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Figure 1: Overview of SANVis. (A) The control panel presents three types of visualization options: (A-1) the attention piling view, (A-2)
the Sankey view, and (A-3) the small multiples view. (B) The network view displays multiple attentions for each layer according to a
selected visualization option. (B-2) Different color bar heights indicate the average attention weights based on different heads (eight
heads in total) at each layer. (C) The HeadLens helps the user analyze what the attention head learned by showing representative
words and by providing statistical information of part-of-speech tags and positions.

ABSTRACT

Attention networks, various deep neural network architectures in-
spired by humans’ attention mechanism, have seen significant suc-
cess in image captioning, machine translation, and many other ap-
plications. Recently, they have been further evolved into highly
complicated structures that simultaneously use multiple attentions,
called multi-head attentions, to achieve state-of-the-art performances.
Despite the outstanding performances, the complexity prevents users
from easily understanding and manipulating the inner workings of
models. To tackle the challenges, we present a visual analytics sys-
tem called SANVis, which helps users understand the behaviors and
the characteristics of attention modules of a particular layer as well
as those which contain multi-head attention modules. Using a state-
of-the-art self-attention model called Transformer, we demonstrate
how the design of SANVis can be useful to visually explore the inner
workings of the model for machine translation tasks.1
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1 INTRODUCTION

Attention-based deep neural networks, inspired by humans’ attention
mechanism, are widely used for sequence-to-sequence modeling,
e.g., machine translation of a sentence (a sequence of words) in one
language to that in another. The attention module allows the model
to dynamically utilize different parts of the input sequence, which
leads to state-of-the-art performances in natural language processing
(NLP) tasks [4, 13, 32].

Recently, Vaswani et al. [26] proposed advanced, multi-head
self-attention networks called Transformer, which captures diverse
syntactic and semantic information across a sequence of words in a
given text. Transformer has significantly improved state-of-the-art
performances of machine translation, compared with conventional
approaches using recurrent neural networks (RNNs). This model
have been successfully applied to other NLP tasks [7, 19], as well as
even computer vision ones [31, 35].

The success of self-attention stems from its parallel, multi-headed
architecture. Multi-head self-attention networks possess the follow-
ing advantages: (1) They can properly model long-range dependen-
cies among words in a sequence unlike RNN-based models that
have a limited capability in this respect. (2) Furthermore, they can
simultaneously capture different types of syntactic and semantic
relationships among words, via different attention heads of which
each projects word vectors into different latent subspaces. Simulta-
neously utilizing such differently projected information enhances
the performance of the model for various NLP tasks.

However, the recent advancement in attention networks brings
new challenges. The highly sophisticated network structure prevents
users from understanding computational processes and using the
models for various analytic tasks. In NLP domains, recent stud-
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Figure 2: How a multi-head self-attention module works. Steps 1 and
2 correspond to the embedding layer, while Steps 3 to 6 correspond
to a single-layer multi-head self-attention example.

ies [6, 7, 27] aim to analyze the inner-workings of self-attention
models. Such analysis helps users improve the model, such as in
removing unnecessary heads and refining them. Consequently, re-
cent studies [24, 28] attempt to understand questions such as what
kinds of features the model learned differently in heads or which
head captured a specific set of linguistic features. To the best of our
knowledge, our work is one of the first visualizations that is designed
to help users understand the inner-workings of self-attention models.

This paper presents a visual analytics system called SANVis,
which supports the user’s understanding and interactive exploration
of multi-head, self-attention networks. The contributions of our
work are as follows: First, we introduce a novel visual analytics
system called SANVis that helps users decipher models trained
with advanced multi-head self-attention networks. Second, the usage
scenario demonstrates that the harmonious integration of various
views, interactive features, and Transformer is useful for users to
gain valuable insights.

2 RELATED WORK

Visual analytics approaches for various deep neural network architec-
tures in diverse problem domains have been actively studied. There
exist various visual analytics approaches for convolutional neural
networks mainly in computer vision domains [2,11,12,18,25,34] as
well as those for RNNs mainly in NLP domains [5, 10, 16, 22, 23].

Other advanced types of deep neural networks have been inte-
grated into a visual analytics framework, such as generative adversar-
ial networks [8,30], deep reinforcement learning [29]. In an attention
model case, Strobelt et al. [21] propose a new technique to visualize
the RNN-based attention model. It helps to explore and understand
the components of a sequence to sequence model. By showing each
step in the inner process of the model, it supports to interpret the
complex mechanism of the model. These systems allow users to
understand the complicated inner mechanism of the advanced deep
learning model. However, to our knowledge, despite the success
of BERT [7] and Transformer, visual analytics approaches for ad-
vanced attention networks involving multi-head self-attention have
not existed before, so ours is the first visual analytics system for
multi-head self-attention networks.
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Figure 3: Diverse attention pattern examples in the encoder of the
Transformer. Some attention heads show diagonal patterns indicating
that a query word attends to itself (1) or its immediate previous (5) or
next word (3). Some other attention heads attend to a single word (2).
In other attention heads, close query words attend to same words (4).

3 BACKGROUND OF SELF-ATTENTION NETWORKS

In this section, we focus on briefly reviewing the attention module,
called Transformer [26]. Transformer adopts an encoder-decoder ar-
chitecture to solve sequence-to-sequence learning tasks. Transformer
turns a sequence of words in one domain into that in another domain.
For example, for machine translation tasks, it translates a sentence
in one language into that in another language. In this process, the
encoder of Transformer converts input words (e.g., English words)
to internal, hidden-state vectors, and the decoder turns the vectors
into a sequence of output words (e.g., French words).

Each encoder and decoder respectively consists of multiple lay-
ers of computing functions inside. Furthermore, each layer in the
encoder includes two sequential sub-layers, which are a multi-head
self-attention and a position-wise feed-forward network. In addition
to the multi-layer architecture of the encoder, the decoder has an
additional attention layer, which called as an encoder-decoder atten-
tion and helps the model to give attention to the encoders’ internal
states. Each layer of both encoder and decoder also consists of skip-
connection and layer normalization in their computation pipeline.
Overall encoder and decoder architecture are the stacks of L identical
encoder layers or decoder layers, including an embedding layer.

We summarize the computation process with mathematical nota-
tions, so readers are advised to read the remaining section for details:
Let us denote dmodel as the size of hidden(internal) state vector and h
as the number of heads in multi-head self-attention. Each dimension
of query, key, and value vector is dq = dk = dv = dmodel/h.

The embedding layer transforms the input token xi to its embed-
ding space ei using a word embedding and adds the position infor-
mation for each input token using sinusoidal functions (see Steps 1
and 2 in Fig. 2), where xi is the i-th input token in X = [x1, · · · ,xT ].

At each attention head, we transform encoded word vectors into
three matrices of a query, a key, and a value, Q ∈ RT×dq , K ∈ RT×dk ,
and V ∈ RT×dv , respectively, for h times, which in turn generated
h×3 matrices, using the linear transformation and compute the
attention-weighted combinations of value vectors as

Attention(Q,K,V )= Softmax
(

QKT
√

dmodel

)
V

MultiHeadAttention= Concat(head1, . . . ,headh)W O
(1)

where headi = Attention
(

QW Q
i ,KW K

i ,VWV
i

)
, and W Q

i , WV
i and

W K
i indicate the linear transformation matrices at the i-th head. In

multi-head self-attention, which consists of h parallel attention heads,
transformation matrices of each head are randomly initialized, and
then each set is used to project input vectors onto a different repre-
sentation subspace. For this reason, every attention head is allowed
to have different attention shapes and patterns. This characteristic en-
courages each head differently to attend adjacent words or linguistics
relation words.
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Figure 4: Attention sorting result. The user can sort a set of multiple
attention patterns with respect to different criteria such as the entropy
measure (A) and the relative positional offset from query words (B).

In the encoder layer, source words (input words to the encoder)
work as the input to the query, key, and value transformations at the
i-th head. In the decoder layer, the input can vary by attention types.
While the decoders’ self-attention takes target words (output words
of the decoder) as its input, the encoder-decoder attention has target
words as input to a query transformation but source words as the
input to a key and a value transformation.

4 GOALS AND TASKS

SANVis helps researchers understand and effectively analyze numer-
ous attention heads in self-attention. The goal can be broken down
into three user tasks:

Task T1: Gain an overview of self-attention models. The user
understands the information flow along the layer.

Task T2: Detect and compare patterns from multiple atten-
tion heads. The user quickly explores the attention patterns and find
distinct patterns by comparing with attention from other heads.

Task T3: Understand the characteristics of the inner-
working mechanism. The user investigates whether the model cap-
tures the positional or linguistic characteristics.

5 SANVIS

We present SANVis, a visual analytics system for the in-depth un-
derstanding of the self-attention models, as shown in Fig. 1. SANVis
provides various visualization modules at different views: (1) net-
work overview allows the user to understand the overall information
flow through our visualization across the multiple layers (T1), (2)
a single layer views that visualizes attention patterns of multiple
heads within a layer (T2), and (3) a HeadLens that reveals the char-
acteristics of the query and the key vectors and their relationship of
a particular head (T3).

5.1 Network Overview
SANVis mainly visualizes the overview of attention propagation
patterns across multiple layers using the Sankey diagram (T1). As
shown in Fig. 1 (B), a set of words are aligned vertically in each layer,
and the edge weight between them represents the average attention
weight among multiple heads within a particular layer. In Fig. 1
(B-1), one can see the strong link that stretches from ‘physically’ in
layer 2 to that in layer 3. It means a significant amount of information
of ‘physically’ in layer 2 is conveyed to encode that word in layer 3.

SANVis shows the histogram of each word in Fig. 1 (B-2). Each
bar corresponds to each head within the layer where its height repre-
sents the total amount of attention weights assigned to those words
by a specific head. As with Fig 1 (B-2), if the fourth head in the layer
attended to the word ‘planet’ more highly than others, the fourth
bar would be higher than the others. In this manner, SANVis shows
not only the overall attention flow but also those influential words
assigned high attention weights by a particular head. Additionally,
when the user moved the mouse over the fourth color bar, we show
an attention heat map of the fourth head that layer.

We provide an additional control panel to interact with this multi-
layer-level view (Fig. 1 (A)). For example, one can replace the cur-
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Figure 5: Attention piling example in the encoder layer and encoder-
decoder layer. In the encoder-decoder example, piling results do not
have a diagonal line because of the difference between the count of
query words and key words.

rent Sankey diagram with a heatmap view, where multiple heatmaps
corresponding to different heads can be sorted by various criteria.
Additionally, SANVis also provides the attention piling option to
aggregate multiple attention patterns into a small number of clusters.

5.2 Single Layer Views (Involving Multi-Heads)

Unlike the traditional RNN-based attention models that contain only
one attention head in the entire model, recent models involve multi-
ple attention heads in a single layer, and even worse, the number of
heads tends to increase in these days. As a result, it is challenging
to grasp the patterns of multiple different attentions simultaneously.
To address this issue, SANVis provides ‘piling’ and ‘sorting’ capa-
bilities to understand common as well as distinct attention patterns
among multiple attention heads (T2).

Attention Sorting. Fig. 3 shows various attention patterns be-
tween query (y-axis) and key (x-axis) words for different attention
head in different layers. We focused on reducing the users’ efforts,
which is to find the distinguish attention patterns, based on relative
positional information and entropy (Fig. 3). Relative positional
information, such as whether the attention goes mainly toward the
left, right, or the current location, as well as the column-wise mean
entropy value of the attention matrix, were obtained to allow the
users to detect these patterns easily.

Fig. 4 shows the sorting results of attentions based on our position
or entropy sorting algorithms. When sorted by position, a number of
attention was unambiguous that attention that inclines towards the
past words were placed near the control panel at the top while those
that lean towards the future words were placed relatively close to the
bottom. When sorted by entropy, the uppermost attention had the
lowest entropy and exhibited bar-shaped attention, which numerous
query words attend the same word. At the bottom, the user can find
that no more words focused on the same word.

Attention Piling. Inspired by the heatmap piling methods [3,20],
we applied this piling idea to summarize multiple attention patterns
in a single layer, as shown in the encoder part of Fig. 5 . To this end,
we compute the feature vector of each attention head and perform
clustering to form piles (or clusters) of attention.

The feature vector of a particular attention on attention head
is defined as a flattened n2-dimensional vector of its Ai ∈ RT×T

attention matrix, where Ai is calculated from Softmax
(

QKT
√

dmodel

)
on

the i-th head, concatenated with additional three-dimensional vector
of (1) the sum of the upper triangular part of the matrix, (2) that
of the lower-triangular part, and (3) the sum of diagonal entries.
This three-dimensional vector indicates the proportions how much
attention is assigned to (1) the previous words of a query word, (2)
its next words, (3) and the query itself, respectively.

Using these feature vectors of multiple attention heads within a
single layer, SANVis performs hierarchical clustering based on their
Euclidean distances. In this manner, multiple attention patterns are
grouped, forming an aggregated heatmap visualization per computed
pile along with head indices belonging to each pile, as shown in
Fig. 5. It helps the user easily find the similar patterns and distinct
patterns in the same layer by adjusting Euclidean distance.
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Figure 6: HeadLens example in the encoder-decoder attention of head
7 in layer 4.

5.3 HeadLens
To analyze a particular attention head, SANVis offers a novel view
called the HeadLens, as shown in Fig. 1 (C). This view facilitates
detailed analysis of the query and key representations of the selected
attention head, such as which linguistic or positional feature they
encoded and captured. (T3) This view gets open when a user clicks a
particular heatmap corresponding to an attention head in the network
overview panel.

This view works in the following steps: (1) A set of clusters of
query vectors as well as those of key vectors are first obtained. (2)
We can obtain the centroid vectors for each cluster of query and key
vectors. (3) All their pairwise similarities between the query centroid
and the key centroid are computed, as shown as a heatmap in Fig. 1
(C-2). (4) Additionally, the POS tagging and the positional informa-
tion is summarized for each of the query and the key clusters (Fig. 1
(C-3)). (5) Once a user clicks a particular cell with a high (or low)
similarity value with a red (or blue) color, its corresponding query
and a key cluster are summarized in terms of their representative
keywords (Fig. 1 (C-4)).

To be specific, in the first step, we consider all the sentences in
a validation set and obtain the query and the key vectors of all the
words from these sentences. These query and key vectors are the
results of applying a query and a key transformation of input words
for a given attention head. Next, we perform the K-means++ [17]
algorithm for each of the above-described query and key vector sets,
by using the pre-defined number of clusters, e.g., 16 in our case. We
empirically set this number of clusters by using an elbow method.

In the second step, we obtain the cluster centroid vectors from
the set of clusters for query vectors as well as those centroid vectors
for key vectors. In the third step, we compute all the pairwise inner
product similarities between each pair of a query cluster centroid
and a key cluster one, which are visualized as a heatmap (Fig. 1
(C-2)). We chose the inner product as a similarity measure since
the attention weight is mainly computed based on the inner product
between a query and a key vector. In practically, high inner product
between a query set and a key set means that the words in the query
set are likely to attend to the words in the key set.

In the third step, the HeadLens provides a summary of each of
the query and the key clusters. Each query (or key) cluster contains
those words whose query (or key) vectors belong to the cluster. For
those words, we obtain their part-of-speech (POS) tags and position
indices within the sentence which each of them appears in. For POS
tags, we used universal POS tagger [14]. Afterward, the relative
amount of those words with each POS tag type out of the entire
words within a single cluster is shown as a horizontal bar width with
its encoded color, as shown in the left bar of Fig. 1 (C-3). In addition,
the relative amount of those words shown in a particular position of
their original sentences are color-coded (a higher value colored as a
red), as shown in the right bar of Fig. 1 (C-3).

Finally, in the fourth step, the user can click a particular entry in
the cluster-level heatmap, e.g., a pair of a query and a key cluster with
high similarity (a red cell highlighted in a black square in Fig. 1 (C-
2)). Then, the summary of the corresponding query and key cluster
are indicated by a black-colored edge (Fig. 1 (C-3)). Additionally,
the word cloud visualization of such user-selected query and key
cluster are used to highlight the frequently appearing words in each

cluster, color-coded with their own POS tag types (Fig. 1 (C-4)).
For example, the selected entry in Fig. 1 (C-2) indicates that the

query cluster 15 has high similarity with the key cluster 15. The
selected query cluster mainly contains auxiliary verb words (orange-
colored), while the selected key cluster mainly contains noun words
(purple-colored) in Fig. 1 (C-3). Furthermore, their most appearing
words are shown in the word cloud view (Fig. 1 (C-3)), which means
that this head assigns a high attention weight to these noun words,
e.g., ‘world’ and ‘life’ when a query word is given as an auxiliary
verb word, e.g., ‘is’ and ‘are.’ This result shows that the selected
head have captured the linguistic relationship of noun and verb.

6 USAGE SCENARIOS

This section demonstrates usage scenarios of SANVis, mainly focus-
ing on the recently proposed Transformer. This model has shown su-
perior performances in machine translation tasks, including English-
French and English-German translation tasks in the WMT chal-
lenger [1]. Our implementation of the Transformer is based on the
annotated Transformer [9]. Our model parameter setting followed
the base model in the original paper [26]. We set our target task
as English-French translation, where the collection of the scripts
from TED lectures is used as our dataset [15]. The BLEU score of
our model is shown as 38.4, which validates a reasonable level of
performance. For evaluating our system, we used the validation set,
which is not seen during training.

Attention Piling. In Fig. 5, the encoder-decoder part shows the
attention piling visualization in encoder-decoder attention. In this
example, one can observe that a number of attention heads have
a diagonal attention pattern. An appropriate explanation of this
diagonal shape would be that the words in French and English are
generally aligned in the same order [4]. For the debugging purpose,
it proves that the model properly learned a linguistic alignment
between the source sequence and the corresponding target sequence.

HeadLens. In the earlier example, we saw that most attention
patterns between the English and the French words are diagonally-
shaped between English and French words. One can analyze this
pattern in detail by using our HeadLens. As shown in Fig. 6, we
chose head 4 in layer 7, which has such a diagonal attention pattern,
and applied the HeadLens. Once selecting the query and the key
cluster pair with a high similarity (Fig. 6 (A)), it is shown that the
query clusters commonly have an pronoun as a dominant POS tag
type (brown-colored in Fig. 6 (B)). Most of query cluster words are
subject words in French, for instance, ‘nous’ and ‘vous’ mean ‘we’
and ‘you’ in English, respectively. The corresponding key clusters’
representative words are mostly verbs. This result demonstrates that
the model attends verb words to predict verb tokens for translating
from English to French, when the input token is subject.

7 CONCLUSIONS

In this paper, we present SANVis, a visual analytics system for the
self-attention networks that supports in-depth understanding of multi-
head self-attention networks at various levels of granularity, such as a
multi-layer and a single layer. In the usage scenario, we demonstrate
that our system provides the user with a deep understanding of the
multi-head self-attention model in machine translation.

As future work, we plan to extend our HeadLens to perform
clustering of value vectors. We evaluate our system by various re-
searchers who use the multi-head self-attention networks. We also
apply our method in other state-of-the-art self-attention based mod-
els, such as BERT [7] and XLNet [33].
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