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Figure 1: A mobile computing researcher interacts with PartFlow to analyze method-level component sequences within a mobile
application. The system dynamically updates various panels, including the Timeline and Transition Panels, providing visual
insights into component performance, state transitions, and code structure. Selecting nodes within the interactive digraph reveals
detailed component relationships and allows for deeper investigation into application execution patterns.

ABSTRACT

In mobile edge computing (MEC), one optimization strategy for
mobile applications is to offload heavy computing tasks to cloud and
edge servers. Constructing partitioning algorithms involves model-
ing individual methods through static code profilers, but exploiting
dynamic user-driven execution patterns is also crucial. This paper in-
troduces PartFlow, an interactive visualization system that supports
comprehensive analysis of mobile application components and aids
researchers in developing partitioning and offloading algorithms
using real human behavioral data. PartFlow collects application
component data remotely through binary instrumentation of mobile
applications. Interactive diagrams are designed to evaluate compo-
nent performance and illustrate transition patterns using the collected
data. Additionally, PartFlow integrates a deep learning (DL)-based
approach for multi-step forecasting of component states to improve
accuracy and user experience in algorithm design. A case study
and user feedback demonstrate PartFlow’s effectiveness in assisting
researchers and engineers in creating offloading strategies.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
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1 INTRODUCTION

In recent years, mobile applications have proliferated across cate-
gories such as entertainment, health, games, business, social net-
working, travel, and news [13]. Through mobile cloud computing
(MCC), mobile users can access rich computational resources. Mo-
bile edge computing (MEC) addresses the latency challenges of
MCC by leveraging hardware at the network edge [8]. However,
these edge nodes lack the computational power compared to cloud
servers, necessitating the offloading of only specific heavy work-
loads to edge servers.

Most existing partitioning schemes analyze execution paths
among application methods using static code analyzers, breaking
down applications into fine-grained components [6,9,10,23]. These
methods model applications as graphs with components as vertices
and call relations as edges, enabling researchers to make offload-
ing decisions based on heuristic or optimization strategies. While
partitioning computational components and executing heavier ones
remotely can reduce the burden on mobile devices, frequent switches
between local and remote executions can lead to significant energy
consumption and response delays [27]. Understanding user-driven
execution patterns is critical for enhancing offloading strategies. To
optimize MEC systems, minimizing redundant data transmission
between end-user devices and edge servers is essential.

Dynamic partitioning approaches acknowledge the importance
of runtime execution patterns [16,30]. However, these strategies
face four main challenges: (1) Difficulty in obtaining execution
patterns, modeling data, and user behavior insights across diverse
tools and environments; (2) Lack of tools for collecting extensive
and comprehensive component execution data from applications in



heterogeneous environments; (3) Existing tools focus on static code
analysis, missing the stochastic nature of user-driven component
execution; (4) The challenge of selecting optimal methods from
thousands of components for partitioning and offloading.

To address these challenges, this paper introduces PartFlow, an
interactive visualization tool for analyzing user-driven execution
patterns to aid in application partitioning and workload offload-
ing. PartFlow provides comprehensive data visualization to help
researchers select component sequences for dynamic analysis. The
system collects data from application components using binary in-
strumentation, a technique that inserts additional code into a binary
executable at runtime or compile time to monitor and analyze the
program’s behavior. PartFlow also employs various analytical ap-
proaches to assess component performance. Visualizations such as
flame graphs [19] and sunburst charts [3] illustrate component statis-
tics, while an interactive digraph displays state transition patterns.
PartFlow’s Sankey-based decision tree [20] simulates user-driven
component sequences, aiding researchers in strategizing component
offloading.

This research contributes to the fields of visualization and Mobile
Edge Computing (MEC) by introducing an interactive visualization
tool, PartFlow, that addresses key challenges in application parti-
tioning and workload offloading. We contribute a comprehensive
understanding of the workflow and challenges faced by MEC re-
searchers, offering a visual analytics solution tailored to their needs.
PartFlow combines advanced data acquisition methods, predictive
analytics, and interactive visualizations—such as flame graphs, sun-
burst charts, and Sankey-based decision trees—to enable efficient
exploration of execution patterns and system performance. Our
results demonstrate that PartFlow supports an effective analysis
workflow, bridging historical and predictive insights while encour-
aging interactive decision-making for better optimization strategies.
The paper concludes by discussing the broader implications of our
findings on visualization’s role in supporting dynamic, user-driven
system analysis and optimization in MEC research.

2 RELATED WORK

In this section, we review related work on visual analytics tech-
niques and designs for profiler output, methods relationships, and
uncertainties in the event sequence.

2.1 \Visualization for Profiler Output

Professional performance analysis tools, such as Android Profiler,
Solaris Studio, and Java Flight Recorder (JFR), are often used for
statistical prediction methods when testing application performance.
These tools can collect extensive data, including application stack
information, real-time device status, and total power consumption.
However, the sheer volume and complexity of this data make it
difficult for users to identify specific features of interest. To mitigate
this challenge, JFR, a JVM-specific analysis tool, employs line
charts and pie charts to display CPU usage and stack information.
Similarly, Solaris Studio and Android Profiler have adopted the
Flame Graph [19] to visualize the duration and hierarchy of thread
execution. Other performance analysis visualization tools include
Frequency Trails [18] and Latency Heatmap [19]. Despite their
utility, these tools often require users to zoom in to focus on specific
components, and they generally lack interactivity and the ability to
isolate a single component view. Additionally, they do not indicate
the weight of execution time in detail. PartFlow addresses these
limitations by enhancing the user experience for single-component
analysis. It can be integrated with subsequent visual panels to help
users quickly access and analyze component performance data.

2.2 Visualization for Methods Relationship

In the study of dynamic partitioning, it is essential to analyze not
only individual components but also the components that precede

or follow their execution, as well as related components with call
relationships. The current approach to addressing this issue involves
visualizing method call graphs. For instance, FlowDroid! and Taint-
Droid [12] use Gephi? to visualize digraphs of numerous nodes.
However, FlowDroid, which relies on Soot3, primarily focuses on
static bytecode call relationships without taking into account the in-
fluence of user behavior and device performance on component state
timing during the execution of Android programs. On the other hand,
the more dynamic TaintDroid [12] operates at the variable level, trac-
ing untrusted app code through the virtual machine (VM) interpreter.
This reverse engineering tool is mainly used for taint analysis and
static call diagrams, showcasing static function dependencies as di-
rected graphs. These tools tend to prioritize static code analysis and
lack the capability to dynamically assess the sequence of component
states in conjunction with actual user interactions with the applica-
tions. PartFlow differentiates itself from these tools by focusing on
user-driven component states and illustrating their state transition
relationships using a stochastic matrix. With PartFlow, users can
gain insights into component state transition patterns, aiding in the
development of collaborative dynamic partitioning strategies for
multiple components.

2.3 Visualization of Uncertainty and Event Sequence

Application partitioning involves the entire sequence of compo-
nents, implying that adjacent components are offloaded together
across one or several edges. Therefore, effective visualization of
event sequences is essential. Many existing visualization tools can
analyze how different event sequences lead to various outcomes,
which can help analysts generate hypotheses about causation. Ex-
amples include DecisionFlow [17], OutFlow [31], CareFlow [26],
and MatrixWave [34], which aggregate similar event sequences into
progression pathways and visually encode the correlations between
these pathways and potential outcomes. Moreover, when selecting
sequences of components for analysis, state transitions often rely
not only on the internal logic of the application but also on pro-
gram structures and user behavior. Therefore, presenting uncertainty
effectively in dynamic partitioning is crucial for enhancing user
comprehension and decision-making quality. Extensive surveys [4]
indicate that certain techniques incorporate uncertainty visualiza-
tion using extra visual components such as glyphs [24], geometric
elements like contour lines and isosurfaces [28], or annotations [7].
However, these approaches typically focus on the state of each node
without considering the probability of the entire sequence occurring.
PartFlow addresses this gap by allowing users to select component
queues with high occurrence probabilities and develop tailored dy-
namic partitioning strategies based on these component sequences.

3 DESIGNING PARTFLOW

As the initial stage of our iterative user-centered design process, we
conducted a literature survey and interview study to gather essential
design requirements for PartFlow.

3.1 Research Study

We conducted an investigation to review the challenges addressed in
existing academic research. The findings are summarized in three
main areas:

Model Analysis and Statistical Prediction of Methods: Eval-
uating method-level components is essential for constructing par-
titioning algorithms and generally involves two main approaches:
model analysis [9, 10] and statistical prediction [23,33]. The model
analysis approach typically incorporates factors such as time and
space complexity, arguments, and return values of method invoca-
tions to calculate component metrics using static code analysis. On
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the other hand, the statistical prediction approach leverages profiling
tools to directly record the execution times of components by cap-
turing their entry and exit points, thus providing a practical measure
of component execution efficiency.

Call Tree of an Individual Method: Constructing the call graph
of an application is fundamental for partitioning algorithms [1,22].
Building call trees for each method-level component requires de-
composing the application into individual methods and analyzing
their execution patterns. By merging these trees, static analysis can
create a control call graph, where vertices represent components and
edges depict the call relationships between them. When partitioning
an individual method, it is crucial to focus on its specific call tree,
as demonstrated in Figure 2(a).
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(a) Method’s call tree. (b) Method states transition

Figure 2: Two different relations among methods. Subfigure (a)
illustrates the call tree of an application. Subfigure (b) shows the
transition relationship among method states.

User-driven Execution Patterns of a Set of Methods: Un-
derstanding the execution patterns of a set of methods within an
application is crucial for offloading systems to save unnecessary en-
ergy consumption and reduce latency [16]. When offloading heavy
computational tasks, the data processed and returned is transmitted
between mobile devices (MDs) and edge servers over networks [5].
Figure 3 illustrates the data transmission flow in a mobile cloud/edge
application. Although optimal scheduling can help minimize re-
sponse time and energy costs, there can still be significant latency
due to frequent switching between the device and the edge. To
mitigate this inefficiency, it is essential to incorporate execution
patterns driven by stochastic characteristics of user behavior [32].
Figure 2(b) shows the data transmissions before and after executing
a component state S, € S. The invocation graph highlights that each
potential alternative s; for S, has an associated probability pyg, s,
leading to different execution paths.

To model the relationships among method invocations, a Marko-
vian model provides a foundational approach for calculating transi-
tion probabilities [16].

Execution on Edge )
> Time
Data Transmission via Network
Time
Execution on Local

Figure 3: Data transmissions among methods executed on edges
and the cloud.

3.2 Interview Study

To understand current concerns and perspectives on partitioning,
we conducted four semi-structured interviews with experts in edge
computing, including two Ph.D. candidates and two professors with
backgrounds in edge computing and software systems. Each inter-
view lasted approximately thirty minutes and covered a range of
topics.

We started with a general question: “What are your thoughts on
dynamic partitioning?” (Q1). We then focused on the tools and
approaches they had previously applied, asking: “Can you share
any recent approach or tool you have used to solve partitioning
challenges?” (Q2). Finally, we explored the experts’ specific pro-
fessional concerns related to partitioning by asking: “If tasked with
performing dynamic partitioning, what issues would be most rel-
evant from your professional perspective?” (Q3). Detailed notes
were taken during the interviews, which were also recorded and
reviewed for comprehensive analysis.

3.3 Design Requirements

Q1 served as the primary question to uncover the fundamental views
of the experts on dynamic partitioning. We summarized their in-
sights as: “Dynamic partitioning should seamlessly adapt to varying
environments and workloads by dynamically selecting appropriate
partition strategies between mobile devices and edge servers.” Us-
ing this insight as a guiding principle, we established the following
design requirements based on the experts’ feedback.

R1: Data Collection and Advanced Data Filtering. A recur-
ring need among partitioning researchers is the ability to intuitively
and effortlessly inspect user activity data—organized in flexible
time sequences and easily accessible. One expert highlighted their
dissatisfaction with using Android Profiler, noting that it required
connecting the Android device to a computer via a data cable and
navigating through numerous item-based records. This process was
frustrating when searching for specific data, as locating an activity
without remembering the exact time was challenging. This issue
stems from Android Profiler’s lack of a visual interface that can
manage user activity data in a scalable, time-based manner.

R2: Model and Analyze Component. As the three interviewees
emphasized, their research aimed to model the performances of
every single component in different mobile devices with various
hardware capacities. Based on the feedback from a researcher, he
considered the times the components were called, the response time
of the component, and how much energy they consumed between
each start-end life circle, as the indicators analyze the performance
of each component and judge whether they were healthy enough in
their current platforms. Apart from analyzing the direct indicator
mentioned in the previous requirement, the algorithmic complexities
in the source code also matter to model every single component’s
overall performance emphasized by one of the interviewees.

R3: Retrieve Component Source Code. In addition to the
direct indicators mentioned in prior requirements, the algorithmic
complexities within the source code are essential for modeling each
component’s overall performance. One interviewee highlighted that
both analyzing the structure of the function code and calculating
the algorithm’s complexity are crucial for estimating a component’s
efficiency. Moreover, the return values of components, as revealed
in the source code, serve as key markers for constructing the call
tree among components.

R4: Reveal Transition Patterns of Component State. User
behaviors can vary significantly, leading to different interaction
patterns with their mobile devices. Two interviewees emphasized
that analyzing components in isolation overlooks the relationships
between them, resulting in suboptimal performance for specific
user activities. Additionally, one expert noted that understanding
the relationships between all component states during user activity
would enable more rational management of the distribution process.

RS: Provide Simulation of Component Sequence. While re-
vealing component states is crucial for understanding user activity,
effective partitioning involves a complex decision-making process
for distributing components. For researchers, having insight into
potential event sequences is essential for successful partitioning.
One interviewee suggested that being able to preview transition se-
quences would allow them to predict possible user activity scenarios,
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Figure 4: The PartFlow interface. (A) The Query Panel for retrieving user activities. (B) The Performance Panel for evaluating the performance
of components. (C) The Transition Panel for indicating component transitions is based on the stochastic matrix. (D) The Forecasting Panel for
selecting the high-probability sequence with the interactive Sankey diagram and LSTM model forecasting results.

facilitating a more informed partitioning strategy. Incorporating a
simulation sequence for each component would provide researchers
with a clearer roadmap for partitioning.

4 PARTFLOW SYSTEM

In this section, we illustrate PartFlow as a visual analytics system
integrating a series of analytical methods. Guided by the afore-
mentioned design requirements, PartFlow incorporates a variety of
analytical methods tailored to data generated by individual user de-
vices. Users can access PartFlow via the GitHub repository* for
further exploration and commitments.

4.1 PartFlow Overview

To meet the interviewees’ requirements for monitoring the com-
ponent state across multiple devices (R1), PartFlow incorporates
an instrumentation function alongside visualization. Figure 5 il-
lustrates the PartFlow architecture, showing the interplay between
front-end visualization, back-end analytical processes, data storage,
and external user devices.

Users can upload their target applications and download pro-
cessed versions from the server storage. By launching and using
these processed applications on external devices, method invocation
data is transmitted and stored in a MongoDB database. The back-end
conducts three main analytical processes using the stored component
data: 1) performance estimation, 2) stochastic matrix calculation,
and 3) series forecasting. These analyses support four main visualiza-
tion panels: 1) the Query Panel (B), 2) the Performance Panel (C),
3) the Transition Panel (D), and 4) the Forecasting Panel (E). Each
panel serves to visualize method execution patterns as needed, with
their sub-panels depicted in Figure 4.

4.2 Inspecting User Activities

Recording activity data remotely and simultaneously across multiple
devices and users is essential for researchers collecting data (R1).

“https://github.com/liminghao09 14/PartFlow
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Figure 5: PartFlow consists of three major parts, frontend, backend,
and database. Supported by three analytical modules, PartFlow
jointly visualizes four panels.

To facilitate this, we implemented a heat map calendar that allows
users to access activity records at any time, enabling them to answer
questions such as “How many times was the application launched?”
and “What is the volume of component invocation data?”.

The Query Panel, shown in Figure 4(A), extends on the left side
(al). The goal of this user activity map is to display overall user
activity over a month. Users can launch instrumented applications
multiple times over a set period on various devices (b1). They can
then filter the data by month and select specific dates using the cal-
endar heat map (b2) to view individual activities. Drawing on the
design in [2] and T-Cal [14], each day cell is divided into two nested
squares that represent two key metrics: the number of times an ap-
plication is launched (in red) and the volume of method call log data
(in purple). For instance, Figure 6 shows that on July 4th, a user’s
device launched an application many times, generating significant
call log data. In contrast, on July 9th, the same device produced
an equivalent volume of call log data but with fewer application
launches, suggesting a more complex task was performed that day.
This dual-metric approach enables users to filter daily activities
efficiently and identify the data they wish to explore further.
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Figure 6: Query Panel displaying user activity for an application.
Red indicates the number of launches, and blue indicates the method
trace volume.

4.3 Evaluating Component Performance

Evaluating component performance involves two key steps. First,
modeling the component structure based on its complexity, which
relies on analyzing the source code (R3). Second, recording the
execution schedule of components and calculating their execution
time using entry and exit points (R2). This evaluation answers ques-
tions like “What is the execution time of the component?”, “What is
the component’s source code?”, and “What does the timeline of a
launch period look like?”.
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Figure 7: Each diagram presents nested method-level components.
In detail, (a()) calls (b()), and (b()) calls (c()). The sunburst dia-
grams indicate their nested relations.

The Performance Panel, illustrated in Figure 4(B), comprises
three main parts: the Source Code Panel, the Timeline Panel, and
the Tree Panel. By clicking on a node (c1) or a rectangle (b2) in
the Timeline Panel, users can activate the Source Code Panel (b4)
to view the source code snippet of the selected component. For
examining the entire class structure, users can access the complete
Java code by clicking the button (b5).

We use a flame graph in Figure 4(B) to visualize the method
execution timeline and a sunburst graph to represent the internal
structure and execution time of a particular component. Clicking
on rectangle (b2) in the Timeline Panel displays the Tree Panel (b3)
above the rectangle. The sunburst diagram is interactive: the selected
method is depicted as a central circle, surrounded by layered annulus
sectors representing different levels of child methods within the
parent method. The angle of each annulus sector corresponds to
the proportion of the child method’s execution time relative to its
parent. The color gradient from green to red indicates short to long
execution times. For instance, in Figure 7, the central round in red,
encircled by annulus (A), represents the execution time of a parent
method onClick (), with red indicating a duration exceeding 200ms.
The first annulus sector (B) around annulus (A) depicts a first-level

child method, c(). Clicking on annulus sector (B) expands it to 360
degrees, focusing on the child method c() and hiding annulus (A).
As shown in Figure 7(b), method N() accounts for the major portion
of execution time within c(). Users can then examine the inner
structure and execution time of the third-level child method NO) by
selecting it, as depicted in Figure 7(c). Overall, this sunburst diagram
enables users to explore the internal call tree of each component,
aiding in the identification of components requiring optimization.

4.4 Summarizing Component Transition

Understanding transition patterns between component states is essen-
tial for researchers aiming to synthesize call sequences for targeted
dynamic partitioning (R4). The Transition Panel addresses ques-
tions such as “How frequently is this component called?”, “What
are the preceding and subsequent steps of this component state?”,
and “What is the probability of this transition occurring?”
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Figure 8: The visualization of transition patterns of one certain call
log set. The size of the node implies the call frequency, while the
width of the edge shows the transition probabilities.

PartFlow’s Transition Panel visualizes these transition patterns us-
ing a digraph based on a stochastic matrix, as shown in Figure 4(D).
Each node in the digraph represents a component state, such as when
method a() begins execution (recorded as a()#Start), which cre-
ates a corresponding node in Figure 8. The node color indicates its
class, allowing users to filter nodes by interacting with class legends.
Node size reflects the frequency of the corresponding component
state, signifying how often that state occurs. Edges illustrate tran-
sitions between component states, with edge width proportional
to the transition frequency, meaning wider edges represent higher
transition probabilities. Unlike traditional Markov Chain graphs
with arrows, edge colors in PartFlow indicate the direction of transi-
tions, maintaining visual clarity. For example, the edge connecting
a(Q#Start to b()#End shares the color of a()#Start. This circu-
lar digraph serves a similar purpose to a Markov Chain but presents
the information in a more streamlined and visually efficient format.

4.5 Forecasting Sequence of Component States

To optimize the overall functionality and services of an application,
it is often essential to analyze a sequence of components to achieve
a comprehensive and integrated optimization procedure (R5). These
sequences frequently exhibit patterns that can be used to forecast
the next executing method and predict future behavior in mobile
applications.

The Forecasting Panel in PartFlow is designed to help answer
critical questions such as Is this sequence of components likely to
occur?” and What is the next stage in this execution sequence?”



This panel leverages historical data and sequential patterns to assist
researchers in understanding and predicting component transitions
and their likelihoods, thereby facilitating better-informed decision-
making in application partitioning and workload optimization.

4.5.1 Markov-based Forecasting Visualization

Inspired by Guo er al. [21], we use a state transition graph based
on Sankey diagrams to visualize component sequences Figure 9.
Selecting a node generates a red-highlighted starting point in the
Forecasting Panel, with adjacent light blue nodes representing po-
tential next states.

Figure 9: Two visual successive states of the Forecasting Panel.

As the component state sequence is time-discrete, we assume this
event sequence in Figure 10 as

S= {Xl 7X27X37 s 7Xn}

Assuming that the value of the start node is Pr(X; = x;) = 1, when
X1 occurs, users are supposed to obtain the probability of flowing to
each component state. When x; occurs, the value of node j would

be equal to the probability of § = {xi,x2,...,x;} occurring given
the occurrence of X; = x| would be

Pr(S’|X1 :xl) :PI‘(X,' :x,"Xj;l :J(,;17...,X1 :x1)<
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Figure 10: A Sankey-based decision tree for component state fore-
casting indicates its joint probability.

Node size in the Sankey diagram represents the probability of the
sequence. For example, the starting node X; has a value of 1, while
subsequent nodes decrease in size to reflect diminishing probability
as the sequence progresses from left to right, creating a flow-like
visualization.

4.5.2 DL-based Sequential State Prediction

Markov models provide reasonable prediction results due to their
simplicity and interpretability. However, they assume that future
states depend only on the current state, ignoring the potential impact
of past states. This assumption can lead to inaccuracies, especially
when dealing with errors or missing data, as Markov models will
base predictions on prior potentially incorrect states.

To address these limitations, we introduce a DL-based model
for sequential state prediction. Specifically, we implement a type
of recurrent neural network (RNN) called long short-term memory

(LSTM) as the prediction model. LSTMs are well-suited for han-
dling data with temporal dynamics and can manage missing data,
making them highly effective for time-series forecasting [29]. Prior
to training, the raw sequential data are encoded into a one-hot for-
mat. Given that each component has two states (start and end), the
input data will contain 2 X n,,,,.5,4 features. Users can define their
preferred input sequence length, with 72, set to 10 by default. The
LSTM-based model architecture consists of a 120-unit LSTM layer
as the first hidden layer, followed by a densely connected output
layer shaped as (2 X nyem0q). The output layer applies a softmax
function to predict the most likely next method to be executed. A
detailed description of the LSTM model architecture and its source
code is available on the GitHub page”.

4.5.3 Component State Forecasting Evaluation

Multi-step forecasting differs from single-step forecasting, where
the latter predicts only the next value in a sequence [15]. In multi-
step forecasting, a model is trained on historical data and utilized
to make predictions over several future steps. This approach allows
the model to account for patterns and trends in past data to forecast
upcoming values. To assess the performance of the LSTM model for
multi-step forecasting, we compared it with four baseline models: a
basic Markov Model (MM), support vector machine (SVM), naive
Bayes (NB), and logistic regression (LR). We used the dataset®
collected in [25] for this evaluation.

Accuracy

T T

T T
3 6 9 12 15 18

T

Number of Prediction Step n

Figure 11: Prediction results of LSTM, MM, SVM, NB, and LR
across different prediction steps 7.

The results, shown in Figure 11, indicate that the LSTM model
performs reliably in multi-step forecasting of component states.
Here, the variable n represents the number of prediction steps ahead
in the forecasting process. When n = 1, the MM and LSTM models
achieve similar high accuracy, over 80%. However, as n increases,
MM accuracy drops significantly. In contrast, SVM shows a better
performance trend for increasing n, though it starts with relatively
low accuracy at n = 1. NB and LR, on the other hand, show low
accuracy for n = 1, similar to MM’s performance as n increases
beyond 9, due to their limitations in handling complex state inputs.

Based on these findings, we suggest users consider both the tran-
sition probabilities and the LSTM model predictions when arranging
component sequences for improved user experience.

Shttps://github.com/liminghao09 14/PartFlow/tree/master/models
Shttps://github.com/liminghao09 14/user-component-dataset



5 CASE STUDIES

In this section, we demonstrate the usefulness and effectiveness
of PartFlow from two aspects, data provision for algorithms and
insights on evaluation and optimization for engineers and researchers
with a real-world application.

5.1 Data Provision

Here, we demonstrate the utility of PartFlow in providing data for
partitioning and scheduling algorithms. We examined two research
studies, one by Gao et al. [16] and another by Cai et al. [5], which
introduced dynamic partitioning algorithms within edge-cloud en-
vironments. Our objective was to test whether PartFlow could en-
sure data provision for the parameters outlined in these algorithms.
Table 1 illustrates how PartFlow meets the data requirements for
parameters in both modeling processes by facilitating the acqui-
sition of real-time data. The horizontal line in Table 1 separates
variables for application methods (upper section) from those for
component-based resource optimization (lower section).

Table 1: Data Provision Checklist

Notation Provision Acquisition Process
M v a2,a4 and a3 in A
M, v E
T, v clinC
My v E

T v D
Hij(t) v clandc2inC
cl.cl X .
Ep, (1) v c3inC
Cu, (1) v c3inC
ri v cdandc5inC
S v c4and c5in C
fi v D
pi 4 D
0i,j v c4andc5inC,Dand E
fij v c4dandc5in C,D and E

Markovian factors in workload offloading. Several variables
in the model [16] are illustrated in the upper part of Table 1. The set
of application methods being executed M can be extracted from el,
e2, and e3 in Figure 4 (E). For retrieving the invoked time 7, and its
Local Invocation Graph (LIG) of individual method M,, in the set,
researchers can get the execution timeline of methods and the LIG
from c1 in the Performance Panel (B) and the Transition Panel (C),
respectively. Based on invoked time 7;,, we can calculate the model-
ing Ey, () and Cy, (¢) of energy consumption of the local execution
and transmissions of M,,. H;;(t) refers to the time-dependent data
transmission overhead between components i and j, retrievable from

cl and c2 in the Transition Panel (C). C{,C% represent the compu-
tational resources for local execution and remote transmission of
component i, respectively, shown in the Transition Panel (C). Then,
from the Forecasting Panel (D) we can arrange method M, to have
a composite Markovian state M,,. Further, without loss of gener-
ality, through the Transition Panel (C) and the Forecasting Panel
(D), researchers obtain the state transition probability py; It which
indicates the possibility for M, to invoke every other application
method m; € M. Through the above process, the amount (Gy,) of
energy saving is computed, which depends the offloading strategy of
M,,. Thus, at time 7, when M,, is about to be invoked by M,,_1, Gy,
is computed by aforementioned variables, which all can be obtained
with PartFlow.

Partition algorithm in Cognitive Resource Optimization. In
the cognitive cloud gaming platform, games consist of interdepen-
dent components that work collaboratively to provide gaming ser-
vices for players. The partitioning algorithm for the game needs

several variables that are shown in the lower part of Table 1. By
utilizing c4 and c5 in Performance Panel (B), researchers can con-
struct the resource consumption and the size of compiled code of
component 7, r; and s;, through its static code. Through the shape
of edges and nodes in Transition Panel (C), the execution frequency
fi and probability p; of component i are able to be retrieved. As for
the frequency f; ; and probability o; ; that component i sends data
to component j, it can be calculated via Forecasting Panel (D). Part-
Flow helps researchers derive the minimum cost for different graphs,
including the minimum spanning tree (MST), complete graph, and
general graph, where the optimal cut achieves the general goal of a
partition for cognitive resource optimization.

5.2 Insights on Evaluation and Optimization of Multime-
dia Application

Now we illustrate how PartFlow can be used in the overall evaluation
and optimization of a multimedia application. We recruited a soft-
ware engineer (SE) who had five years of working experience from
a game lab at a university. We conducted preliminary instructions
with the SE, lasting about half an hour. During the instruction, we
first introduced the purpose and function of each interface and panel
provided by PartFlow. When the instruction was finished, the SE was
asked to employ PartFlow as the tool to investigate strategy-making
insights during partitioning and offloading optimization. The SE
chose a mobile device-based prototype of the digital twin [11]. With
the original application he provided, we recompiled it with PartFlow
to insert the data acquisition functions. After confirming the normal
functioning of the recompiled application, the SE was informed to
start the exploration. At the beginning of the exploration, he asked
a volunteer student, who used a OnePlus 7 Pro, an Android device,
to try out the digital campus for one day. After that, PartFlow visu-
alized the collected data and presented the comprehensive results
we intended to draw for the SE. During the case study, we discussed
with the SE the insights gained during the exploration of PartFlow
and took notes when necessary and recorded the entire session for
later analysis.

mainInit()#Start

| shduHome ()#Start

showMap (J#Start

Figure 12: The case studies of PartFlow: (a) Estimating the Perfor-
mance of the Component and (b) Selecting the Objective Sequence
of Components.

According to our record, the first action he took was to check



the Timeline Panel and the Tree Panel shown in Figure 12(a), where
he noticed that the component of UpdatePrivateChatChannel ()
lasted a relatively long time. Then he opened the Source Code Panel
to inspect the realization of this component. He found that the issue
was caused by an inefficient traversal algorithm.

Inspired by the former insight, the SE switched his attention to
the transitions of component states revealed in the Transition Panel
shown in Figure 12(b). He selected the node of mainInit#Start
as it was the entrance of the digital twin campus and he wanted
to know what users would do after this operation. After that,
the SE interacted with the Forecasting Interface to seek answers
to his question. When he selected the node of mainInit#End,
which was executed 32 times according to the record, as the start
node of the prediction flow, the interface illustrated the probabil-
ity distribution of the possible components as the next node. The
forecasting result showed that there existed two high-probability
states as the second node, which were showHome ()#Start and
showWorldChannel ()#Start. He continued the forecasting pro-
cedure by assigning the showHome () #Start component as the new
start node. The new forecasting result showed only two compo-
nents that were possibly being executed in the next node. The top
high-probability states were the showHome () #End, which was quite
obvious. The SE then repeated the forecasting procedure until he
gained enough details. Finally, he maintained three forecasting
flows from the node of showWorldChannel ()#Start, the node
of showMap ()#Start and the node of mainInit()#Start, which
was the most possible to be the next state. Figure 12(b) showed a
part of the process. With the forecasting information provided by
the flows, the SE obtained the next optimization direction for the
application.

6 USER STUuDY

We conducted a user study to evaluate the unique features of Part-
Flow. The primary questions guiding this study were: (S1) What
impact does PartFlow have on participants’ strategy-making? (S2)
What are participants’ attitudes towards the features of PartFlow?
(S3) How do participants interact with and utilize these features?

6.1 Participants Recruitment and Apparatus

We recruited twelve participants (5 females and 7 males, aged 22-40)
via mailing lists and social media, including 9 graduate students and
3 professors with backgrounds in edge computing. The study was
conducted using a 27-inch AOC monitor (3920x2180 resolution)
connected to a Dell PC running Windows 10 OS, equipped with a
mouse and keyboard. PartFlow was accessed via Google Chrome in
full-screen mode.

6.2 Procedure

Initially, each participant was provided with a hands-on tutorial on
the PartFlow interface. An administrator demonstrated the system’s
features and interactions in detail, allowing participants to ask ques-
tions and explore the tool until they felt comfortable proceeding with
the study. This step ensured that all participants began the trial with
a similar level of understanding.

Next, we uploaded data from a commercial video editing Android
application, androvid’ , for experimental use. Participants announced
the start of their trial so that the administrator could observe their
interactions. Upon completing the trial, participants were asked to
share their experience, rate the effectiveness of PartFlow’s functions
(S1), assess the usefulness of its features (S2), and provide feedback
on the overall quality of the tool (S3) to the administrator.

"https://play.google.com/store/apps/details ?id=com.androvid

6.3.1

Questionnaire ratings

6.3 Results and Analysis
Questionnaire Ratings

To answer S1, S2 and S3, we conducted a questionnaire towards
participants’ about PartFlow and calculated its ratings (Figure 13).
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Figure 13: Participants’ ratings on various system aspects, including
the effectiveness of function, usefulness of features, and qualitative
of PartFlow.

Effectiveness of Functions. Figure 13 illustrates the ratings of
the effectiveness of each function in PartFlow. From the results, it
is evident that participants expressed a clear preference for func-
tions related to component performance (E3-E6), method relation-
ships (E7-E9), and forecasting (E10, E11). Notably, the Tree Panel
(E3, E4) received particularly high effectiveness ratings from partici-
pants, indicating that this feature was well-received and valuable for
their tasks. On the other hand, the feature for suggesting data volume
(E1) was rated as less effective in enhancing the users’ efficiency for
making partitioning strategies. Despite the varied levels of attention
and feedback on individual functions, participants unanimously ex-
pressed overall satisfaction with PartFlow as a tool for facilitating
partitioning and offloading strategies.

Usefulness of Features. Figure 13 highlights participants’ feed-
back on PartFlow’s features. The bi-colored heatmap calendar was
praised for its clarity in displaying user activity data (U1). The
sunburst-based performance tree and Sankey-based decision tree
were highly valued for analyzing component structure and visualiz-
ing execution paths, respectively (U4, U6). Other features, such as
the flame graph and interactive digraph (U2, U5, U7), were useful
but rated slightly lower. Floating tooltips received moderate ratings,
viewed more as supplementary for quick information checks than
for in-depth analysis. Overall, PartFlow’s features were seen as
collectively beneficial for analysis and decision-making.

Quality of PartFlow. As the listed results of the quality in
Figure 13 from the questionnaire, it was rated as easy to learn (Q1),
but not as easy as it to use (Q2). As the entrance to the application
partitioning, most of the participants admitted PartFlow could not
monitor such comprehensive components as they expected (Q3).
After accessing the data, easy-to-retrieve data intuitively became



the consensus for most of the participants (Q4). For visualizing
transition and occurrence (Q6-Q8), many participants acknowledged
PartFlow as a useful tool to indicate series patterns.

6.3.2 Interview Results

To evaluate PartFlow, we gathered several participant comments
regarding their experiences with the tool.

Feedback on Query Panel. Participants praised the Query Panel
for allowing them to retrieve data conveniently. One participant
noted, “Usually, I forget which one is the objective experiment data.
In that case, I have to inspect data by memory. Fortunately, with
the help of PartFlow, I could see a beautiful heatmap calendar
indicating the volume of data, which gave great help to me.” While
some participants mentioned that it might not always be necessary to
retrieve data through a heatmap since they could remember specific
details, they acknowledged the importance of being able to “reveal
the overall situation of user activities within a day.”

Feedback on Performance Panel. The Performance Panel was
praised for evaluating component performance across three dimen-
sions. Participants valued knowing exact execution times, with one
noting, “PartFlow highlights complex methods by coloring sectors
red.” The panel clarified component structure, as another participant
said, “It’s like the flame graph but more specific and interactive. By
clicking, I could focus on the objective component.” Additionally,
the source code panel enabled time complexity calculations, helping
participants evaluate computing complexity comprehensively. One
participant remarked, “While I could calculate complexity in Visual
Studio Code, it was difficult to inspect execution and code structure
simultaneously.”

Feedback on Transition Panel. The Transition Panel was seen
as a useful aid for dynamic partitioning in two primary ways. First,
it helped participants understand the next and previous steps of the
current component state. One participant noted, “This tool reveals
multi-dimensional information about functions in an intuitive way—I
can see the numerous edges of varying widths across the circular
digraph.” Additionally, the panel highlighted the most frequently
executed components, with one participant mentioning, “A large
node caught my attention, making me aware of this frequently used
component with relatively high resource consumption.”

Feedback on Forecasting Panel. Participants expressed strong
approval for the Forecasting Panel, which allowed them to explore
dynamic partitioning strategies by easily simulating possible series
of components that could be offloaded or optimized. One participant
noted, “Choosing several objective components and their possible
adjacencies instead of inspecting stack timelines in Android Pro-
filer was incredibly easy to use.” The panel also helped participants
maintain objective sequences with a high probability of occurrence
while making selections. One participant said, “The river-like de-
cision tree made me naturally pay more attention to the size of its
downstream and avoid making it too thin.”

7 DiscussION

In this section, we reflect on the insights gained from our study and
outline the limitations and potential future directions for enhancing
the PartFlow system.

7.1 Value of PartFlow in Mobile Edge Computing

Data Acquisition. PartFlow has demonstrated significant value as
an entry point for rigorous scientific analysis by providing a remote
approach for collecting data across multiple users and devices. This
capability simplifies the process and reduces the cost of analyzing
user activities within the targeted applications. Participants in the
user study expressed satisfaction with the ease of data access, which
supports both model analysis and statistical prediction of method-
level components.

Data Handling and Management. PartFlow offers a robust,
visualized framework for handling and managing data, allowing
participants to locate and extract relevant data from extensive com-
ponent datasets efficiently. By filtering data based on devices and ap-
plication packages, users can model components through statistical
data that reflect their execution on various heterogeneous resources.
Furthermore, applying machine learning techniques enables data ag-
gregation and training to model the interactions between components
and their operational environments.

Dimensional Analysis. The multi-dimensional analysis capabili-
ties of PartFlow fulfilled the requirements of most study participants.
Users praised the system’s innovative visual representations that
facilitated performance evaluation of components. These visual-
izations empowered users to conduct comprehensive dimensional
analysis of user-driven method relationships, helping them identify
optimization solutions relevant to their fields of expertise, such as
cloud gaming, artificial intelligence, and multimedia applications.

7.2 Limitations and Future Directions

One limitation of PartFlow is the restricted number of available
components for inspection. The current tools for manipulation and
decomposition focus on Java byte-code, which cannot handle native
methods within APKs. In many cases, particularly for applications
developed by large companies, essential methods run as native meth-
ods in Shared Object (so) files. PartFlow is unable to monitor or
retrieve data from these native method components. Additionally,
PartFlow faces challenges in forecasting due to the complexity of
component interactions. When components call each other across
multiple steps, the sequence of component states loses the mem-
oryless property, rendering the stochastic matrix insufficient for
accurate forecasting. Another limitation is related to the use of hues
for indicating class and edge directions in the legends, as shown in
Figure 4(e2). Human perception struggles with accurately distin-
guishing colors as the number of categories increases, which limits
the volume of component data that can be effectively visualized in
the system.

From a software engineering perspective, several enhancements
can be made. First, we need to guide users in applying their own
or open-source Android applications on a larger scale. Secondly,
incorporating an LSTM-based deep neural network into PartFlow for
sequential forecasting would improve prediction accuracy. Finally,
to complement the use of colors for distinguishing classes, we plan
to implement additional differentiation measures, such as clustering,
to better represent components within the same class.

8 CONCLUSION

We have introduced PartFlow, an interactive visualization system
designed to help researchers dynamically analyze user-driven execu-
tion patterns for application partitioning and workload offloading.
PartFlow displays multi-dimensional data on application component
states gathered from multiple users and devices, effectively reveal-
ing user activities, component performance metrics, and transition
patterns. Additionally, leveraging a stochastic matrix, PartFlow of-
fers an innovative time-series forecasting feature that simulates the
execution flow of specific components.

Through engagement with expert users, we identified key design
requirements and iteratively refined PartFlow through a human-
centered design process. To assess its effectiveness and usability,
we conducted two case studies and a user study involving realistic
user-driven data from a single application. Feedback from the evalu-
ation phase was overwhelmingly positive, with users highly rating
PartFlow and emphasizing the value and functionality of its features.
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