraging in Programming

Programmers seek information to address programming problems [57].

The process encompasses a variety of cognitive tasks, including

understanding unfamiliar code segments, making high-level deci-

sions on selecting appropriate frameworks, and refining solutions

based on feedback [6]. Central to this process are concepts of infor-

mation foraging and sensemaking [52], where foraging describes

the strategies employed to seek out and gather information effec-

tively. Sensemaking describes the process of schematizing curated

information and dissemination, including how programmers collect

and organize information, which we do not specifically investigate

in this work. During the foraging process, programmers need to

search, collect, and organize information to concretize their goals

and determine approaches for solving specific programming prob-

lems. Kittur et al. [25, 26] further explore how structured approaches

can aid developers in managing web-based information, though at

the potential cost of increased cognitive load. Information foraging

theory has been widely applied to different domains, such as in-

forming web design [31] or understanding source code navigation.

Here, we focused on the web foraging behaviour in web search and

GenAI.

2.1.1 Information Seeking with Web Search. Conventional web

search remains a foundational tool for programmers’ information-

seeking activities, characterized by a non-linear, iterative process

known as orienteering [64]. Unlike the “perfect” search engine’s goal

of teleporting users directly to their target, orienteering involves

gradually refining search queries and navigating through informa-

tion, leveraging human intuition and contextual understanding.

This approach is essential for solving complex programming prob-

lems as it allows developers to dynamically explore and adjust their

search strategies[26]. In programming, web search is used for plan-

ning code structure, debugging errors, researching documentation,

and understanding concepts [18, 28]. Rather than seeking direct

answers, programmers often search for a particular information

source that leads them to their solution (e.g., searching for a partic-

ular tutorial to set up a web socket rather than directly searching

for “setting up web socket”) [64]. Programmers also leverage the

process of web foraging to gather meta-information [68], identify

potential solutions, and synthesize relevant knowledge into a struc-

tured form that meets their specific criteria [34, 36]. Web foraging’s

step-by-step approach provides programmers with a sense of lo-

cation [64] by reflecting on what has been searched and guiding

the next steps. It also helps in understanding and contextualizing

the search results [32]. These studies highlight the value of web

search beyond merely delivering results, demonstrating benefits to

users from the process of information foraging itself. Our research

2

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

builds on this notion, exploring how to reconcile web foraging with

generative AI use, rather than simply using web search results as

factual context for AI generation.

2.1.2 Information-Seeking Behaviours with Generative AI-Driven
Conversational Search. Generative AI tools like ChatGPT and Copi-

lot Chat are reshaping how programmers seek and utilize informa-

tion [55, 62]. While a comprehensive theory of information foraging

with these tools is still developing, studies indicate that program-

mers increasingly rely on them to accelerate familiar tasks and

explore novel solutions [4]. GenAI-driven conversational search

allows users to craft more complex instructions and queries, leverag-

ing external information to enhance the generated results. This iter-

ative approach enables users to refine outputs dynamically, building

on the conversational history for greater precision and relevance.

However, challenges persist in LLM-driven conversational search,

including bias [2], filter bubbles [60], and the spread of misinfor-

mation that may appear credible [37]. Several research efforts have

attempted to address these issues by incorporating uncertainty

expressions in generated results [23] or highlighting uncertain

segments in generated code [66]. While these approaches have

successfully mitigated over-reliance on generative outputs, they

also emphasize the importance of consulting additional sources to

ensure accuracy and reliability.

As a result, research shows that programmers often continue

to consult human-vetted sources like StackOverflow for valida-

tion [65]. Programmers frequently turn to web searches to validate

the correctness of information by gathering broader contextual

clues [1, 35]. These clues include metrics such as the number of

discussions surrounding a solution or the recency of updates to a

specific GitHub repository. This behaviour highlights how program-

mers’ evaluation processes often involve synthesizing information

from multiple sources and considering cues beyond the content

provided by a single tool. Our research moves beyond merely com-

paring or integrating GenAI and web search. Instead, we aim to

investigate whether and how programmers utilize both tools across

different scenarios, uncovering the interplay between these tools

and their role in programmers’ information-seeking workflows.

2.1.3 Tools Supporting Information Foraging in Programming. Sev-

eral tools have been developed to support programmers in their

information-foraging activities, from traditional web search en-

hancements to AI-driven solutions. For example, Unakite [34] and

Crystalline [36] facilitate the organization and comparison of infor-

mation gathered from the web, helping developers make informed

decisions. In contrast, AI tools like GitHub Copilot integrate the

information-seeking process directly into the coding environment,

offering real-time suggestions that are contextually relevant to

the code being written [58]. These tools provide a foundation for

supporting programmers in web-based information foraging. Our

research builds on their approaches and implications, investigating

how programmers use both web search and generative AI together,

with a particular focus on supporting their transitions between

these information-seeking tools.

2.2 Techniques Supporting the Integration of

Web and GenAI

Current commercial tools often integrate Information Retrieval (IR)

and Natural Language Processing (NLP) to combine web search

with generative AI [3, 47]. Techniques like WeKnow-RAG [67] and

WebGPT [42] demonstrate this by merging retrieved web search

results to enhance the factual accuracy of AI-generated suggestions,

aiming to balance AI efficiency with the contextual depth of web

searches. Similarly, several fully autonomous web-based agents

have been introduced, leveraging large multi-modal capabilities to

interact with websites [61, 70]. However, these approaches often

overlook the critical role of the programmer’s information foraging

process during web searches and struggle to predict the outcomes

of actions in the absence of user-defined goals [9]. Our research

emphasizes the importance of human-centric strategies outlined

in established information foraging studies [27, 52, 56, 64], which

purely algorithmic methods may not fully capture. Rather than

asserting the superiority of either web foraging or generative AI,

we argue that both offer unique, complementary benefits due to

their distinct interaction paradigms. By understanding how pro-

grammers use both tools, we aim to provide design implications for

future systems that empower programmers to navigate between

web foraging and AI generation, maximizing the strengths of both

under users’ own control.

3 Interview Study

Our overall study process began with a retrospective interview (see

Figure 1). The study aims to gain insights into programmers’ current

practices, processes, and challenges in their decision-making when

using web search and GenAI in seeking information for solving

programming problems.

3.1 Participants and Procedure

We recruited eight participants (P1-P8) (five men, three women;

ages 24− 29, 𝑀 = 26.8, 𝑆𝐷 = 1.26) through purposive sampling [14].

In our recruitment process, we sought participants experienced in

programming and using LLM-driven code generation tools through

screening questions in Appendix A.1. Recruited participants re-

ported having four to eight years of programming experience and

regularly used LLM-driven tools (8-18 times/week). Participants

were compensated with CAD$20 for a 45-minute interview session.

We first asked each participant to provide a minimum of three

recent examples of their ChatGPT usage for programming problem-

solving, including instances involving web search as part of the

process, to encourage participants to reflect on their utilization of

both web search and generative AI. We then asked about challenges

they faced when interacting with both tools, explored cases involv-

ing their combined usage, and inquired about their thought pro-

cesses throughout the information-seeking process (see the inter-

view questions in Appendix A.2). Interviews were audio-recorded

and automatically transcribed. We analyzed the interviews using

Reflecting on reflexive thematic analysis [7, 8], employing both

a deductive approach and an inductive approach to identify and

generate codes and themes. Two researchers on the team inde-

pendently conducted the initial analysis to identify themes related

to challenges, decision-making stages, and knowledge extraction.

3

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

In addition to the deductive themes, two inductive themes also

emerged: influential factors and knowledge translation.

3.2 Collected Data

Participants provided 28 examples where they used both web search

and generative AI for information-seeking and problem-solving.

We identified iterative rounds of information-seeking based on

the number of instructions (e.g., prompts or search queries) they

wrote to achieve a specific goal. In most cases (26 out of 28, 26/28),

participants engaged in 2-5 rounds of iterations involving both

web search and prompting, while two cases involved only one web

search session and a single round of prompting. We classified the

tasks undertaken by participants into open-ended and closed-ended

categories. In 21 out of the 28 cases, participants performed open-

ended tasks, which did not have a clearly defined end goal, requiring

exploration and iterative refinement. These included nine cases of

exploratory data analysis and modelling, five cases of front-end

development, four cases of data mining and web scraping, and three

cases involving server-related tasks. The remaining seven cases

were closed-ended tasks, where participants had specific end goals,

such as implementing a particular feature or solving a bug.

3.3 Results

Overall, participants considered both tools had different strengths,

but sometimes they are interchangeable. We identified how they

perceived and used both tools and described their general workflow

with the three decision-making stages.

3.3.1 Three Decision-Making Stages in the Information-Seeking Pro-
cess. We identified three decision-making stages in the iterative

information-seeking process using both tools, encapsulated in an

integrated process model (Figure 2). The model is grounded in the-

ories such as the sensemaking foraging loop [52] and Norman’s

seven stages of activity [44]. The flow begins with a Goal , where

programmers identify their tasks and problems, followed by articu-

lating Intentions to address them. For example, when classifying

the Iris dataset, programmers break down the task into selecting a

model and defining procedures for training and evaluation. They

then perform Actions , choosing between web search or generative

AI, a decision we term the Selection stage. After executing these ac-

tions, programmers analyze the results, akin to the Understanding

step in the foraging loop, extracting essential information during

the Extraction stage. Programmers then Organize this informa-

tion, preparing it for the Translation stage, where they reformulate

it into new queries or prompts. This iterative process may loop

back to Goal for broad objectives or to Intentions for refining

problem-solving strategies, dynamically adapting to the program-

mer’s evolving needs and understanding.

Selection. In the earliest iterations, tool choice was largely shaped

by two factors: (1) Familiarity with the domain: participants turned

to web search for unfamiliar topics (“fear that I do not have the
knowledge to verify correctness” [P1]) and used GenAI for areas in

which they had more expertise; and (2) Clarity of goals: vague or

poorly defined problems often prompted web searches to explore

potential solutions, while more well-defined tasks prompted par-

ticipants to rely on generative AI for targeted support. After a few

trials, participants reassessed whether to persist with the same tool

or switch. This decision was based on whether both tools appeared

capable of producing similar outcomes, whether one tool failed

to meet expectations, or whether an alternative tool offered dis-

tinct advantages. For example, P1 began with a web search to assess

trade-offs among libraries and then switched to GenAI for a tailored

solution about the chosen direction.

Many participants (6/8) frequently encountered repetitive or un-

helpful results, which prompted them to “fallback onweb search” [P2]

or switch from web search to GenAI. Conversely, participants stuck

with GenAI when they believed that “the problem has enough so-
lutions in the [AI] model” [P5] or that the generated code could

be more easily customized. Throughout this stage, decisions were

guided by metrics such as credibility, diversity, and up-to-dateness.
Web searches were valued for credibility checks, while GenAI was

appreciated for its customizability and efficacy.

Extraction. As participants iterated, they skimmed and curated

results to identify which details were relevant for subsequent prompts

or queries. Early iterations often focused on “defining the problem
domain” [P1] without much extraction, whereas later iterations

involved reusing either concrete elements (e.g., copied code) or

abstract knowledge gained from earlier exploration. However, most

participants (7/8) lacked explicit methods to track the exact sources

of extracted information. All participants reported a need for an

external space (e.g., comments in a code editor or a Google Doc)

to jot down thoughts and knowledge gained during the foraging

process. Here we define the extraction stage not merely as the ex-

plicit act of copying and pasting but more broadly as the process

of distilling specific knowledge or insights from one or multiple

results. This process becomes evident through participants’ reuse

of the information.

Translation. Finally, participants transformed their understand-

ing or extracted snippets into actionable prompts or search queries

for the next round of information seeking. This stage involved refor-

mulating information based on the interaction format required by

each tool. For example, P7 integrated steps from a web tutorial with

code examples as context to guide generated code that followed

a specific flow. It was rare for participants to directly reuse verba-

tim content without translation, although three instances occurred

when searching web to clarify keywords from generation.

Participants frequently modified or supplemented existing queries

or prompts based on new insights. P4 noted that “by gradually re-
fining instructions, I can understand which words [utterances] might
steer in a certain direction”. In some cases, participants relied on

GenAI to help translate information into usable queries. For in-

stance, P5 used a prompt: “What search queries should I use to find
related projects related to the task described in the [pasted] context
below?” Most participants (6/8) found it easier to translate informa-

tion into prompts for GenAI than into web search queries, as the

latter required more concise and structured phrasing. Two partic-

ipants specifically mentioned turning to GenAI when they strug-

gled to formulate well-formed search queries, often due to gaps in

domain knowledge. However, four participants noted challenges

when switching from extended web search sessions to using GenAI,

which arose from the need to decide which extracted information to

include and how to align the generation with the provided context.

4

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

Figure 2: A process model describing interactions between programmers and search/GenAI. It incorporates cognitive stages,

decision-making stages, and a foraging loop to illustrate how programmers navigate between tools.

3.3.2 Challenges in Using Both Tools for Information Seeking. Par-

ticipants faced dilemmas in deciding when and how to switch tools.

Some described an exploring vs. exploiting tension: continuing a cur-

rent line of inquiry versus branching out to a new domain without

fully mastering prior insights. Others wrestled with supplementing
vs. modifying an existing query or prompt, uncertain if they should

add new context or restructure the existing request.

While participants recognized the value of using both web search

and GenAI, they encountered substantial hurdles when transfer-

ring information across tools. All participants described the pro-

cess of copying, summarizing, and re-articulating content as labor-

intensive and error-prone. P5 highlighted the difficulty of “deriving
the best outcome from both inputs,” noting that each tool demanded a

different representation of the same problem, making it challenging

to maintain coherence.

Participants also pointed out that synthesizing information from

multiple sources—often written in different styles or designed for

different audiences—required significant cognitive bandwidth. The

effort to align and reconcile these fragments of information in-

troduced friction into their workflows and often led to delays or

suboptimal decisions. A particularly common challenge was the

issue of context loss during iterative tool-switching. Three par-

ticipants noted that critical goal-related context often dissipated

as information was transitioned between tools. As P2 remarked,

they could “go in completely different directions without realizing it.”
This loss of continuity made it harder to track reasoning over time,

especially in more complex or long-running tasks.

To mitigate these issues, participants expressed a desire for more

integrated workflows—such as embedding web search results di-

rectly into code editors (P4) or enabling automatic transformation

of curated web knowledge into AI-ready prompts. These sugges-

tions underscore the need for systems that preserve information

across tools and reduce the manual overhead of switching between

fragmented information spaces.

4 Observational Study

Although we observed examples of how participants translated

extracted knowledge between tools, categorizing these strategies

was challenging without a complete view of the information flow

and think-aloud data for each decision-making stage. As a result, we

followed up with a comprehensive observational study (see Figure 1)

to investigate the types of context being transmitted and how they

are transformed throughout the different stages. The observational

study aims to understand how information flows between tools,

what types of context programmers extract and how that context is
translated into subsequent queries, prompts, or code.

4.1 Participants

We recruited another 16 participants (P9-24; 9 identified as men, 7 as

women; ages 20-32,𝑀 = 24.8, 𝑆𝐷 = 2.41) through convenience sam-

pling methods including mailing lists, social media postings, and

word-of-mouth. All participants were experienced programmers,

with three to eight years of programming experience. We specifi-

cally invited individuals familiar with Python or JavaScript, as the

tasks we designed were implemented in those languages. They were

also familiar with utilizing both web search (6-18 times per week)

and generative AI (5-12 times per week) for solving programming

problems. To ensure a diverse capture of problem-solving processes,

we recruited nine graduate students, four professional developers,

and three undergraduate students. We organized the recruitment

into batches, with each batch comprising four participants corre-

sponding to four different study tasks (see Section 4.3).

4.2 Study Probe

We developed an integrated Chrome extension, depicted in Fig-

ure 3 to reduce the effect of tool bias [54]. The probe combines a

sidebar displaying a code editor, task descriptions, and the GenAI-

driven conversational interface, allowing us to focus on information

context switching, then window context switching. Additionally,

task descriptions within the interface were made non-selectable to

prevent direct copying and pasting into the GenAI; also, all com-

ponents of the interface were adjustable. System logs recorded

participants’ behaviour, including web search activities (e.g., query

writing, tab switching), GenAI interactions (e.g., prompt writing,

copy/pasting), and actions within the code editor. Detailed logs are

provided in Table 2. To ensure we collected data on instances where

participants were only viewing a component without interacting,

we asked them to click on the component (AI chat, web page, or

code editor) whenever they were looking at it, and double-click to

interact with it (Figure 3 C).

5

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

Figure 3: Our probe was implemented as a Chrome extension that appeared as a side panel (B) alongside the standard web

browsing interface (A). The extension included several resizable components, such as task descriptions, a web-based code editor

(C), and a GenAI-driven conversational interface (D).

4.3 Tasks

We designed four exploratory programming tasks to simulate sce-

narios where programmers seek information to solve problems.

Each task included specific subtasks and requirements aimed at

prompting participants to evaluate different approaches and to in-

tegrate their selected approach into a fully functional code editor

with console access. We conducted iterative testing with 𝑁 = 3

pilot participants to make sure tasks demanded a blend of high-level

information gathering and low-level coding skills and could not be

completed in a single attempt using current state-of-the-art genera-

tive AI technologies. The tasks encompassed diverse programming

challenges, including implementing a browser-based code editor,

performing sentiment analysis, creating visualizations with anima-

tion, and establishing a websocket connection with authentication.

Full task details are provided in the Appendix B.

4.4 Procedure

After a 5-minute briefing, participants had 45 minutes to complete

their tasks using our integrated probe featuring a code editor, a

genAI chat interface, and web search access. Participants were as-

signed tasks based on their self-reported unfamiliarity, as measured

by a score of ≤ 2 on a 5-point Likert scale from the screening

questionnaire. This approach ensured that while participants were

proficient in the programming language, they were relatively un-

familiar with the specific tasks, necessitating information seeking

through generative AI or web search. Participants received a base

compensation of CAD$25, with an additional CAD$5 incentive for

successfully meeting all task requirements. Two experimenters ob-

served and documented participants’ behaviours throughout the

study, focusing on web foraging techniques, prompt articulation

based on gathered information, and integration of web search re-

sults into the problem-solving process. Following the task session,

a 20-minute follow-up interview was conducted. We employed a

mixed-methods approach [12] to triangulate data from interview

responses, observational notes, and think-aloud protocols, which

were all transcribed for subsequent analysis. Detailed interview

questions and observation notes for the experimenters are available

in Appendix C.

4.5 Data Collection and Analysis

All recorded logs are listed in Table 2. The system log data were fur-

ther segmented into information flow episodes. Each episode begins

when the user starts working on an information-seeking subtask

and ends when they transition to another tool or complete the sub-

task. During the analysis, the code editor was considered as another

important “tool” for identifying information flow, apart from the

web search and generative AI. Within each information flow episode,

users engaged with two or more tools, interacted with outputs, and

decided on subsequent steps if the task remained incomplete. A

total of 151 episodes were identified, with 13 considered outliers

due to rapid tool-switching behaviour.

The segmented data were analyzed using iterative open coding,

following the thematic analysis approach by Clarke and Braun [11].

Task episodes were coded into information flow types and tool

usage patterns. Two researchers independently conducted open

coding on the same set of information flow episodes to develop

an initial codebook. The researchers then independently re-coded

20% of the episodes using the preliminary codebook. Inter-rater

reliability was assessed using Cohen’s kappa [30], resulting in an

6

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

Table 1: Context flow in tool switching. The types correspond to categories of context described in Section 4.6.1. Percentages

indicate the proportion of each major context type among all occurrences of that specific context flow observed in the

information flow episodes, with N indicating the total number of coded instances.

Context Flow

Predominant

Type

Example % of Types #𝑁

Web → Code Text P10 pasted code snippet from Kaggles’ notebook to code editor 94.45% 36

Code → Web Keyword “alternative methods to SMOTE()” [P17]. 94.74% 19

Web → GenAI Gist/ Knowledge

“I noticed [from the documentation] that SVG has to be declared first before the
plot” [P16].

72.73% 11

GenAI → Web Gist “Can Socket.IO [library used by GenAI’s results] authenticate connections?” [P19]. 92.31% 13

Code → GenAI Keyword “why scaleLinear() not working” [P13]? 83.78% 37

GenAI → Code Text P10 pasted the generated code of Naive Bayes to the code editor 95.56% 45

initial agreement of 𝐾 = 0.78 on average. Discrepancies were re-

solved through discussion, and some types of flow and context

are being merged. Using the finalized codebook, both researchers

independently coded the entire set of episodes. The final inter-rater

reliability achieved was 𝐾 = 0.93. Any remaining disagreements

were resolved through negotiation until 100% consensus. The final

codebook included seven information flow types (Figure 4), four

information context types and six context flow patterns (Table 1).

4.6 Results

We first describe the types of context that emerged and illustrate

how programmers extract, transmit, and translate this context

across tools.

4.6.1 Types of Context. Our logs, video recordings, and post-task

interviews revealed four primary information contexts (Ver-
batim, Keywords, Gist, and Knowledge) plus an additional action

context referring to participants’ prior activities and future plans.

Verbatim Snippets. Participants occasionally copied entire blocks

of code or text from search results or AI-generated outputs into their

code editor, or vice versa. For example, P10 imported large code

segments from a Kaggle notebook directly into their local editor,

while P18 pasted AI-generated code for a logistic regression pipeline.

Although this verbatim reuse offered convenience, we found that

it often required participants’ extensive ad-hoc modifications due

to partial content mismatches, such as library version conflicts or

missing dependencies in the user’s environment.

Keywords. When debugging or refining a solution, participants

often extracted specific keywords (e.g., function names, error mes-

sages, or library tokens) and used them in another tool. For instance,

P15 copied the text “scaleLinear is not a function” from the

console and pasted it into a web search query to identify potential

solutions. Similarly, P19 discovered the “socket.emit” syntax on

one website and reused the exact token in a generative AI prompt

to customize the solution further. This keyword-based approach

is effective in web searches, as it enables concise articulation of

queries. At the same time, it helped steer generated outputs in the

desired direction.

Gist. Participants often skimmed through only a portion of a

tool’s output to extract the gist—a quick, distilled understanding of

whether an approach seemed feasible. For example, P16 remarked,

“I already know it is wrong by looking at the first few lines of code since
it asked me to use SMOTE.” This immediate recognition of misalign-

ment led P16 to pivot to a web search to verify the dataset shape.

During web searches, participants could observe convergence or

disagreement among search results directly on the results page,

benefiting from a richer information scent. This enabled them to

refine their queries without needing to click on individual links.

Knowledge. This category of context represents the understand-

ing that programmers develop over time. Participants often acquired

Knowledge by reading documentation or browsing multiple web

resources, then applied these insights when interacting with gen-

erative AI or coding. For instance, P16 glanced at a D3.js tutorial

online, learning conceptually that an <svg> must be declared to

place graphical elements. Although P16 never copied code ver-

batim, this high-level understanding shaped later AI prompts (“I
want to place circles inside an existing <svg>...”). The presence of

such knowledge was inferred from study notes and think-aloud

protocols.

Action Context. Finally, the action context includes references

to previous activities and plans for subsequent actions, enriching

the input to better guide the search or AI interaction. We noted the

relevance of action context whenever participants annotated

a web query or AI prompt with details of prior steps (e.g., “I tried
searching for X and it didn’t work,” or “I already tried following
code, got a 404 error”). For instance, P9 wrote, “I was searching for
highlighting code syntax using codemirror, but it is not working. Now
I want to use Prism instead.” These meta-level descriptions allow a

tool, especially GenAI, to better tailor follow-up suggestions while

preventing redundant recommendations.

4.6.2 Information Flow Patterns. In this section, we focus on partic-

ipants’ cross-tool interaction rather than their behaviour within any

single tool. We observed four primary patterns—Singleton, Stash,

Branch, and Merge—collectively encompassing 7 information flows

(A-G) depicting distinct strategies for weaving together web search

and AI (Figure 4).

7

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

Figure 4: Four patterns and seven information flows identified from the study, illustrating how participants navigated tools and

contexts. Arrow colours represent the predominant type of context transferred between tools (e.g., Gist, or Verbatim Snippets).

The #𝑁 notation indicates the frequency of each flow, as determined from the final codebook analysis.

singleton (Flow A, E). Some participants worked mostly

within one tool until their session ended, switching only after com-

pleting a major milestone. In Search-Dominant (Flow A), P11 began

by gathering broad insights from multiple web pages, occasionally

copying code snippets into an editor for future modifications. Con-

versely, in Generate-Dominant (Flow E), participants like P12 relied

almost exclusively on AI to debug a specific error. In both work-

flows, the transferred context was primarily textual, such as code

syntax from the editor or verbatim snippets from search results or

AI outputs. While translation between search results and the code

editor was required, these interactions occurred ad hoc, typically

after pasting one or more code snippets.

stash (Flow C, F). Two distinct patterns emerged when

participants encountered obstacles with their initial approach.

In Generate-as-Alternative (Flow C), participants started with web

search until they failed to find a solution (e.g., P16 abandoned a

WebSocket approach), prompting a sudden switch to AI. Conversely,

in Search-as-Alternative (Flow F), participants began with AI (e.g.,

for code generation) but shifted to web search when “the AI’s code
kept failing” [P13]. Some participants (5/18) noted it was harder to

identify dead ends with AI compared to web search, as “it always
provides seemingly credible answers” [P12]. This often resulted in

abandoning partial progress, described by P23 as “all the build-up
is wasted,” where they “restart from scratch” in a different tool with

minimal carryover. While participants sometimes archived progress

(e.g., leaving browser tabs open or revisiting prior chat history),

the primary challenge was recalling orphaned context. As a result,

participants rarely reused Gist or Verbatim Snippets directly, often

starting fresh based on vague memories.

branch (Flow B, G). Participants frequently initiated a

new branch of information-seeking without abandoning the

original one. In Generate-from-Explore (Flow B), they first gathered

high-level strategies or Gist from web searches (e.g., P19’s con-

ceptual understanding of D3.js) before prompting AI to transform

that knowledge into workable code. This flow relied on transfer-

ring summarized insights rather than verbatim snippets. In these

cases, participants maintained a new main branch while revisiting

the original branch as a supplemental reference. Alternatively, in

Search-Verify-AI (Flow G), participants began with AI-generated

code but consistently validated snippets or Knowledge through web

searches. When verification confirmed the correctness of the AI’s

output, they returned to AI to refine their solution, maintaining

consistency in the primary branch.

merge (Flow D). In contrast to branch, participants fol-

lowing this flow did not maintain a single primary branch.

Instead, both tools were used concurrently to complete interdepen-

dent subtasks. For example, P18 used AI for syntax suggestions and

then validated the output’s compatibility by consulting official doc-

umentation. In these cases, participants leveraged both tools based

on their respective strengths. For instance, two participants used

web search to progress while waiting for AI-generated responses

to complete. While some participants (3/18) found this approach

helped “maximize the benefits of both tools” [P24], others highlighted

challenges, such as repeatedly carrying over information con-

text (e.g., function names) or documenting action context to

avoid redundant exploration.

4.6.3 Strategies for Context Translation. Unless the generated code

could be directly used in the code editor, all outputs required transla-

tion to adapt to other tools. Effective context translation is essential

for utilizing both tools complimentary while preserving informa-

tion integrity. However, current tools experience challenges of

context loss when adapting outputs to different information struc-

tures, and articulating vast context into actionable instructions (see

Section 3.3.2). Below, we detail the common strategies observed.

Explaining Background Context. Participants often articulated

their progress and prior efforts when crafting prompts for GenAI.

This included describing web search outcomes, code written so

far, or higher-level goals, providing the AI with necessary action
context. For example, P11 explained, “I’ve tried [X] library for syntax
highlighting but need help integrating it with real-time editing.” This

strategy was less explicit in web search, where participants relied

8

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

on concise terms (e.g., “alternative methods for SMOTE()”) to refine

queries. Despite these differences, both approaches demonstrated

how participants leverage background context to tools for more

targeted results.

Anchoring Context Through Keywords During Transitions. Partic-

ipants frequently reused specific keywords to maintain continuity

across tools, assisting transitions and diverging results. These key-

words often emerged from insights gained during earlier iterations.

For instance, P13 repeatedly referenced scaleLinear(), such as

“scaleLinear() not working with negative values”, across both web

search and GenAI, ensuring results remained relevant to the same

issue. This practice helped participants refine their exploration

while minimizing redundant results or irrelevant tangents.

Preprocessing Context Before Using It. GenAI was often used to

preprocess gathered information, such as combining, summariz-

ing, or comparing results from multiple sources. For instance, P15

prompted, “Combine [web search result] and [code snippet] to fit this
specific library.” While this strategy saved time, two participants

still preferred manual preprocessing, believing it to be essential for

understanding and future decision-making. P24 explained, “It’s im-
portant to process the information myself to ensure I fully understand
the options.” [P]reprocessing also appeared in search queries, where

participants used Boolean operators (e.g., AND, OR) to integrate

multiple sources systematically.

In more complex flows (B, D, G), participants combined partial

solutions from different stages, weaving them back into the code

editor or new prompts. For example, P15 validated one part of

AI-generated code on the web, discovered a minor discrepancy,

and appended that info as “the [prior pasted search results] is not
supported, can you fix the code?” in a subsequent prompt. This

incremental approach often resembled a branching search rather

than a tidy linear progression.

Labelling Context. Some participants manually labelled extracted

snippets to clarify their intended use or origin. For example, P22

labelled sections as “for preprocessing only” or “valid for JWT authen-
tication” to ensure they were reused appropriately in subsequent

queries or prompts. Similarly, in web search, P17 used labelling

directly in queries, such as “Django REST framework authentication
best practices 2023 NOT outdated tutorials”, to guide results toward

specific needs while excluding irrelevant sources. This labelling

strategy helped participants maintain clarity when navigating com-

plex tasks, such as separating authentication logic from real-time

messaging in a chat application.

Dumping Context. Occasionally, participants bypassed detailed

processing and pasted raw information into GenAI prompts, relying

on the tool to extract insights. For example, P13 pasted an error log

from a failed WebSocket connection and asked, “What steps should
I take to resolve this issue?” Similarly, some participants dumped

raw information directly into code editors, using comments to

maintain context. For instance, P14 added, “// Issue with WebSocket
connection—check JWT decoding logic here”, to capture unresolved

issues and revisit them later. Yet, this approach sometimes resulted

in missed nuances, particularly in complex workflows requiring a

deeper understanding of dependencies.

4.7 Summary of Empirical Insights and Design

Dimensions

We propose five key dimensions for future tool design, inspired by

our empirical findings on how programmers navigate web search,

code editor and GenAI.

Interoperability: Reducing resistance between tools. A key

consideration is the extent of integration and coupling between web

search and GenAI tools, focusing not on creating an all-in-one melt-

ing pot but on facilitating information transitions across tools [21]

and reducing viscosity [16]. For instance, maintaining a shared

data structure for context or enabling adaptive transformations

during import/export flows. Workflows such as singleton benefit

from separate interfaces that distinguish broad exploration from

targeted generation. Conversely, tightly coupled designs might

embed web search into GenAI interfaces, enabling on-the-fly vali-

dation or interactive visualizations (e.g., hovering over code for AI

suggestions). Prior tools like Blueprint [5] and Codelet [46] demon-

strate embedding documentation and search within code editors

by sharing context across and synthesizing a code-centric search

view. Effective coupling should prioritize context transitions, easing

selection, extraction, and translation processes without conflating

tool modalities.

Adaptability: Supporting dynamic workflow navigation.

The second dimension describes how tools support users in adapt-

ing to diverse flow patterns by providing mechanisms to switch

between flows, maintain partial solutions, and merge or revisit

paths as needed. Some linear workflows (singleton) guide users

through a single sequence of decisions, simplifying context tracking

but limiting opportunities for simultaneous experimentation with

multiple options. In contrast, many participants adopted branch-

ing workflows (branch or merge), exploring alternative snippets

(Flow B) or verifying AI outputs via web searches (Flow G). Tools

could better support this behaviour by enabling users to spawn dis-

tinct threads of exploration [20], maintain multiple partial solutions,

and merge or discard them as needed. Importantly, we emphasize

that tools should not only support specific patterns but also afford

flexibility, aligning with programming’s iterative and non-linear

nature.

Contextual Awareness: Externalizing and preserving con-

text at different abstractions. The third dimension addresses how

context is extracted, represented, and transmitted across tools. Both

studies revealed that participants frequently struggled with context

loss, particularly when transferring high-level gist or knowledge be-

tween tools. Effective designs must carefully manage diverse types

of context, as programmers curate and extract context at varying

levels of abstraction to facilitate transitions. Implicit approaches

could automatically track user actions (e.g., search queries or copied

snippets) and surface task-centric information when needed [5].

Conversely, explicit approaches might require users to label or spec-

ify context as described in Section 4.6.3, offering finer control at

the expense of added effort. Since context is often reused, revisited,

and pieced together, designs should reify context as a persistent,

manipulable object. This would enable programmers to manipu-

late, organize, refine, and share ideas for reuse, as exemplified by

Passages [17] or Memolet [69].

9

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

Translatability: Enabling context-aware translation across

modalities. Another critical consideration is how tools facilitate

the translation of extracted information into new prompts, queries,

or code based on identified strategies. Currently, participants rely on

manual reformulation strategies to adapt context across tools, such

as labeling or summarizing. Tools could incorporate automation to

summarize search results or generate AI-ready prompts, while still

allowing users to refine or annotate outputs. Effective translation

should also account for the action context, adapting outputs

to generate diverse results across tools while avoiding redundant

information buildup. Additionally, tools should provide curated

spaces for knowledge externalization [24] and sensemaking [52],

crucial for managing intensive extracted context. Prior tools like

CoNotate [48], HunterGather [59], and Unakite [34] offer examples

of information organization and could inform the translation stage.

Traceability: Maintaining clear provenance of actions. The

final design dimension highlights the importance of preserving

provenance and tracking history, particularly during the transla-

tion stage, where users transfer and adapt information across tools.

This is crucial because context loss during translation can impede

users’ ability to make informed decisions or reflect on their current

position in the information space (see Section 3.3.2). Tools should

enable participants to retrace the origins of a snippet or under-

stand the rationale behind an AI-suggested approach. For example,

some users sought to verify the credibility of a library, while others

wanted to recall the keywords or actions that led to discovering

a valuable snippet. Tools that preserve an item’s lineage can help

users validate correctness, maintain orientation, and avoid redun-

dant efforts [43, 45, 50]. Provenance tracking can range from simple

source links to detailed chains of actions, offering a continuum of

detail depending on user needs.

This provenance becomes particularly useful when tools aim to

automate the extraction of action context or synthesize context

during translation, as it provides the necessary semantic grounding

for these processes. Prior work suggests capturing provenance at

the action level [45], which records semantic information beyond

event logs, reducing the need for additional user input, such as

explicit task goals [15].

5 Towards Tool Design: A Proof-of-Concept

Prototype

These design dimensions offer implications for designing tools that

facilitate context transitions between web search and GenAI while

adapting to programmers’ workflows. To validate the generative

power of these dimensions, we demonstrated a proof-of-concept

prototype that operationalizes these design dimensions, addressing

challenges like context management and transitions while exploring

variations in programmers’ information-seeking behaviours.

Reifying the Context. To operationalize the Contextual Aware-

ness dimension, we introduce Browsette, an interactive object that

reifies context extractions and can be manipulated, reused and

shared across web search, code editor and GenAI. Programmers can

create Browsette objects manually (e.g., by selecting a code snippet)

or have them generated automatically. Browsette supports three

key types of context (see Figure 5F): 1) Background: Automatically

preserves high-level action context (e.g., search history or code

edits); 2) Summarization: Stores distilled insights or overarching

knowledge (e.g., a summarized pipeline). Programmers can guide

summarization using specific instructions; 3) Text: Holds verbatim

snippets or keywords. By treating context as a first-class object,

Browsette ensures essential information is retained, revisited, and

adapted seamlessly across tools.

Supporting the Information Flow. To address the Interoperabil-

ity and Adaptability dimensions, our prototype introduces two

key extensions. The first is a web-based code editor extension built

on CodeMirror, enhanced with a Browsette dropbox and a con-

versational interface for generative AI. Users can drag and drop

Browsette objects to seamlessly share context between the edi-

tor, AI interface, and browser, enabling both linear and branching

workflows without losing relevant information. Additionally, the

extension automatically generates Background Browsette objects

based on code editing and AI interactions, preserving high-level

context effortlessly.

The second extension is a Chrome browser add-on that augments

Browsette functionality to web browsing. Users can drag selected

content from web pages into a Browsette dropbox (see Figure 5A),

capturing relevant snippets along with provenance metadata such

as URLs and snippet locations. This supports branching exploration

by allowing users to revisit, edit, or discard results as needed. Fur-

thermore, users’ foraging behaviours—such as query inputs, tab

changes, and visited web pages—are synthesized into an up-to-date

Background Browsette object with the web marked as the source

(see Figure 5G). These extensions integrate disparate interfaces by

providing synchronized access to the Browsette dropbox, reducing

friction when switching between web search and AI assistance

while preserving the unique affordances of each tool.

Translating Context Across Tools. To support Translatability,

the system automatically adapts Browsette objects when dragged

between components (e.g., from a web result to an AI prompt,

see Figure 5C). For instance, dragging a TfidfVectorizer snippet

into the GenAI tool customizes the prompt with relevant context,

avoiding manual reentry of details. Similarly, dropping the same

snippet into a web search box converts it into a focused query (e.g.,

“movie review sentiment analysis with TF-IDF”). Users can manually

edit and save the transformed context or regenerate it based on

updated information.

Preserving History and Provenance. Finally, our prototype ad-

dresses Traceability by logging item lineage and capturing the

origins of each Browsette object. Actions such as code edits, snippet

extractions, and AI interactions are recorded in a shared Firestore

database, complete with timestamps and metadata. This allows

users to trace a Browsette object’s source (e.g., the original URL, see

Figure 5B) and assess the reliability of snippets or approaches. Ad-

ditionally, each Browsette object maintains a complete transaction

history, enabling users to navigate across versions.

Implementation Details. The Chrome extension and the CodeMirror-

based Next.js editor access a shared pool of Browsettes stored in

Firestore’s real-time database. To capture user interactions, the

Chrome extension gathers click events, scrolling behaviours, and

parsed page data; meanwhile, the CodeMirror editor logs editing

10

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

Figure 5: The overview of prototype design. (A) The user selects and drags text from a “source” (e.g., web page) into the extension,

converting the context into a Browsette. (B) Clicking the source icon (e.g.,ü) navigates back to the provenance, such as the

source URL, chat ID, or code section. (C) The target icon allows users to translate the context to tailored inputs that can

drop to the “target” tool (e.g., search queries, prompts, or code). (D) Automatically synthesizing users’ action context as

background information shared across tools, contextualizing the input. (E) Utility functions like copy, regenerate and delete

provide additional control over the Browsette. (F) Three different types of Browsette. (G) Three types of source/target tools.

patterns, command usage, and concurrent code. These signals, along

with the corresponding outcome of the action [9], are fed into a

behavioural context pipeline that applies iterative weighted sum-

marization with GPT-4o, taking into account factors such as sig-

nal importance [36] and recency. The summarized content is then

stored as Browsettes, indexed by BM25 to surface the most relevant

context on demand [53]. Finally, when translating context across

tools, we instruct GPT-4o to rely on the retrieved context and user’s

latest query or command as context to augment the generation of

code snippets, search query, or prompt.

5.1 Follow-Up User Study Setup

To examine whether and how the prototype, designed based on the

proposed five design dimensions, influenced programmers’ work-

flow patterns and the strategies they adopted, we conducted a

follow-up study. We re-invited all 16 participants from the initial

study, and 12 agreed to participate (7 identified as men, 5 as women;

ages 22–28, 𝑀 = 23.9, 𝑆𝐷 = 1.87). Participants retained their origi-

nal identifiers (P9, P10, P12, P14, P15, P16, P18, P19, P21–P24). Par-

ticipants were assigned an exploratory programming task similar

in category to the observational study but with modified subtasks

and criteria. After a 10-minute briefing using the prototype, partici-

pants had 45 minutes to complete all subtasks. System interactions

were logged, and think-aloud verbalizations were recorded. A 15-

minute semi-structured interview followed. We applied the same

codebooks described in Figure 4 and Table 1 to ensure consistency

in coding information flow and contextual factors. Two researchers

independently coded the data using deductive thematic analysis.

5.2 Results

In the following, we report our results of the follow-up study, sup-

plemented with context from our previous observational study

where the same participants completed the same task without the

prototype. Similar to the previous study, our focus is on report-

ing qualitative findings, using statistical data as supplementary

evidence to provide interpretation rather than to claim statistical

significance. Overall, all participants completed the task with a sim-

ilar task completion time as that in the previous observational study

(𝑀𝐵𝑟𝑜𝑤𝑠𝑒𝑡𝑡𝑒 = 35.92 vs. 𝑀𝑝𝑟𝑒𝑣 = 40.42, 𝑆𝐷 = 5.67, see Figure 6A).

5.2.1 Strategic Problem-Solving and Changing Workflow. The pro-

totype encouraged a more strategic and deliberate approach to

problem-solving by fostering effective tool use and improving infor-

mation flow. Most participants (11/12) reported planning their tool

usage beforehand. Figure 6B also highlighted changes in information-

seeking workflows. There was increased use of Generate-from-
Explore (𝑀𝑑𝑛𝐵𝑟𝑜𝑤𝑠𝑒𝑡𝑡𝑒 = 3.0 vs. 𝑀𝑑𝑛𝑝𝑟𝑒𝑣 = 1.0, 𝑝=0.003, 𝑟=0.781)

and Search+Generative (𝑀𝑑𝑛𝐵𝑟𝑜𝑤𝑠𝑒𝑡𝑡𝑒 = 2.5 vs. 𝑀𝑑𝑛𝑝𝑟𝑒𝑣 = 0.5,

𝑝=0.005, 𝑟=0.838) flows, with a corresponding decrease in Generate-
as-Alternative (𝑀𝑑𝑛𝐵𝑟𝑜𝑤𝑠𝑒𝑡𝑡𝑒 = 1.0 vs. 𝑀𝑑𝑛𝑝𝑟𝑒𝑣 = 2.0, 𝑝=0.008,

𝑟=0.883) , suggesting participants relied on web search and GenAI

as complementary tools rather than standalone solutions. Although

11

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

0.2

Web Search AI Code Editor

(A) Proportion of Time by Activity

0.3

0.4

P
ro

po
rti

on
 o

f T
im

e

Search
Dominant

(B) Distribution of Information Flows

0

1

2

3

4

5

N
um

be
r o

f F
lo

w
s

With Browsette Without Browsette

Context Tool

(C) Switching Context & Tool

8

10

12

14

16

N
um

be
r o

f S
w

itc
he

s

Generate
from

Explore

Search +
Generate

Generate
Dominant

Search as
Alternative

Search
Verify AI

Generate as
Alternative

Figure 6: Comparison of (A) time proportion participants spent on three tools, information flows defined in Figure 4, and

context/tool switching behaviour with and without the use of Browsette. Detailed statistical results can be found in Appendix E.

participants (9/12) occasionally switched to one tool as an alter-

native when encountering dead ends (stash pattern), participants

were more willing to switch tools as the prototype facilitated con-

text translation without needing to start from scratch.

The creation and use of Browsettes enhanced reflective aware-

ness for most participants (9/12), prompting more deliberate decision-

making. P12 noted, “The act of deciding what to capture made me
more aware of the steps I was taking and why,” while P19 men-

tioned becoming more critical of selected information to ensure

relevance. These reflective practices enabled participants to focus

on the programming task itself rather than deciding which tools to

use, as noted by P22: “I could focus more on the problem rather than
switching tools.”

Additionally, participants relied more on web search when us-

ing the prototype, likely due to the automatic action context

extraction feature. Some participants (3/12) highlighted this fea-

ture helped them “reflect on what has been done” [P22] and reuse

“trustworthy content from the web” [P18]. This feature supported effi-

cient transitions between tools by reducing redundant efforts and

maintaining context across tools, as reflected in increased context

carryover (𝑀𝑑𝑛𝐵𝑟𝑜𝑤𝑠𝑒𝑡𝑡𝑒 = 12.5 vs. 𝑀𝑑𝑛𝑝𝑟𝑒𝑣 = 10.0, 𝑝=< 0.001,

𝑟=0.883) . Although context-switching frequency (see Figure 6C) re-

mained stable (𝑀𝑑𝑛𝐵𝑟𝑜𝑤𝑠𝑒𝑡𝑡𝑒 = 13.5 vs. 𝑀𝑑𝑛𝑝𝑟𝑒𝑣 = 14.0, 𝑝=0.035,

𝑟=0.793) , participants approached tool switching more strategically,

leveraging captured context to adapt workflows dynamically.

5.2.2 New Strategies in Translation. Participants used the provided

prototype to enhance their existing strategies and also developed

new approaches for context translation.

Foraging for Browsette. A common behaviour observed among

participants (10/12) was their active and purposeful approach to

web foraging, aimed at creating more comprehensive Browsettes.

For example, P15 remarked, “I started keeping my searches more
organized because I knew they would feed directly into the sidebar
[Chrome extension] later.” However, the study also highlighted a

need for finer control over the content captured within Browsettes.

Two participants expressed a desire for greater customization, as

“some GenAI results are just for exploratory purposes” [P9]. This feed-

back suggests that operationalizing the Translatability dimension

requires a more dynamic and user-tailored approach to balance

automation and control.

Translation as a Starting Point. Participants did not always apply

Browsettes directly. Instead, some (6/12) often used the translated

context as a starting point for further refinement. For example, P16

clicked on the GenAI icon on the Browsette from web search to

transform it into a prompt. However, instead of directly dragging

it into the input box, P16 returned to web search upon realizing

the translated instruction lacked example usage from CodeMirror’s

documentation. P19 commented, “it [translated output] was more
of a launching pad to dig deeper into the problem.” It suggests that

Browsettes sometimes serve as tools for ideation and exploration

from the initial translations.

5.2.3 Remaining Challenges. Despite its benefits, several challenges

with our prototype were noted, particularly around contextual mis-

alignment. Four participants (4/12) observed that Browsette did not

always capture the nuance or specificity needed for their tasks. P10

shared, “[the Browsette] wasn’t quite on point, and I had to adjust it
manually to make it fit my needs.” Similarly, P22 remarked, “Some-
times the context was too general, and I had to add more details to get
the results I wanted.” While participants could edit Browsette, the ef-

fort required for these modifications was occasionally burdensome,

highlighting limitations in the system’s ability to fully encapsu-

late complex programming contexts. Additionally, two participants

expressed that the Browsette Dropbox should afford more struc-

tured externalization strategies, such as hierarchical organization.

This feedback underscores the need to explore alternative struc-

tures aligned with the Traceability dimension, such as version

control-inspired approaches like Variolite [22].

6 Discussion

Here, we relate our findings to established HCI research on in-

formation foraging. We then discuss its connection to research on

information sensemaking and discuss the applicability of our design

dimensions beyond programming tasks.

6.1 Programmer-in-the-Loop Web Foraging

Many recommender systems have embedded information scent

into model training [19, 63] or generation augmented through web

search results [42, 67]. However, it is crucial to engage programmers

“in-the-loop” beyond merely improving retrieval accuracy [10, 64].

12

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

The involvement of programmers in this process goes beyond re-

fining recommendation or generation precision; it fosters deeper

engagement in exploring, understanding, decision-making, and

evaluating the presented information [35, 36]. Knowing that the

context they provided directly influenced the AI’s suggestions made

participants (9/12) more confident in the results as they are sim-

ilar to the “solution seen on the web” [P16]. This sense of control

appeared to foster greater reliance on AI as a supportive tool, rather

than a black-box solution [38].

Our findings reveal that web search plays a role far beyond

fact-checking or validating AI-generated responses. The Generate-
from-Explore and Search-as-Alternative flows identified in Figure 4

align with previous studies highlighting the use of web search for

exploring alternative perspectives and comparing solutions [34, 56].

Through a web search, programmers navigate complex information

spaces via iterative query construction [40]. This trial-and-error

process is fundamental to learning and cognitive development,

allowing programmers to refine their understanding through active

engagement rather than passive information reception [36].

In our proof-of-concept prototype, we focused on supporting

contextual buildup and information sharing across tools without

automating the search process. This approach emphasizes the im-

portance of maintaining user agency in the foraging process, ensur-

ing that programmers remain central to information exploration

and understanding [64]. While this study represents an initial ex-

ploration of this concept, future research could investigate further

on balancing the automation and control, aligning with the Trans-

lation dimension.

6.2 Information Sensemaking

While our study did not investigate deeply into information sense-

making, a critical aspect of information-seeking, this step is es-

sential for programmers navigating complex information spaces.

Sensemaking helps when information becomes cluttered, prevent-

ing users from recognizing past activities [52, 56] and aiding in

the progressive understanding of the information space [25]. Al-

though sensemaking does not always require an external space for

externalization, our designed Browsettes’ dropbox in the prototype,

which supports drag-and-drop for rearrangement, can offer some

benefits of sensemaking. We observed participants engaging in

sensemaking when organizing their lists of Browsettes. Some par-

ticipants (5/12) used drag-and-drop to arrange Browsettes, placing

all “Background” Browsettes upfront or categorizing them based

on their source. As P23 noted, this helps “knowing what context is
being shared” and avoids redundant contextualization.

In our follow-up user study, we found that some participants

intentionally conducted searches to create more comprehensive

Browsettes. This process is similar to creating summarized notes,

jotting down the contexts they have encountered. This behaviour

suggests that Browsettes can serve as a tool for externalizing and or-

ganizing information, supporting the sensemaking process. Future

research could explore the specific structures that programmers

need to effectively organize these Browsettes [26, 56]. Prior studies,

such as those by Palani et al. [48, 49], have discussed recommending

future search queries based on the sensemaking space articulated

by users. Extending these ideas could be a promising direction, po-

tentially enhancing the maintenance of provenance and History.

6.3 Beyond Programming Tasks and Future

Directions

While our study focused on programming tasks, the potential appli-

cations developed based on the proposed design dimensions could

extend beyond this domain. The core functionalities demonstrated

in our prototype, such as supporting context transfer across tools,

summarizing web foraging actions, and enabling strategic planning,

can potentially benefit other complex, information-intensive activi-

ties. Tasks such as academic research [20], active reading [17], or

personal information-seeking [29] face similar challenges of navi-

gating vast information landscapes, synthesizing diverse sources,

eliminating information silos, and iteratively refining understand-

ing. These domains also require the use of several information

sources and frequent context switching [41, 48] and are currently

being investigated in the context of using generative AI for infor-

mation seeking. However, as we consider expanding the use of

AI-assisted information-gathering and processing tools, it is cru-

cial to address privacy concerns, misinformation, potential biases,

and the risk of creating echo chambers [60, 71]. Additionally, pro-

gramming tasks usually come with a more structured format with

predefined syntax, so the methods of extraction and translation

should be fine-tuned based on the distinct nature of other scenarios.

For instance, in academic research, the extraction process might

focus more on capturing key arguments and methodologies from

papers, and translation could involve reformulating these ideas

into research questions. While the core principles remain applica-

ble, the implementation details would need to be tailored to the

requirements of each domain.

7 Limitations

Our study provides an empirical investigation into the use of web

search and generative AI for information-seeking in programming.

The qualitative approach enabled us to capture contextual insights

into how participants interact with tools and to use the think-

aloud protocol to reveal nuanced cognitive decisions influencing

their workflows. While the qualitative method afforded depth and

detail, it also came with certain limitations, such as potential ob-

server effects. These limitations could be addressed in future stud-

ies by quantifying some effects through large-scale statistical tests.

We also acknowledge that while our focus was on the process of

information-seeking workflows, particularly the flow of context

across tools, we did not compare the task outcomes across the two

studies. This means we did not evaluate outputs using metrics such

as precision, depth, or divergence. Future work could explore how

the presence or absence of tool support affects the quality of output,

as well as its impact on long-term learning and personal develop-

ment. Additionally, the participant sample, drawn from a specific

subset of programmers, may not fully capture the diversity of pro-

gramming practices, workflows, or information-seeking behaviours

across the broader programming community. Future studies could

address this by including a wider range of participants from dif-

ferent domains, experience levels, and organizational contexts to

further validate and extend our findings.

13

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

Next, the prototype supports information foraging mostly in a

web-based environment, without testing its use within a separate

IDE, which offers cross-window interactions more closely aligned

with typical programmer workflows. Additionally, our study did

not rigorously evaluate the behavioral context summarization or

the retrieval-augmented generation pipeline employed to the pro-

totype. These components were intentionally implemented as a

simple but workable baseline to meet our design dimensions. Future

work could explore alternative retrieval or generation approaches,

leveraging advanced methods to improve the system’s performance.

Finally, while our findings suggest that the prototype helps con-

text sharing across tools, we also observed occasional context mis-

alignment between tools and the need of finer control over au-

tomation provided. Future work could focus on developing more

sophisticated methods for summarizing and interpreting foraging

behaviour based on the facet of Translation, enhancing the align-

ment of context and dynamically adjusting the level of automation.

8 Conclusion

This work presents a multi-step empirical investigation into how

programmers integrate web searches and generative AI tools in

their information-seeking workflows. Through interviews and an

observational study, we synthesized five design dimensions that

highlights insights into programmers’ decision-making strategies,

information flows, contextual details, and translation processes.

Building on these design dimensions, we developed a prototype

to operationalize its facets of design considerations and explored

how design changes programmers information-seeking behavior

through a follow-up user study. Our research contributes to the

field by emphasizing the critical role of human involvement in

information-foraging tools in programming, identifying five key

dimensions of design for context transfer and sharing, and offering

actionable design implications for future tools through the demon-

stration of our prototype.

Acknowledgments

This work is supported in part by the Natural Sciences and En-

gineering Research Council of Canada (NSERC) Discovery Grant

#RGPIN-2020-03966. We acknowledge that much of our work takes

place on the traditional territory of the Neutral, Anishinaabeg,

and Haudenosaunee peoples. Our main campus is situated on the

Haldimand Tract, the land granted to the Six Nations that includes

six miles on each side of the Grand River.

References

[1] Lynne M. Markus . 2001. Toward a Theory of Knowledge Reuse: Types of

Knowledge Reuse Situations and Factors in Reuse Success. Journal of Management
Information Systems 18, 1 (May 2001), 57–93. doi:10.1080/07421222.2001.11045671

Publisher: Routledge _eprint: https://doi.org/10.1080/07421222.2001.11045671.

[2] Abubakar Abid, Maheen Farooqi, and James Zou. 2021. Persistent anti-muslim

bias in large language models. In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society. 298–306.

[3] Perplexity AI. 2024. Perplexity AI. https://www.perplexity.ai/ Accessed: 2025-

01-13.

[4] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded

copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[5] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010.

Example-centric programming: integrating web search into the development

environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. 513–522.

[6] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.

2009. Two studies of opportunistic programming: interleaving web foraging,

learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1589–1598.

[7] Virginia Braun and Victoria Clarke and. 2019. Reflecting on reflex-

ive thematic analysis. Qualitative Research in Sport, Exercise and
Health 11, 4 (2019), 589–597. doi:10.1080/2159676X.2019.1628806

arXiv:https://doi.org/10.1080/2159676X.2019.1628806

[8] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American Psycho-

logical Association.

[9] Hyungjoo Chae, Namyoung Kim, Kai Tzu-iunn Ong, Minju Gwak, Gwanwoo

Song, Jihoon Kim, Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. 2024. Web

Agents with World Models: Learning and Leveraging Environment Dynamics in

Web Navigation. arXiv preprint arXiv:2410.13232 (2024).

[10] Ed H. Chi, Peter Pirolli, Kim Chen, and James Pitkow. 2001. Using information

scent to model user information needs and actions and the Web. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Seattle, Wash-

ington, USA) (CHI ’01). Association for Computing Machinery, New York, NY,

USA, 490–497. doi:10.1145/365024.365325

[11] Victoria Clarke and Virginia Braun. 2017. Thematic analysis. The journal of
positive psychology 12, 3 (2017), 297–298.

[12] John W Creswell. 2021. A concise introduction to mixed methods research. SAGE

publications.

[13] Paul Dourish. 2004. What we talk about when we talk about context. Personal
and ubiquitous computing 8 (2004), 19–30.

[14] Ilker Etikan, Sulaiman Abubakar Musa, Rukayya Sunusi Alkassim, et al. 2016.

Comparison of convenience sampling and purposive sampling. American journal
of theoretical and applied statistics 5, 1 (2016), 1–4.

[15] David Gotz and Michelle X. Zhou. 2009. Characterizing users’ visual analytic

activity for insight provenance. Information Visualization 8, 1 (Jan. 2009), 42–55.

doi:10.1057/ivs.2008.31

[16] Thomas RG Green. 1989. Cognitive dimensions of notations. People and computers
V (1989), 443–460.

[17] Han L. Han, Junhang Yu, Raphael Bournet, Alexandre Ciorascu, Wendy E. Mackay,

and Michel Beaudouin-Lafon. 2022. Passages: Interacting with Text Across

Documents. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI ’22). Association for Computing Machinery, New York,

NY, USA, 1–17. doi:10.1145/3491102.3502052

[18] Jane Hsieh, Michael Xieyang Liu, Brad A. Myers, and Aniket Kittur. 2018. An

Exploratory Study of Web Foraging to Understand and Support Programming

Decisions. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 305–306. doi:10.1109/VLHCC.2018.8506517 ISSN: 1943-

6106.

[19] Amit Kumar Jaiswal, Haiming Liu, and Ingo Frommholz. 2019. Information for-

aging for enhancing implicit feedback in content-based image recommendation.

In Proceedings of the 11th Annual Meeting of the Forum for Information Retrieval
Evaluation. 65–69.

[20] Hyeonsu Kang, Joseph Chee Chang, Yongsung Kim, and Aniket Kittur. 2022.

Threddy: An Interactive System for Personalized Thread-based Exploration and

Organization of Scientific Literature. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (UIST ’22). Association for

Computing Machinery, New York, NY, USA, 1–15. doi:10.1145/3526113.3545660

[21] David R Karger and William Jones. 2006. Data unification in personal information

management. Commun. ACM 49, 1 (2006), 77–82.

[22] Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting

Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453–3025626.

[23] Sunnie SY Kim, Q Vera Liao, Mihaela Vorvoreanu, Stephanie Ballard, and Jen-

nifer Wortman Vaughan. 2024. " I’m Not Sure, But...": Examining the Impact of

Large Language Models’ Uncertainty Expression on User Reliance and Trust. In

The 2024 ACM Conference on Fairness, Accountability, and Transparency. 822–835.

[24] David Kirsh. 2010. Thinking with external representations. AI & SOCIETY 25, 4

(Nov. 2010), 441–454. doi:10.1007/s00146-010-0272-8

[25] Aniket Kittur, Andrew M Peters, Abdigani Diriye, and Michael Bove. 2014. Stand-

ing on the schemas of giants: socially augmented information foraging. In Pro-
ceedings of the 17th ACM conference on Computer supported cooperative work &
social computing. 999–1010.

[26] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R.

Bove. 2013. Costs and benefits of structured information foraging. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13).
Association for Computing Machinery, New York, NY, USA, 2989–2998. doi:10.

1145/2470654.2481415

[27] Aniket Kittur, Andrew M Peters, Abdigani Diriye, Trupti Telang, and Michael R

Bove. 2013. Costs and benefits of structured information foraging. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 2989–2998.

14

https://doi.org/10.1080/07421222.2001.11045671
https://www.perplexity.ai/
https://doi.org/10.1080/2159676X.2019.1628806
https://arxiv.org/abs/https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1145/365024.365325
https://doi.org/10.1057/ivs.2008.31
https://doi.org/10.1145/3491102.3502052
https://doi.org/10.1109/VLHCC.2018.8506517
https://doi.org/10.1145/3526113.3545660
https://doi.org/10.1007/s00146-010-0272-8
https://doi.org/10.1145/2470654.2481415
https://doi.org/10.1145/2470654.2481415

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

[28] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An

Exploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-

mation during Software Maintenance Tasks. IEEE Trans. Softw. Eng. 32, 12 (dec

2006), 971–987. doi:10.1109/TSE.2006.116

[29] Andrew Kuznetsov, Joseph Chee Chang, Nathan Hahn, Napol Rachatasumrit,

Bradley Breneisen, Julina Coupland, and Aniket Kittur. 2022. Fuse: In-Situ Sense-

making Support in the Browser. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology (UIST ’22). Association for Computing

Machinery, New York, NY, USA, 1–15. doi:10.1145/3526113.3545693

[30] JR Landis. 1977. The Measurement of Observer Agreement for Categorical Data.

Biometrics (1977).

[31] Kevin Larson and Mary Czerwinski. 1998. Web page design: Implications of

memory, structure and scent for information retrieval. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 25–32.

[32] Jimmy Lin, Dennis Quan, Vineet Sinha, Karun Bakshi, David Huynh, Boris Katz,

and David R. Karger. 2003. The role of context in question answering systems. In

CHI ’03 Extended Abstracts on Human Factors in Computing Systems (Ft. Laud-

erdale, Florida, USA) (CHI EA ’03). Association for Computing Machinery, New

York, NY, USA, 1006–1007. doi:10.1145/765891.766119

[33] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang,

Zhongqi Li, and Yuchi Ma. 2024. Exploring and evaluating hallucinations in

llm-powered code generation. arXiv preprint arXiv:2404.00971 (2024).

[34] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,

Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:

Scaffolding Developers’ Decision-Making Using the Web. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology (UIST
’19). Association for Computing Machinery, New York, NY, USA, 67–80. doi:10.

1145/3332165.3347908

[35] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not

To Reuse? A Framework and System for Evaluating Summarized Knowledge.

Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (April 2021),

166:1–166:35. doi:10.1145/3449240

[36] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2022. Crystalline: Low-

ering the Cost for Developers to Collect and Organize Information for Decision

Making. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI ’22). Association for Computing Machinery, New York, NY, USA,

1–16. doi:10.1145/3491102.3501968

[37] Nelson F Liu, Tianyi Zhang, and Percy Liang. 2023. Evaluating verifiability in

generative search engines. arXiv preprint arXiv:2304.09848 (2023).

[38] Shuai Ma, Ying Lei, Xinru Wang, Chengbo Zheng, Chuhan Shi, Ming Yin, and

Xiaojuan Ma. 2023. Who Should I Trust: AI or Myself? Leveraging Human and

AI Correctness Likelihood to Promote Appropriate Trust in AI-Assisted Decision-

Making. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery,

New York, NY, USA, Article 759, 19 pages. doi:10.1145/3544548.3581058

[39] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and

Hannaneh Hajishirzi. 2022. When not to trust language models: Investigat-

ing effectiveness of parametric and non-parametric memories. arXiv preprint
arXiv:2212.10511 (2022).

[40] Gary Marchionini. 2006. Exploratory search: from finding to understanding.

Commun. ACM 49, 4 (2006), 41–46.

[41] Catherine C Marshall, Morgan N Price, Gene Golovchinsky, and Bill N Schilit.

2001. Designing e-books for legal research. In Proceedings of the 1st ACM/IEEE-CS
joint conference on digital libraries. 41–48.

[42] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina

Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al.

2021. Webgpt: Browser-assisted question-answering with human feedback. arXiv
preprint arXiv:2112.09332 (2021).

[43] Phong H Nguyen, Kai Xu, Andy Bardill, Betul Salman, Kate Herd, and BL William

Wong. 2016. SenseMap: Supporting browser-based online sensemaking through

analytic provenance. In 2016 IEEE Conference on Visual Analytics Science and
Technology (VAST). IEEE, 91–100.

[44] Donald A Norman. 1986. Cognitive engineering. User centered system design 31,

61 (1986), 2.

[45] Chris North, Remco Chang, Alex Endert, Wenwen Dou, Richard May, Bill Pike,

and Glenn Fink. 2011. Analytic provenance: process+interaction+insight. In CHI
’11 Extended Abstracts on Human Factors in Computing Systems (Vancouver, BC,

Canada) (CHI EA ’11). Association for Computing Machinery, New York, NY,

USA, 33–36. doi:10.1145/1979742.1979570

[46] Stephen Oney and Joel Brandt. 2012. Codelets: linking interactive documentation

and example code in the editor. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). Association for Computing Machinery,

New York, NY, USA, 2697–2706. doi:10.1145/2207676.2208664

[47] OpenAI. 2024. Introducing ChatGPT Search. https://openai.com/index/

introducing-chatgpt-search/ Accessed: 2025-01-13.

[48] Srishti Palani, Zijian Ding, Austin Nguyen, Andrew Chuang, Stephen MacNeil,

and Steven P. Dow. 2021. CoNotate: Suggesting Queries Based on Notes Promotes

Knowledge Discovery. In Proceedings of the 2021 CHI Conference on Human Factors

in Computing Systems. ACM, Yokohama Japan, 1–14. doi:10.1145/3411764.3445618

[49] Srishti Palani, Yingyi Zhou, Sheldon Zhu, and Steven P. Dow. 2022. InterWeave:

Presenting Search Suggestions in Context Scaffolds Information Search and

Synthesis. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology (UIST ’22). Association for Computing Machinery, New

York, NY, USA, 1–16. doi:10.1145/3526113.3545696

[50] Beatriz Pérez, Julio Rubio, and Carlos Sáenz-Adán. 2018. A systematic review of

provenance systems. Knowledge and Information Systems 57 (2018), 495–543.

[51] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological review
106, 4 (1999), 643.

[52] Peter Pirolli and Stuart Card. 2005. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis.

[53] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin

Leyton-Brown, and Yoav Shoham. 2023. In-context retrieval-augmented language

models. Transactions of the Association for Computational Linguistics 11 (2023),

1316–1331.

[54] Miguel A. Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2022. Ex-

ploring Technical Reasoning in Digital Tool Use. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)

(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article

579, 17 pages. doi:10.1145/3491102.3501877

[55] Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D

Weisz. 2023. The programmer’s assistant: Conversational interaction with a large

language model for software development. In Proceedings of the 28th International
Conference on Intelligent User Interfaces. 491–514.

[56] Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and Stuart K. Card. 1993. The

cost structure of sensemaking. In Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems (CHI ’93). Association for

Computing Machinery, New York, NY, USA, 269–276. doi:10.1145/169059.169209

[57] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How developers

search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association

for Computing Machinery, New York, NY, USA, 191–201. doi:10.1145/2786805.

2786855

[58] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-

vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial

intelligence? arXiv preprint arXiv:2208.06213 (2022).

[59] M. C. schraefel, Yuxiang Zhu, David Modjeska, Daniel Wigdor, and Shengdong

Zhao. 2002. Hunter gatherer: interaction support for the creation and manage-

ment of within-web-page collections. In Proceedings of the 11th international
conference on World Wide Web (WWW ’02). Association for Computing Machin-

ery, New York, NY, USA, 172–181. doi:10.1145/511446.511469

[60] Nikhil Sharma, Q. Vera Liao, and Ziang Xiao. 2024. Generative Echo Chamber?

Effect of LLM-Powered Search Systems on Diverse Information Seeking. In

Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York,

NY, USA, Article 1033, 17 pages. doi:10.1145/3613904.3642459

[61] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang.

2017. World of bits: An open-domain platform for web-based agents. In Interna-
tional Conference on Machine Learning. PMLR, 3135–3144.

[62] Jiao Sun, Q Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde, Kartik

Talamadupula, and Justin D Weisz. 2022. Investigating explainability of generative

AI for code through scenario-based design. In Proceedings of the 27th International
Conference on Intelligent User Interfaces. 212–228.

[63] Nima Taghipour and Ahmad Kardan. 2008. A hybrid web recommender system

based on q-learning. In Proceedings of the 2008 ACM symposium on Applied
computing. 1164–1168.

[64] Jaime Teevan, Christine Alvarado, Mark S Ackerman, and David R Karger. 2004.

The Perfect Search Engine Is Not Enough: A Study of Orienteering Behavior in
Directed Search. Technical Report.

[65] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation

vs. experience: Evaluating the usability of code generation tools powered by

large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[66] Helena Vasconcelos, Gagan Bansal, Adam Fourney, Q. Vera Liao, and Jen-

nifer Wortman Vaughan. 2024. Generation Probabilities Are Not Enough: Uncer-

tainty Highlighting in AI Code Completions. ACM Trans. Comput.-Hum. Interact.
(Oct. 2024). doi:10.1145/3702320 Just Accepted.

[67] Weijian Xie, Xuefeng Liang, Yuhui Liu, Kaihua Ni, Hong Cheng, and Zetian Hu.

2024. WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Genera-

tion Integrating Web Search and Knowledge Graphs. arXiv:2408.07611 [cs.CL]

https://arxiv.org/abs/2408.07611

[68] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. 2003. Faceted

metadata for image search and browsing. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Ft. Lauderdale, Florida, USA) (CHI ’03).
Association for Computing Machinery, New York, NY, USA, 401–408. doi:10.

1145/642611.642681

15

https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/3526113.3545693
https://doi.org/10.1145/765891.766119
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/3449240
https://doi.org/10.1145/3491102.3501968
https://doi.org/10.1145/3544548.3581058
https://doi.org/10.1145/1979742.1979570
https://doi.org/10.1145/2207676.2208664
https://openai.com/index/introducing-chatgpt-search/
https://openai.com/index/introducing-chatgpt-search/
https://doi.org/10.1145/3411764.3445618
https://doi.org/10.1145/3526113.3545696
https://doi.org/10.1145/3491102.3501877
https://doi.org/10.1145/169059.169209
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/511446.511469
https://doi.org/10.1145/3613904.3642459
https://doi.org/10.1145/3702320
https://arxiv.org/abs/2408.07611
https://arxiv.org/abs/2408.07611
https://doi.org/10.1145/642611.642681
https://doi.org/10.1145/642611.642681

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

[69] Ryan Yen and Jian Zhao. 2024. Memolet: Reifying the Reuse of User-AI Con-

versational Memories. In Proceedings of the 37th Annual ACM Symposium on
User Interface Software and Technology (Pittsburgh, PA, USA) (UIST ’24). Asso-

ciation for Computing Machinery, New York, NY, USA, Article 58, 22 pages.

doi:10.1145/3654777.3676388

[70] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. 2024. Gpt-4v (ision)

is a generalist web agent, if grounded. arXiv preprint arXiv:2401.01614 (2024).

[71] Jiawei Zhou, Yixuan Zhang, Qianni Luo, Andrea G Parker, and Munmun

De Choudhury. 2023. Synthetic Lies: Understanding AI-Generated Misinfor-

mation and Evaluating Algorithmic and Human Solutions. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Ger-

many) (CHI ’23). Association for Computing Machinery, New York, NY, USA,

Article 436, 20 pages. doi:10.1145/3544548.3581318

16

https://doi.org/10.1145/3654777.3676388
https://doi.org/10.1145/3544548.3581318

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

A Survey and Interview Questions for Retrospective Interview

A.1 Eligibility Screening Survey

1. How confident are you in your overall programming experience?

1: Very Inexperienced

2: Inexperienced

3: Moderately Experienced

4: Experienced

5: Very Experienced

2. How many years of programming experience do you have? years

3. How familiar are you with AI code generation tools (e.g., GitHub Copilot, ChatGPT)?

1: Not Familiar

2: Slightly Familiar

3: Moderately Familiar

4: Familiar

5: Very Familiar

4. Over the past few weeks, how often did you typically employ AI code generation tools such as OpenAI’s Codex, GitHub Copilot, or ChatGPT

for your programming tasks? (e.g., times per week)

A.2 Semi-Structured Interview Questions

Programming Workflow and Tool Integration

1. Programming Workflow Integration: Can you describe your typical programming workflow, particularly emphasizing how you utilize

code synthesis tools like Copilot and web search in this process?

2. Decision Making between GPT and Web Search: How do you decide when to use tools like GPT and when to resort to web search

during your coding process? Could you provide a specific example illustrating this decision-making process?

Information Seeking and Evaluation in Programming

1. Information Requirements: When you begin looking for information during programming, what specific types of information are you

usually seeking? (e.g., syntax clarification, algorithmic approaches, best practices)

2. Assessment of Information Quality: What criteria do you use to determine whether a search or generated result is good enough for

your needs? What factors are important to you?

3. Determining Importance of Information: What kind of information do you consider as most important from the generated or search

results?

4. Synthesizing Information from Multiple Sources: Can you describe how you synthesize or combine information from different

sources (like Copilot, web search, forums)? How do you resolve conflicts or discrepancies in information?

5. Long-term Information Retention: When you find particularly valuable information, how do you ensure its retention for future use?

Do you have a system for organizing or bookmarking useful resources?

Challenges and Limitations of Both Tools

6. Challenges and Limitations: Could you discuss some challenges or limitations you’ve encountered with both tools? How does the

other tool help in overcoming these challenges?

7. Web Search Efficacy: Can you provide an example where web search helped you gain a better understanding of a programming concept

or language feature that tools like Copilot alone couldn’t provide?

8. Future of GPT and Web Search: In your opinion, do you think the advancement of technologies like GPT-4 with internet and web

scraping access could eventually replace traditional web search for programming-related queries?

B Tasks

17

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

B.1 Task 1: Implement Browser-Based Collaborative Code Editing

Task Description: You are tasked with implementing a browser-based collaborative code editing tool that allows multiple users to edit the

same code document in real-time. The tool should support syntax highlighting and real-time collaborative editing. Try to gather information

on libraries, frameworks, and best practices needed to complete this task. Document your process and decisions as you go.

Goals:

• Understand the requirements and components needed for collaborative code editing.

• Identify suitable libraries and frameworks for real-time synchronization and syntax highlighting.

• Implement a basic prototype demonstrating real-time collaboration between two users with JavaScript.

Steps:

1. Start by researching existing libraries and frameworks that support real-time synchronization (e.g., WebSockets, Firebase, etc.).

2. Search for documentation or tutorials on how to integrate these libraries into a web application.

3. Investigate how to implement syntax highlighting in the editor (e.g., using CodeMirror, Monaco Editor, etc.).

4. Combine the information gathered to create a basic prototype.

5. Document your search queries, sources, and any code snippets used in your implementation.

B.2 Task 2: Sentiment Analysis on Movie Reviews Using Web Scraping and Machine Learning

Task Description:

Your task is to build a sentiment analysis model to classify movie reviews as positive or negative. Start by scraping movie reviews from a

website (e.g., IMDb, Rotten Tomatoes) and then use this data to train and evaluate a machine learning model. The model should achieve a

reasonable level of accuracy. Try to gather information on web scraping techniques, data preprocessing, model selection, and evaluation

metrics.

Goals:

• Understand how to scrape data from websites using tools like BeautifulSoup or Scrapy.

• Learn about preprocessing textual data for machine learning.

• Implement and evaluate a sentiment analysis model using libraries like Scikit-learn or TensorFlow.

Steps:

1. Research different web scraping tools and techniques suitable for scraping movie reviews.

2. Search for tutorials on text preprocessing and sentiment analysis.

3. Investigate how to implement and evaluate sentiment analysis models using Scikit-learn or TensorFlow.

4. Combine the information gathered to scrape movie reviews, preprocess the data, and implement the model.

5. Document your search queries, sources, and any code snippets used in your implementation.

Starter Code for Web Scraping:

import r e q u e s t s

from bs4 import B e a u t i f u l S o u p

import pandas as pd

def s c r a p e _ r e v i e w s (u r l) :

r e s p o n s e = r e q u e s t s . g e t (u r l)

soup = B e a u t i f u l S o u p (r e s p o n s e . t e x t , ' html . p a r s e r ')

r e v i e w s = []

return r e v i e w s

u r l = ' h t t p s : / /www. example . com / movie − r e v i e w s '

r e v i e w s = s c r a p e _ r e v i e w s (u r l)

Save s c r a p e d r e v i ew s t o a CSV f i l e
d f = pd . DataFrame (rev iews , columns =[' rev iew '])

d f . t o _ c s v (' mov ie_rev iews . c sv ' , i ndex = F a l s e)

Starter Code for Sentiment Analysis:

import pandas as pd

from s k l e a r n . m o d e l _ s e l e c t i o n import t r a i n _ t e s t _ s p l i t

from s k l e a r n . f e a t u r e _ e x t r a c t i o n . t e x t import T f i d f V e c t o r i z e r

18

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

from s k l e a r n . l i n e a r _ m o d e l import L o g i s t i c R e g r e s s i o n

from s k l e a r n . m e t r i c s import a c c u r a c y _ s c o r e

d f = pd . r e a d _ c s v (' mov ie_rev iews . c sv ')

P r e p r o c e s s t h e da ta
v e c t o r i z e r = T f i d f V e c t o r i z e r (s top_words = ' e n g l i s h ')

S p l i t t h e da ta

T ra i n a l o g i s t i c r e g r e s s i o n model
model = L o g i s t i c R e g r e s s i o n ()

E v a l u a t e t h e model

B.3 Task 3: Developing a Real-Time Weather Dashboard with Web Scraping and Visualization

Task Description:

Your task is to create a real-time weather dashboard that displays weather information for multiple cities. Start by scraping weather data

from a reliable website (e.g., Weather.com, AccuWeather) and then use this data to create dynamic visualizations using a library like D3.js or

Plotly. The dashboard should update in real-time to reflect current weather conditions. Try to gather information on web scraping techniques,

data visualization, and creating dynamic web applications. Document your process and decisions as you go.

Goals:

• Understand how to scrape real-time data from websites using tools like BeautifulSoup or Scrapy.

• Learn about creating dynamic visualizations with libraries like D3.js or Plotly.

• Implement a web application that displays real-time weather data.

Steps:

1. Research different web scraping tools and techniques suitable for scraping weather data.

2. Search for tutorials on creating dynamic visualizations with D3.js or Plotly.

3. Investigate how to integrate real-time data updates into a web application.

4. Combine the information gathered to scrape weather data, create visualizations, and implement the real-time dashboard.

5. Document your search queries, sources, and any code snippets used in your implementation.

Starter Code for Web Scraping:

import r e q u e s t s

from bs4 import B e a u t i f u l S o u p

import pandas as pd

def s c r a p e _ w e a t h e r (u r l) :

r e s p o n s e = r e q u e s t s . g e t (u r l)

soup = B e a u t i f u l S o u p (r e s p o n s e . t e x t , ' html . p a r s e r ')

w e a t h e r _ d a t a = []

return w e a t h e r _ d a t a

u r l = ' h t t p s : / /www. example . com / weather '

w e a t h e r _ d a t a = s c r a p e _ w e a t h e r (u r l)

Save s c r a p e d wea th e r da ta t o a CSV f i l e
d f = pd . DataFrame (w e a t h e r _ d a t a)

d f . t o _ c s v (' w e a t h e r _ d a t a . c sv ' , i ndex = F a l s e)

Starter Code for Real-Time Visualization:

< !DOCTYPE html>

<html lang= " en " >

19

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

<head>

<meta charset= " UTF−8 " >

<meta name= " v i ewpo r t " content= " width = de v i ce −width , ␣ i n i t i a l − s c a l e = 1 . 0 " >

< t i t l e >Real −Time Weather Dashboard < / t i t l e >

< s c r i p t src= " h t t p s : / / cdn . p l o t . l y / p l o t l y − l a t e s t . min . j s " >< / s c r i p t >

< /head>

<body>

<h1>Real −Time Weather Dashboard < /h1>

<div id= " weather −dashboard " >< / div>

< s c r i p t >

async f u n c t i o n fe t chWeatherData () {

c o n s t r e s p o n s e = awa i t f e t c h (' w e a t h e r _ d a t a . csv ') ;

c o n s t d a t a = awa i t r e s p o n s e . t e x t () ;

c o n s t rows = d a t a . s p l i t (' \ \ n ') . s l i c e (1) ;

c o n s t weatherData = rows . map (row => {

c o n s t [c i t y , t e m p e r a t u r e] = row . s p l i t (' , ') ;

r e t u r n { c i t y , t e m p e r a t u r e : p a r s e F l o a t (t e m p e r a t u r e) } ;

}) ;

r e t u r n weatherData ;

}

async f u n c t i o n updateDashboard () { }

s e t I n t e r v a l (updateDashboard , 1 0 0 0 0) ; / / Update every 10 seconds

updateDashboard () ;

< / s c r i p t >

< / body>

< /html>

B.4 Task 4: Building a Real-Time Chat Application with WebSockets and Authentication

Task Description:

Your task is to build a real-time chat application that supports multiple users, utilizing WebSockets for real-time communication and JWT

(JSON Web Tokens) for authentication. Users should be able to register, log in, and join chat rooms. Try to gather information on setting up

WebSocket connections, implementing JWT authentication, and creating a basic user interface. Document your process and decisions as you

go.

Goals:

• Learn how to set up WebSocket connections for real-time communication.

• Understand how to implement JWT authentication in a web application.

• Develop a basic user interface for a chat application that supports multiple chat rooms.

Steps:

1. Research how to set up a WebSocket server and client.

2. Search for tutorials on implementing JWT authentication in a web application.

3. Investigate how to integrate WebSocket communication and JWT authentication into a single application.

4. Combine the information gathered to implement the real-time chat application.

5. Document your search queries, sources, and any code snippets used in your implementation.

Starter Code for WebSocket Server:

c o n s t WebSocket = r e q u i r e (' ws ') ;

c o n s t jwt = r e q u i r e (' j sonwebtoken ') ;

c o n s t wss = new WebSocket . S e r v e r ({ p o r t : 8080 }) ;

wss . on (' c o n n e c t i o n ' , (ws) => {

ws . on (' message ' , (message) => {

20

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

c o n s t { token , d a t a } = JSON . p a r s e (message) ;

try {

c o n s t u s e r = jwt . v e r i f y (token , ' y o u r _ s e c r e t _ k e y ') ;

/ / B r o a d c a s t message t o a l l connec ted c l i e n t s

} c a t c h (e r r o r) {

ws . send (JSON . s t r i n g i f y ({ e r r o r : ' A u t h e n t i c a t i o n ␣ f a i l e d ' })) ;

}

}) ;

}) ;

c o n s o l e . l o g (' WebSocket ␣ s e r v e r ␣ running ␣ on ␣ ws : / / l o c a l h o s t : 8 0 8 0 ') ;

Starter Code for JWT Authentication:

c o n s t e x p r e s s = r e q u i r e (' e x p r e s s ') ;

c o n s t jwt = r e q u i r e (' j sonwebtoken ') ;

c o n s t b o d y P a r s e r = r e q u i r e (' body−p a r s e r ') ;

c o n s t app = e x p r e s s () ;

app . use (b o d y P a r s e r . j s o n ()) ;

c o n s t u s e r s = [] ; / / In −memory u s e r s t o r a g e f o r s i m p l i c i t y
app . p o s t (' / r e g i s t e r ' , (req , r e s) => { }) ;

app . p o s t (' / l o g i n ' , (req , r e s) => { }) ;

app . l i s t e n (3 0 0 0 , () => {

c o n s o l e . log (' A u t h e n t i c a t i o n s e r v e r running on h t t p : / / l o c a l h o s t : 3 0 0 0 ') ;
}) ;

21

Conference’17, July 2017, Washington, DC, USA Ryan Yen, Yimeng Xie, Nicole Sultanum, and Jian Zhao

C Observation Notes and Interview Questions from Observational Study

C.1 Observational Notes

Reasons for Switching Tools:

• When switching tools, what is the reason?

• What challenges are prompting the context switching?

Behaviors During Web Foraging:

• Observe how participants navigate web resources (e.g., search engines, forums, documentation).

• Track interactions such as typing search queries, scrolling, clicking links, and reading content.

Knowledge Extraction:

• What information is extracted and how is it used?

– Following search?

– For code generation?

– Directly to the code editor?

• Note how they integrate this information into their problem-solving approach.

Writing Prompts:

• Prompts or decisions potentially influenced by web-searched information.

• Criteria to determine the relevance and usefulness of information.

Failure & Repair:

• Note any iterative processes where participants revisit web searches or refine their generative AI outputs based on new findings.

C.2 Semi-Structured Interview Questions

General Questions:

• Can you briefly describe your workflow of problem-solving using both tools?

Reason for Conducting Web Searches:

• Can you describe specific instances during the task when you felt the need to conduct a web search?

Criteria for Information:

• What criteria did you use to determine if the information you found was relevant or useful?

Foraging Process:

• Can you walk me through your process of gathering information from the web?

Knowledge Extraction:

• What specific knowledge did you extract from your web searches that helped you with the task?

• How did you integrate the information found online into your approach to solving the task?

Articulating Prompts:

• Can you give an example of a prompt you created using the knowledge from your web searches?

• How did you decide what information to include or omit when formulating your prompts?

Extra:

• Did you find the combination of web searching and generative AI more effective than using one method alone? Why or why not?

• What improvements would you suggest for better integrating web search and generative AI in future tasks?

22

To Search or To Gen Conference’17, July 2017, Washington, DC, USA

D Logs

Table 2: Types of logs collected from the study probe, including name, descriptions, corresponding activity frequencies visualized

as heatmaps, and whether the type of logs is being used to create Browsette contained action context.

Event Description Activity Frequency* Used

Web Search text selection User selecting a segment of text Ë

copy/paste

When the user copies text from the web page that is more than one

word and pastes the text into the input query

Ë

click When the user clicks on text, a button, or a link within the web page é

query writing When the user writes the search query Ë

tab switching When the user switches between tabs é

Gen AI prompt writing When the user types instructions in the input box of the chat Ë

result The Markdown result returned from the generative AI Ë

copy/paste

When the user copies content from the result or pastes content into the

input box

Ë

Code Editor focus/unfocus When the user focuses or unfocuses the code editor Ë

copy/paste When the user copies or pastes content from or to the code editor Ë

* The heatmaps display user activity frequency over time intervals of three minutes, with colour intensity from light to dark blue (0 to 13) indicating activity levels.

E Final User Study Results and Stats

Table 3: Statistical Comparisons between Conditions (with and without Browsette)

Category Comparison Mdn (with) Mdn (without) p-value Effect Size (r)

Time Task Time 35.5 42.5 0.016 0.68

Portion in Web Search 0.21 0.30 <0.001 0.88

Portion in AI 0.45 0.35 <0.001 0.88

Portion in Code Editor 0.34 0.35 0.050 0.75

Flows Search-Dominant (Flow A) 0.5 1.0 0.196 0.68

Generate-from-Explore (Flow B) 3.0 1.0 0.003 0.78

Generate-as-Alternative (Flow C) 1.0 2.0 0.008 0.88

Search+Generate (Flow D) 2.5 0.5 0.005 0.84

Generate-Dominant (Flow E) 1.0 1.0 0.952 0.39

Search-as-Alternative (Flow F) 1.0 2.5 0.072 0.59

Search-Verify-AI (Flow G) 3.0 1.5 0.110 0.46

Switching Context Switching 10.0 12.5 <0.001 0.88

Tool Switching 13.5 14.0 0.035 0.793

23

	Abstract
	1 Introduction
	2 Related Work
	2.1 Information Foraging in Programming
	2.2 Techniques Supporting the Integration of Web and GenAI

	3 Interview Study
	3.1 Participants and Procedure
	3.2 Collected Data
	3.3 Results

	4 Observational Study
	4.1 Participants
	4.2 Study Probe
	4.3 Tasks
	4.4 Procedure
	4.5 Data Collection and Analysis
	4.6 Results
	4.7 Summary of Empirical Insights and Design Dimensions

	5 Towards Tool Design: A Proof-of-Concept Prototype
	5.1 Follow-Up User Study Setup
	5.2 Results

	6 Discussion
	6.1 Programmer-in-the-Loop Web Foraging
	6.2 Information Sensemaking
	6.3 Beyond Programming Tasks and Future Directions

	7 Limitations
	8 Conclusion
	Acknowledgments
	References
	A Survey and Interview Questions for Retrospective Interview
	A.1 Eligibility Screening Survey
	A.2 Semi-Structured Interview Questions

	B Tasks
	B.1 Task 1: Implement Browser-Based Collaborative Code Editing
	B.2 Task 2: Sentiment Analysis on Movie Reviews Using Web Scraping and Machine Learning
	B.3 Task 3: Developing a Real-Time Weather Dashboard with Web Scraping and Visualization
	B.4 Task 4: Building a Real-Time Chat Application with WebSockets and Authentication

	C Observation Notes and Interview Questions from Observational Study
	C.1 Observational Notes
	C.2 Semi-Structured Interview Questions

	D Logs
	E Final User Study Results and Stats

