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Figure 1. A learner is using MOOCex to explore recommendations of lecture video : The goal of clustering in course Machine Learning: Clustering
and Retrieval. Videos are color-coded by course and labelled with lecture sequence numbers. Videos from the current course are connected with arrows.
The recommendations and the local neighborhood of the current video are presented in a 2D space based on their relationships. The space is further
split into multiple regions according to coherence in semantics, and is augmented with keywords extracted from the video transcripts.

ABSTRACT
Massive Open Online Course (MOOC) platforms have scaled
online education to unprecedented enrollments, but remain
limited by their rigid, predetermined curricula. To overcome
this limitation, this paper contributes a visual recommender
system called MOOCex. The system recommends lecture
videos across different courses by considering both video
contents and sequential inter-topic relationships mined from
course syllabi; and more importantly, it allows for interactive
visual exploration of the semantic space of recommendations
within a learner’s current context. When compared to
traditional methods (e.g., content-based recommendation and
ranked list representations), MOOCex suggests videos from
more diverse perspectives and helps learners make better
video playback decisions. Further, feedback from MOOC
learners and instructors indicates that the system enhances
both learning and teaching effectiveness.
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INTRODUCTION
Modern online education platforms, such as Coursera, edX,
and Udacity, have become increasingly popular in recent years.
These platforms allow for teaching at a distance and at scale
by presenting educational materials as Massive Open Online
Courses (MOOC). A course usually consists of a number of
short videos, each targeting a specific concept. To achieve
certain learning objectives, instructors commonly order the
videos according to a syllabus which may also group videos
hierarchically into sections.

However, the syllabus remains a one size fits all approach
with a predefined curriculum, which contributes as a critical
factor in courses’ low retention rates [38, 54]. Further, studies
show that professionals, who comprise an increasing portion
of MOOC learners, aim to advance their career growth (rather
than obtaining a certification), and are less likely to follow
the syllabus [54]. It is critical to offer learners more flexible
access to a broader range of content and perspectives (e.g.,
from multiple courses) [9, 27, 46].

Some platforms such as KhanAcademy [25] and booc.io [44]
provide an interactive knowledge (concept) map or visual-
ization that allows for more personalized learning behaviors.
However, concept maps are not well suited for sequential
flow [37] and creating a dependency of concepts requires
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manual effort; this is neither scalable nor adaptive. We tackle
this problem by offering recommendations in appropriate
visualization to enable learners to access content with multiple
perspectives from related courses available on different
platforms. Learners can interactively navigate recommended
videos in the semantic space of their learning context,
meanwhile not becoming lost in hyperspace [16].

In this paper, we present MOOCex, a system that facilitates
effective browsing of relevant content based on interactive
visualization and on-the-fly video recommendation (Figure 1).
Built upon advanced data mining techniques, MOOCex
offers diverse perspectives on related concepts through
recommendation of video sub-sequences that considers both
videos’ topics and sequential inter-topic relationships between
videos. Unlike conventional user interfaces for showing
recommendations, i.e., a ranked list or a set of ranked lists,
MOOCex supports semantic visualization of recommended
videos in users’ current learning context, by projecting videos
onto a 2D space annotated with topical regions and key phrases.
This provides additional dimensions for learners to effectively
explore related content and select what to watch next wisely.

From a dataset of 4,186 MOOC videos, we conduct three
experiments to evaluate MOOCex from multiple aspects,
including recommendation quality measurements, interviews
with MOOC instructors, and controlled studies with MOOC
learners. Our goal here is to gain a holistic view of the
effectiveness of MOOCex as a visual recommender system.
The results of comparing MOOCex with the traditional
methods (i.e., content-based recommendation and ranked
lists) indicate its effectiveness and usefulness, as well as, its
promising potential for applications on MOOC platforms.

RELATED WORK
In this section, we review the state of the art including
video and content recommendation techniques, approaches for
visualizing search, recommendation, and information spaces,
as well as visual analytics systems for MOOC data.

Video and Content Recommendation
The majority of approaches to video recommendation are
content-based, for example, through performing textual
analysis of transcripts and visual analysis of image frames.
VideoReach provides recommendation by combining three
models based on textual, visual, and aural information
of videos [34]. TalkMiner is an educational video search
system using OCR and lexical analysis of text displayed in
video frames [1]. Topic modeling, such as Latent Dirichlet
Allocation (LDA) [4], has also been applied [55].

However, none of these methods has considered the sequential
relationships between videos, which are available on MOOC
platforms. The video sequence in a syllabus is created by
instructors to achieve certain learning objectives. Recommen-
dations ignoring this information may result in fragmented
learning, thus degrading the quality of recommended content.

Most applications of sequential pattern mining techniques are
distinct from video recommendation. In the field of learning
analytics, Kinnebrew et al. employed sequence mining for

modeling student behavior [29], but they did not focus on
content-based video processing. Morales et al. [35] facilitates
information discovery via educational hypermedia linking
based on sequence mining of user logs. Agrawal et al. [2]
proposed a system for linking web videos to supplement
electronic textbooks, and argued that topic mining alone
is insufficient. More recently, Doroudi et al. indicated that
topic sequences play a critical role in student performance in
the context of a tutoring system [15]. In other applications,
sequential information has been used in recommending
music [22], online products [6], and travel itineraries [24].

The above studies demonstrate that sequential organization
of topics by experts in course syllabi can provide valuable
information for educational content recommendation. Our
approach to recommendation combines topic modeling with
sequential pattern mining to enhance recommendation quality.
However, we face a bigger challenge in MOOC video
recommendation: data sparsity, because videos in the syllabi
normally do not overlap across different courses. This
contrasts with the datasets used in previous work (e.g., music
playlists [22]). To address this issue, we apply top-K sequential
rules (TKS) [17] and top-K non-redundant sequential rules
(TNS) [18] to analyze both global and local patterns in topic
transitions exhibited in instructors’ syllabi, whereas the above
techniques only consider the global sequential information.

Visualization of Search, Recommendation, & Info Spaces
Our work relates to the visualization of search and recommen-
dation results, and more generally information spaces. At a
concept level, Dörk et al. introduced information flaneur [12]
and monadic exploration [13] that guide interface design for
information seeking.

One way of presenting the retrieved information (e.g., from
search or recommendation) is based on the traditional linear
form like ranked lists on Google and YouTube. For example,
TileBars places a colored bar next to each list entry to convey
document length and term frequency [23]. PubCloud augments
a search result list with tag clouds [32]. LineUp offers rich
interaction to allow users to visually manipulate a ranked
list [21]. Based on list representations, ExplorationWall [31]
and uRank [11] investigate methods for refining search results
on-the-fly as information needs evolve.

Many techniques utilize a 2D space to present the information
based on various layout methods. One approach is to place
items based on their attributes (or facets). For example,
PivotPath [14] and PivotSlice [53] display an academic
publication corpus as a network and position each document
interactively in a partition of a 2D canvas based on meta-data.
InterAxis allows for manipulating a scatterplot with axes
dynamically defined by users [26]. Additionally, space-filling
techniques such as treemaps and 2D tiles are used for
browsing searching results [8, 30]. On the other hand,
WebSearchViz [36] and Topic-Relevance Map [40] employ
a circular layout, where the distance to the center represents
a document’s relevance to a query and different sections of
the circular area denote different topics. Similarly, RankSpiral
employs a spiral layout to render a ranked list by maximizing
information density [47].



A vast majority of 2D methods employ a more “free-formed”
layout based on some similarity measure, in which the
distance between items encodes their similarity. For example,
Gomez-Nieto et al. proposed an energy-based method to place
text snippets of search results with minimal overlap [20].
Dimension reduction techniques such as multidimensional
scaling (MDS) [48] are often employed to reveal clusters of
coherent content within data (e.g., IN-SPIRE [50]), and are
sometimes applied in combination with topic modeling [7,
28]. Similarly, some recommender systems visualize query
results in logical sets or clusters on a 2D canvas, allowing
users to interactively drive recommendation strategies and
incrementally explore information [5, 39, 49].

However, none of the above techniques has incorporated
sequential relationships between documents, a critical aspect
of MOOCs, for recommendation/search models or for
visualization. An exception might be TimeCurves [3] that
visualizes the sequential order of data points on top of a MDS
projection, but this work does not focus on either educational
materials or recommendation.

Visualization of MOOC Data
Many techniques have been proposed for visual analysis of
data generated by MOOCs, such as user clickstreams and
forum discussions [41]. One main topic in this area is to
study learner behaviors. For example, Coffrin et al. employed
state transition diagrams to visualize video switching patterns
of learners. More sophisticated systems allow analysts to
compare different user groups and examine detailed video
navigational behaviors [10, 45]. In addition, iForum provides
another perspective for understanding learners via the analysis
of the content and structure of MOOC forum threads [19].

In contrast with these systems that are specifically designed
for instructors or analysts, we focus on recommendation and
visual exploration of MOOC videos to benefit ordinary learn-
ers. One particular work that shares similar goals with ours
is booc.io [44], which allows for visually exploring concept
maps of instructional materials and following personalized
learning plans. However, this approach is less scalable or
flexible because of the required manual creation of the concept
maps beforehand. Also, they focus on video exploration within
a single course whereas we recommend videos sourced across
multiple MOOC platforms.

DESIGN GOALS
Our aim is to enable MOOC learners to flexibly access
course content across MOOC platforms using interactive
recommendation. We identified the following design goals
to guide the development of our system.

G1: Facilitate decision making. Our primary goal is to allow
learners to quickly and wisely choose what to watch next
based on their current context. It is critical to facilitate
both their understanding of unknown information spaces
using semantics, and their determination of promising
directions to explore further [31, 50]. As it is impossible
to present the entire space (often huge and complicated),
we aim to encourage curious and creative information
seeking to “see the whole through its parts” [12, 13].

Figure 2. System architecture overview of MOOCex.

G2: Provide context. Different from other scenarios, learn-
ing builds upon comprehension of unit concepts in
meaningful orders. Studies show that the sequence of
topics is critical in affecting learners’ performance [15].
Schwab et al. advocated that presenting the dependency
of concepts is essential for MOOC platforms [44]. Thus,
recommender systems for educational materials should
provide context for effective learning by considering both
sequential relationships and content-based relevance.

G3: Offer diversity and flexibility. MOOC platforms should
support diverse goals and provide flexibility for learn-
ing [54]. Studies also affirm that students perform better
when provided with multiple perspectives [46]. Hence,
recommended content should be diversified to offer
flexibility in selecting what to view, but at the same time
preserving sufficient context [16, 44].

In addition to these primary design goals, we aim to provide
a compact, simple, and easily understood user interface for
exploring recommendations. In general, we want users to
focus on learning concepts and watching videos, rather than
expending too much effort inspecting the information space.

MOOCex TECHNIQUE
We approach the above goals using recommendation com-
bining both topical and sequential information from videos
and enabling semantic visual exploration of the recommended
results. In this section, we first give an overview of MOOCex
and describe our experimental dataset. Next, we introduce
technical details of its recommendation engine and visual
interface, and finally describe a couple of use cases.

Overview and Data Collection
The MOOCex architecture consists of two main components: a
recommendation engine and a visualization module (Figure 2).
For recommendation, offline pre-processing of the data is
conducted beforehand to derive frequent topic transition
rules, and at querying time, MOOCex uses the mined
information to recommend relevant video sub-sequences. The
visualization serves as an interface for learners to select videos
to view, as well as a tool for them to better understand the
recommendations from different courses and to effectively
explore the unknown huge information space.

We gathered courses available from MOOC platforms includ-
ing Coursera, edX, and Udacity. For this study, we chose
mainly computer science courses such as Applied Machine
Learning, Text Mining, and Data Visualization. In total, we
collected 4,186 videos from 41 courses (approximately 344.65
hours of running time). In addition to the source videos, we



collected text transcripts and course syllabi; together with the
videos, it makes a total dataset footprint of 126 GB.

Recommendation Engine
The recommendation engine of MOOCex contains two stages
(Figure 2). We first pre-process the videos to build the
knowledge base, which contains vector representations of
the videos and their sequential relationships mined from the
syllabi. Then, recommendations are retrieved according to
similarity in the vector space and further re-ranked with the
sequential information.

Pre-Processing
In the pre-processing stage, we first develop a feature
representation for each video based on the text transcripts
within our dataset. We use LDA [4] globally to represent
each video using its distribution over the discrete set of
latent topics with dimensionality Z = 30 (i.e., the number
of topics). We denote this as the topic signature of the video,
Vi = {k : p(i)(zk)≥ 0.1}, which contains the indices of topics
with probability for the ith video of at least 0.1.

Given a consistent representation of videos, we discover
sequential inter-topic relationships. Our goal is to use the
currently watched video to predict likely topics users will
watch next and incorporate this information in our recom-
mendation. We employ sequential rule mining techniques to
discover transition rules from one set of topics to another. We
construct sequences of topics according to the order of videos
in a course syllabus with section-based partitions, which
generates 537 sequences from our database. We then apply the
top-K non-redundant sequential patterns (TNS) [18] to detect
prevalent patterns, which reflects a global analysis of topic sets
and sequential transitions. However, some topic sets observed
in our videos are relatively infrequent and largely absent from
the global analysis. Thus, we employ the top-K sequential
pattern mining (TKS) [17] to extract patterns with lengths
between 3 and 6, for our local analysis of the sequences.

Recommendation
In the query stage, MOOCex provides recommendations
based on the current video being watched. Content-based
recommendation is first applied using standard TF-IDF
retrieval based on video transcripts and cosine similarity [33,
43]. This initial ranking finds relevant videos with similar
content. We then perform re-ranking based on the topic
similarity score (TS), and then global (GS) and local (LS)
sequential rules.

Topic similarity score (TS). The topic distributions of the
query video P(q) and the recommended video P(r) are matched
in terms of overlap and probability values. The TS score
combines the Jaccard similarity, J(·), between the topic
signatures, Vq and Vr, and the number of probabilities for
common topics that are within a threshold t:

ST S(P(q),P(r))= J(Vq,Vr)+
1
Z

Z

∑
z=1

δ
(
|P(q)(z)−P(r)(z)| ≤ t

)
,

where P(i)(z) is the probability of latent topic z for video
i and δ (·) is the Dirac delta function. We set t = 0.2 in

our experiments. Here, the first term measures the number
of common topics between two videos, and the second
term captures the topic distributional similarity. This score
emphasizes videos with similar concepts from the perspective
of other courses. As both terms are related to topic similarity,
future studies are warranted to examine their correlations.

Global sequence score (GS). We retrieve N support and
confidence score values, {(si,ci)}, from the mined global
sequential patterns with antecedent values matching Vq and
consequent values matching subsets of Vr. The GS score is

SGS(Vq,Vr) =
1
N

N

∑
i=0

ci
yi

|Vr|
+

si

DG
,

where DG is the total number of global sequences, and yi is the
length of the matched subset of Vr. To avoid noisy sequence
patterns only antecedent matching of Vq is considered. This
score emphasizes topic transitions learned from the global
analysis over the data, which promotes videos that are
consistent with frequent topic sequences over the entire corpus.

Local sequence score (LS). We retrieve M additional support
and confidence score values from mined local sequential
patterns with antecedent matching a subset of Vq and
consequent matching a subset of Vr. The LS score is

SLS(Vq,Vr) =
1
M

M

∑
i=0

ci
yi

|Vr|
+

si

Dq
,

where Dq is total number of mined local sequences with
antecedent values matching any subset of Vq, and yi is the
length of the matched subset of Vr. The LS score captures how
specific topics from Vq relate to the other topics that appear in
close proximity in the sequence database (local analysis).

We apply feature scaling to bring all scores into the range
[0,1] before linearly fusing the scores with uniform weights in
MOOCex, based on the results of pilot experiments. From the
initial content-based recommendation, the above re-ranking
technique offers more diverse videos in context using the
knowledge of topic transitions (G2 and G3).

The final step in recommendation is aggregating the rec-
ommended videos to determine top-N prominent video
sub-sequences. We scan videos from the top of the ranked
list, and group them in sequential order if they are adjacent in
a course syllabus. We constrain the length of sub-sequences
to a maximum of four, and greedily search down on
the list until there are N sub-sequences. Note that some
sub-sequences may contain only one video. We re-order the
sub-sequences based on the average ranking scores to form
our final recommendation. Compared to traditional video
recommendation, this method can provide more contextual
information for learners to understand course concepts (G2).

Visual Interface
The MOOCex interface consists of three parts: a Video Panel, a
Recommendation Panel, and a Configuration Panel (Figure 3).
The Video Panel is a normal media player in which learners can
watch a selected video. The Recommendation Panel is the main
interface where a learner can explore recommended videos (or
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Figure 3. A learner is using MOOCex to explore recommendations of video in Machine Learning: Regression. The interface consists of three main
components: a) a Video Panel (cropped), b) a Recommendation Panel, and c) a Configuration Panel, d) Hovering over a video initiates a tooltip with a
tag cloud to describe the content of the video.

video sub-sequences) and understand relationships between
them, to inform their choice of an appropriate video to watch
next. In the Configuration Panel, a learner can manipulate
basic parameters about how recommendations are displayed,
as well as select specific courses and lecture videos to view.
Overall, we strive to design a visualization that is simple and
easily used while conveying essential knowledge for learners
to better determine their next step.

Visualization of Recommendations
The Recommendation Panel displays the current video,
its neighboring videos, and the recommendations in a
two-dimensional Exploration Canvas in the middle, and shows
other videos in the current course linearly on both sides
(Figure 3-b). Videos in the original course of the current
video are connected with gray arrows to indicate their order
in the syllabus. Each video is represented as a circle with a
number indicating its position in that course syllabus. Color
hues encode different courses. In the middle area for exploring
recommendations, color opacity indicates the rank of that
video in the recommendation list (the lighter the color, the
lower the rank).

Unlike traditional ranked lists, we employ MDS [48] to
position videos on the Exploration Canvas based on their
distances in the recommendation space, the closer the more
relevant. As in MDS projection only the relative distance

between items has meaning and the axes do not, we rotate
the layout to make the general direction of videos in the
current course flow from left to right, aligning with the natural
sequence of other videos that are on either side. This rotation
eases comprehension of the visualization because it matches
people’s common sense. To obtain the angle to rotate, we
compute the center of the videos before the current video in
the MDS layout and that of those after, then form a vector from
the previous center to the next, and use the angle between this
vector and the positive direction of x-axis. Figures 4-a and -b
show the rotated layouts of having two neighboring videos
and four of them for in Machine Learning: Classification.
However, zig-zags in a longer video sequence could occur,
which cannot be completely corrected. But learners usually
focus more on semantics in a local space, thus not including
too many neighboring videos in the Exploration Canvas.

Moreover, when performing MDS, we treat the recommended
video sub-sequences as a unit (i.e., by averaging their recom-
mendation distances to other videos), and then render videos
of the sub-sequence from left to right in a roughly horizontal
line and connect them together (e.g., and in
Figure 4-a). To minimize overlap of circles, we later apply a
repulsive force between videos to obtain the final layout. A
learner can disable this sequence-based layout and position
each video individually based on the MDS projection to gain
a different perspective of the recommendations (Figure 4-c).
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Figure 4. Layouts of recommendations and videos-in-focus in different situations when watching video in Machine Learning: Classification; a) with
two neighboring videos, b) with four neighboring videos, and c) with videos in sub-sequences separated.

To help learners better make sense of the MDS layout, we
perform an agglomerative clustering [51] of the videos, and
split the Exploration Canvas into multiple regions based on the
clusters (Figure 4). Each region exhibits a relatively coherent
set of topics and concepts in videos. We use the agglomerative
approach for clustering because it does not require prior
knowledge of the number of clusters. The boundaries of the
regions are shown as subtle white polylines, determined by
aggregating Voronoi cells of videos in the same cluster.

In addition, we overlay frequent topical keywords extracted
from the text transcripts of each video cluster to reveal
contextual information of different regions in the MDS
projection (Figure 3). To obtain discriminative keywords, we
first employ the standard TF-IDF method and then re-weight
the keywords based on terms in video titles, because the
titles are created by human thus providing high quality
summarization. Next, we perform post-processing of the
keywords based on the video clusters to remove duplications.
These keywords are placed using a force-directed layout, and
they can be hidden if users feel overwhelmed. For better
positioning of the keywords, more advanced methods such
as energy based optimization [20] can be investigated in the
future. Our goal here is to provide some semantic structure
(not necessarily precisely) in the information space, allowing
everyday users to better understand the MDS layout.

In summary, the above visual design allows learners to better
understand the semantics in the recommendation space based
on the MDS layout, providing rich context of relevant concepts
and videos, i.e., how they relate to each other in the current
local space of learning (G2). Also, the recommendation
and visualization of video sub-sequences offers additional
contextual information with the recommended content (G2).
These aspects form an informative and expressive view from
which learners can better decide what to do next (G1).

Interactions and Miscellaneous Information
To facilitate exploration of videos, the Recommendation Panel
displays auxiliary information on both sides (Figure 3-b).
Videos that were recently visited and adjacent videos from
the current course are shown in two vertical lists on the left.
Similarly, recommended videos are shown on the right in
a ranked list similar to the traditional approach. Interactive
linking of the same video is provided as it is hovered over
in the lists or in the Exploration Canvas. Meanwhile, a

tooltip pops-up showing a set of important keywords extracted
from the video transcript and title based on the RAKE
algorithm [42] (Figure 3-d). Also, clicking any of the videos
selects it as the current video and updates the visualization.
The above features allow learners to quickly get a basic sense
of the videos and navigate through the information space.

Example Use Cases
Here, we demonstrate several possible usages of MOOCex
when learners have different goals.

Suppose that Jack is learning Machine Learning: Regression,
and he has just finished watching titled with Choosing
stepsize and convergence criteria (Figure 3). From his past
experience, Jack already knows a bit about this topic, so
now he wants to expand the scope of his knowledge on this
aspect. On the Exploration Canvas, he finds a number of
relevant videos that are close to the video he has just watched,
including : random initialization and : gradient descent
intuition, both in Introduction to Machine Learning, and a
sub-sequence in Machine Learning (Undergraduate).
As Jack wants to know more tricks for training a model, he
decides to watch next. Clicking that video sets it as the
current video, and brings him even more related content. Jack
could keep diving into it to get more knowledge or just simply
go back to the original course.

Now imagine that Mary is also learning this course and
has just finished watching the same video (Figure 3).
However, she does not quite understand it. By looking
at the recommendations, Mary finds : gradient descent
intuition is close to the current video with a title and
tooltip keywords suggesting it has helpful background, but is
positioned in a different region indicating a slightly different
perspective. Such a recommendation with high semantic
similarity depicted by its relative proximity can provide
complementary information for better understanding of the
current video.

Finally, consider that another user, Mike, thinks he fully
grasps concepts in all the videos that he has watched in this
course. He does not want to explore other topics related to the
current video , because he wants to continue learning. After
glancing the title of the next video : Gradients derivatives
in multiple dimension, Mike happens to know this topic to



some extent from other resources. But he discovers that there
is a video close to it, : Example of computing derivative for
logistic regression in Machine Learning: Classification, which
could broaden his view on this topic and better prepare him for
the next video. So he decides to watch this video first before
moving forward.

In summary, the diversity of recommendations offers learners
opportunities and flexibility to gain specific knowledge based
on their different learning objectives and past experiences
(G3). However, if the recommendations are displayed as a
linear ranked list, a learner probably just visits a few items
near the top of the list. The above scenarios demonstrate that
this visualization which provides the context and semantics of
recommendations could lead to a deeper and more thorough
understanding of the information space (G2) and thus guide
learners to make a better decision (G1).

EVALUATION
We carried out three experiments to evaluate the effectiveness
and usefulness of MOOCex. The first was conducted to
quantitatively assess the quality of results provided by the
recommendation engine. The purposes of the second and the
third experiments were to understand how MOOCex can be
used on MOOC platforms in a qualitative manner, from both
MOOC instructor and learner perspectives.

Evaluation of Recommendation
Guided by our design goal G3, we aimed to measure the diver-
sity of recommended results and compare the sequence-based
recommendation with the traditional content-based approach
(CB). The content-based method utilizes text transcripts of
videos without considering the sequential relationships of
topics and concepts in courses. We observed that the results
of CB concentrate within the same course of Vq, which may
be possibly based on the distinctiveness of each instructor’s
language usage. To provide more diverse recommendations,
we filtered out videos from the same course for this evaluation,
thus better assessing the ability of CB and our method for
providing users with flexibility in learning.

Metrics
We employed the following two metrics to quantitatively
evaluate the quality of recommendations:

TR: Topic redundancy measures the average number of
repeated items in top-N recommendations between cor-
responding query videos from the same section of a
syllabus. The section groupings in course syllabi created
by instructors indicate closely related concepts. The
intuition here is that as learners consume these videos,
recommendations should enable further opportunities for
enriched understanding (i.e., lower redundancy).

CD: Course diversity measures the average number of
distinct courses from which the top-N recommendations
originate. Intuitively, we want the recommended videos to
span across different courses (i.e., higher diversity), which
may provide a more flexible learning experience.

Perhaps a more general metric for the recommender perfor-
mance is accuracy (or precision and recall), which is used

b
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Figure 5. Comparison of recommended results from MOOCex
(sequence-based) and baseline (content-based) on: a) the averages of
topic redundancy (shorter bars are better), and b) course diversity
(longer bars are better). Error bars show 95% CI.

in many previous work [6, 22]. However, this requires the
ground truth: learners’ actual behaviors in selecting videos
from different courses. But this real-world information is not
available, because most MOOC platforms do not adequately
support this interaction and a cross-platform video navigation
system does not exist yet. Therefore, in this paper, we evaluate
the diversity of recommendation guided by G3.

Results
We computed the above two metrics with N = 10 for all videos
in our dataset (4,186 videos). Figure 5 shows the results that
compare the recommendation engine of MOOCex (sequence-
based) and the baseline (content-based). We can observe that
MOOCex performs better in both metrics (TR: µ = 1, CI [0.91,
1.09]; CD: µ = 2, CI [1.94, 2.06]), compared to those in baseline
(TR: µ = 3, CI [2.88, 3.12]; CD: µ = 1, [0.96, 1.04]). Further,
the non-overlapping 95% CIs indicate that these effects are
significant. These results indicate that MOOCex can provide
recommendations with more diverse perspectives.

Interviews with MOOC Instructors
We conducted semi-structured interviews with MOOC instruc-
tors to collect qualitative feedback about MOOCex.

Experimental Setup
We recruited two MOOC instructors from different universities.
They both have many years of teaching experience in
traditional classrooms and have taught several MOOCs in
recently. One was from a computer science background (E1),
and the other was specialized in quantitative methods in social
science (E2). During the interviews, we first introduced some
background and the features of MOOCex, and then asked them
to try the tool, during which we collected their comments.
Think aloud protocol was used, and we required them to give
feedback from both instructors’ and students’ perspectives. We
recorded the entire sessions and took notes when necessary.
Each interview lasted about a hour.

Results
In general, the instructors appreciated the tool and valued
its potential for enhanced flexibility for learning. They both
agreed that the current fixed course syllabi have big limitations
for certain learner groups. Also, they were eager to apply the
tool in their MOOC offerings and were curious about how it
could affect students’ performance and learning behaviors.



Students’ perspectives. Thinking from a student’s point of
view, the instructors both agreed that the tool could broaden
their vision and deepen their understanding of course materials,
especially for professional learners. They also thought that the
interactivity of the tool could help students become more
engaged with the course. E1 mentioned that they usually
provided recommendations of other materials in the end of a
course to give students future learning directions. “Students
can have more freedom and gain richer context with this
kind of per-video recommendation,” she further added. E2
particularly liked the visual representation of videos on the
Exploration Canvas. He said that the keywords, the regions,
and the positions of videos offered “a holistic image of what
students are learning currently,” which could be helpful for
them to grasp the concepts of a course and its progress. He
also commented that the connected subsequences of videos in
the visualization could provide students with a good awareness
of the context of knowledge or related concepts.

Instructors’ perspectives. The instructors were excited about
the capabilities of the tool for improving their teaching. They
said that MOOCex could be very useful for course preparation.
E1 commented: “I normally don’t look at what others teach,
but the tool provides the awareness of related lectures, so I
could borrow some materials to enhance my lecture, and avoid
unnecessary duplication.” Both E1 and E2 emphasized that
MOOCex could be used for dynamically guiding the support
offered on course forums, for example, pointing out details and
questions covered in recommended videos but not in current
course. E2 commented that the visualization could provide
objective feedback to the design of a course. For example,
he said: “If you see one lecture is here [on the Exploration
Canvas], then you go very far for the second lecture, and back
here again for the third lecture, you should really think about
reordering the content presented in the videos.”

Problems and issues. From the interview, E1 commented
that the visualization might be confused with a concept
(knowledge) map. She explained that it could be because
arrows only exist between videos of the current course, and
suggested also adding dependency between recommendations.
For the current MOOCex design, we only included sequential
information of consecutive videos. Both E1 and E2 were
worried that students might think: in order to fully grasp the
knowledge, watching videos within a whole region on the
visualization is needed. They were also afraid that students
could dive too deep through recommendations but not move
forward. Moreover, they both noticed that sometimes the text
labels were not properly positioned, such as overlapping with
each other and going across region boundaries.

General comments. Overall, the instructors thought highly
about MOOCex and wanted to use it in their MOOC offerings
in the future. They also provided several suggestions for
enhancing the tool. One was to accommodate the recommenda-
tion of sub-segments of videos, because some MOOC lectures
may cover multiple key concepts in relatively long videos.
Moreover, E2 suggested dynamically loading videos of similar
topics by clicking keywords on the Exploration Canvas. He
further demanded a more adaptive recommendation engine

Figure 6. Recommendation Panel in the baseline condition, which only
presents the recommendation in a list.

that suggests videos differently based on the number of videos
in the current course on the canvas. Also, E1 pointed out that it
would be interesting to apply MOOCex in non-MOOC video
recommendation, for example, in corporate training.

Laboratory Study with MOOC Learners
We further carried out a laboratory study to better understand
how MOOCex can be used by MOOC learners.

Experimental Setup
We recruited 12 participants (9 males, 3 females; aged 20–
50) from an IT company; all of them have taken MOOCs
before and hold Masters and/or PhDs in computer science or a
related field, which represents the professional learner group
for MOOCex. They all had some level of knowledge about
machine learning (but not experts) to match our video data in
the experiment being machine learning related. This allowed
participants to better make sense of the content. Further, all of
them had experienced video recommendations on other sites
like YouTube and Netflix and all had taken MOOCs in the past
(but might not complete them).

We compared MOOCex with a baseline view of the recommen-
dations in a list by hiding the Exploration Canvas in Figure 6.
The experimental task was to select the most meaningful video
to watch next from the recommendations of a particular video,
with the presentation in one of the two conditions. Participants
were asked to talk aloud why they chose such video, and then
watch/skim that video to indicate if they felt it was a good
choice. We understand that the choice may be affected by
many subjective matters. However, we are more interested in
behavioral changes of participants across the two conditions,
because there is no right answer for choosing videos. We
hypothesize that participants have more deliberate reasoning
in mind for taking actions in the MOOCex condition.

A within-subject design was employed. We sampled six videos
(2–4 minutes length each) from our dataset, all related to
machine learning concepts, to form six tasks for the study.
The tasks were randomly associated with the two conditions
(three each) for every participant. During the study, the
two conditions (MOOCex and baseline) were presented to
participants in a counter-balanced order. Within each condition,
they first received a demonstration of the tool, during which
they could ask questions. Then, participants completed one
trial task and three actual tasks. The trial task videos were
different from the actual ones, but stayed the same across
participants. Participants were instructed to either skim or
watch videos during the tasks. Finally, participants filled
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Figure 7. Comparison of participants’ agreements on MOOCex and
baseline from the post-study questionnaire (with a 7-point Likert scale).
Agree scores to the right, Neutral or Disagree to the left. No participant
selected Strongly Disagree.

in a post-study questionnaire and received a short informal
interview. The study lasted approximately 40 minutes.

Results
During the experiment, we recorded the time participants
spent selecting a video in each task. On average, participants
took a bit more time with MOOCex: µ = 123.8 seconds, CI
[99.0, 148.7], than baseline: µ = 118.6 seconds, CI [97.0, 140.2].
This is reasonable because participants had to cognitively
process more information with MOOCex. However, the
large overlapping confidence intervals indicate that the effect
was not significant. From the responses in the post-study
questionnaire, participants felt they had made a good and
logical choice in 32 out of 36 tasks (88.9%) with MOOCex,
compared to 25 out of 36 tasks (69.4%) with baseline.
Although subjective, these results indicate that MOOCex
helped participants make better and more confident choices.

The results of the post-study questionnaire further show that
participants thought MOOCex was roughly as easy to use and
about as easy to understand as baseline (Figure 7). Although
there were more visual elements in MOOCex than baseline,
participants did not find it more difficult to use (MOOCex:
M = 6, IQR = 1; baseline: M = 6, IQR = 2.25). MOOCex
was perceived slightly less easier to understand, which is
plausible because it was a new interface. However, the effect
was small (MOOCex: M = 5.5, IQR = 1; baseline: M =
6, IQR = 1), indicating that participants accepted MOOCex
well and quickly.

As shown in Figure 7, we also observe that participants
thought MOOCex was more helpful in selecting videos from
recommendations (MOOCex: M = 6, IQR = 0.5; baseline:
M = 4, IQR = 1.5), and helped them make more logical
choices (MOOCex: M = 6, IQR = 1; baseline: M = 4, IQR =
1.25). This indicates MOOCex is more effective for users to
make sense of the information space and select reasonable
videos from recommendations.

In terms of the list ranking, of all 36 tasks, 8 selections (22.2%)
were made to the top (first) recommended video with MOOCex

and 13 (36.1%) for those with baseline. Picking within the
top-5 recommendations, 31 selections (86.1%) comprised the
MOOCex condition compared to 25 (69.4%) in the baseline. In
other words, when presented with a list, participants typically
clicked the first item (which is to be expected). When using
MOOCex, participants typically clicked one of the top-5
results. From records in the study, we find in the baseline
that 32.0% (8 out of 25) of those top-5 choices did not match
what they wanted (i.e., regret rate). For MOOCex, the top-5
choice regret rate was much lower (6.4%; 2 out of 31). When
picking outside the top-5 in the baseline, the regret rate was
27.3% (3 out of 11) versus 40.0% (2 out of 5) in MOOCex.

Moreover, we found that participants had strategy changes
for selecting videos from recommendations under the two
conditions. With baseline, almost all participants scanned from
the top of the ranked lists to select videos. Some thought
more about the topics of the current video or the next one to
make their decisions, while others tended to pick videos that
“look interesting.” Participants also indicated that the tooltips
were more helpful in the baseline condition. With MOOCex,
participants usually searched from the near to far neighbors of
the current video on the Exploration Canvas. They also stated
that the background regions and keywords had affected their
behaviors. For example, three participants mentioned using a
top-down approach for video selection, and many said they
made comparisons of candidate videos in different regions.
Two participants mentioned that the connected sub-sequences
of videos helped them find where to start if they were interested
about the topics. There was one participant who generally
used the same list-scanning strategy in both conditions citing
“The map [Exploration Canvas] is too busy.” He did however
indicate the visualization of MOOCex did influence some
of his choices because he also observed the positions of the
videos when he hovered over it in the ranked list.

DISCUSSION
We have presented a visual recommender system, MOOCex,
designed to recommend lectures from a set of courses to
provide multiple perspectives and supplements to an enrolled
course. MOOCex features a spatial-visual, semantic represen-
tation to allow learners to understand a recommended video’s
topic in relation to their current context in an enrolled course.
The visualization requires a recommendation engine based
on sequential inter-topic relationships, which provides more
exploration with the top-5 highly ranked recommendations
(instead of just promoting the top ranked video). Here, we
discuss the limitations of MOOCex, implications obtained
from our studies, and the generalization of the technique.

Limitations
Although effective, MOOCex is not without limitations.
First, we utilize sequential relationships between videos to
provide higher-quality and more diverse recommendations,
but the hierarchies of MOOC syllabi are not considered in
this paper. This information could be helpful for offering
recommendations at multiple levels of concepts. Second, in
our current layout, some keywords may overlap with other
elements and longer keywords or sub-sequences may cross the
boundary of a Voronoi cell. Alternative layout methods [20]



and visual aggregation of video sub-sequences can be applied
to resolve the issues. Third, our current summarization (on the
tooltip) of a video’s content is purely based the text transcripts.
Some visual cues such as keyframes extracted from the videos
could be more informative. Similarly, videos now encoded as
circles could be a bit abstract to users. Using thumbnails might
allow for more effective browsing of the videos, however, this
may result in visual clutter as each video requires more space
to display in the visualization.

Ideally, a longitudinal deployment study is needed to provide
deeper insights on how MOOCex is used in practice, and
find out whether the learning outcomes are improved or not,
which is our ultimate goal. However, current popular MOOC
platforms do not easily allow for such integration. We argue
that the three experiments conducted to assess MOOCex from
different perspectives already provide us with a relatively
thorough picture of the tool’s performance. A deployment
study is left for future work.

Our evaluation of the recommendation engine is also limited
and heuristic. Due to the lack of ground truth of user behaviors
in navigating videos of different courses in a cross-platform
system, metrics such as accuracy, precision, and recall cannot
be applied, which is an obvious weakness of the evaluation.
The main obstacle is that such data is not self-contained within
an actual existing system, thus difficult to capture. We believe
a future deployment of MOOCex to a real audience will enable
us to collect a large number of relevant user sessions for
the evaluation. This also opens new opportunities to further
improve our recommender algorithm based on user browsing
history, such as applying collaborative filtering [52].

Design Implications
Our study indicates several important considerations for the
future design of interactive visual recommender systems for
MOOCs. Ultimately, the goals of providing recommendations
are different between MOOC platforms and common video
browsing websites such as YouTube. While the latter has
playlists and genres, MOOC content conveys educational
knowledge information contained in the course content
structure. The goal is to help users obtain this diverse
knowledge and learn more effectively (as opposed to having
viewers stay on site watching content and advertisements).
For the MOOC learning scenario, there exist two conflicting
design goals: encouraging learners to watch more videos to
broaden their perspectives, and preventing them from diving
too deep in the unlimited space of videos. Finding a balance
between the two is a critical consideration for system design.

Additionally, our study reveals the importance of sequential
inter-topic relationships in providing better recommendations
of MOOC videos as wall as the importance of explicitly
visualizing such sequentiality. Hence a proper ranking of
recommendations must be developed to obtain such a sequence
across the corpus. This aligns with some of the observations
from earlier work [25, 44], where sequential dependency is
extended to a graph. Showing this information is critical,
but is only one aspect. Another dimension is the semantic
relationship between videos, which is what we also strive
to present in MOOCex (e.g., keywords, and regions on the

Exploration Canvas). However, it is not easy to generate a
visualization that conveys well these two types of information
simultaneously, which is another essential aspect to consider
in the design.

Generalization
The MOOCex technique, or part of it, is generalizable,
although we design and develop it in the context of MOOC
learning. For example, we can extend the recommendation
engine by computing the signatures of videos with additional
information, such as audio and image frames, instead of merely
the topics of transcripts as in the current implementation. Also,
the front-end interface of MOOCex is not constrained with
the sequence-based recommendation back-end, which can be
applied for exploring the recommendations of more generic
video browsing platforms.

Further, although we currently focus on whole video analysis,
the sequence-based approach and the interactive visualization
can be generalized to video sub-segment recommendations.
This could be especially helpful when a MOOC video is longer
or covers multiple learning concepts. A preprocessing step
would be splitting original videos into sub-segments, each
consisting of one specific low-level concept.

CONCLUSION AND FUTURE WORK
We have presented MOOCex, an interactive tool that offers a
flexible learning experience with dynamic recommendations
and visual exploration of MOOC videos. Its recommendation
engine considers sequential relationships between videos
based on course syllabi, to ease the learning of concepts. Also,
its visual interface supports a richer semantic representation of
videos in the information space, allowing learners to quickly
make sense of the recommendations and decide their next
step. Three studies are conducted to evaluate different aspects
of MOOCex by comparing it with traditional methods (i.e.,
content-based recommendation and ranked list), and the results
indicate that MOOCex is effective and useful in various
MOOC learning scenarios.

In the future, we plan to extend our recommendation engine to
including more video features such as audio and image frames,
and further enhance the visual interface. We also would like
to experiment with recommending and exploring video sub-
segments, as well as non-MOOC scenarios. Finally, we aim
to conduct a deployment study to collect real-world user data,
thus further evaluating both the recommender algorithm and
the visual interface of MOOCex.
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