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Figure 1: The figure illustrates how users reuse memories for future generations by interacting with Memolet, the reification of
memory reuse. (A) Our system initially embeds and projects all users’ conversations to the long-term memory repository. (B)
Users can search, recall, and extract Memolets from this repository and transfer them to the curated memory sandbox. (C) This
sandbox supports users in organizing and schematizing Memolets based on their own sensemaking. (D) Finally, users can reuse
these Memolets by referring to them in the prompt and (E) refine the generation through direct manipulation.

ABSTRACT
As users engage more frequently with AI conversational agents,
conversations may exceed their “memory” capacity, leading to fail-
ures in correctly leveraging certain memories for tailored responses.
However, in finding past memories that can be reused or referenced,
users need to retrieve relevant information in various conversations
and articulate to the AI their intention to reuse these memories. To
support this process, we introduce Memolet, an interactive object
that reifies memory reuse. Users can directly manipulate Memolet
to specify which memories to reuse and how to use them. We devel-
oped a system demonstrating Memolet’s interaction across various
memory reuse stages, including memory extraction, organization,
prompt articulation, and generation refinement. We examine the
system’s usefulness with an N=12 within-subject study and pro-
vide design implications for future systems that support user-AI
conversational memory reusing.
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1 INTRODUCTION
Recent advances in generative AI-driven conversational agents have
become a common method for users to perform tasks in various
domains [55]. As users engage in more conversations and share ad-
ditional details, they may discover valuable contextual information
scattered at multiple previous conversations that can enrich their
current conversation with the AI [30, 50, 67, 74]. In such scenarios,
users encounter difficulties in resuming their conversations from
where they left off, as the model may not consistently retain all
pertinent memories [50, 92]. To address this issue, it is important
to enable the reuse of “memories”—past conversations between
users and generative AI [8, 31, 93]. Reusing these memories helps
users reduce the need for time-consuming prompt engineering
from scratch [21, 87, 88], ensure the generated results are trustwor-
thy [57], and tailored responses to the particular context without
hallucination disconnected from the memory [32, 77].

However, users face challenges in reusing memories due to the
opaque nature of how current AI-driven conversational agents han-
dle memory [31, 89, 98]. Users lack understanding of how much in-
formation is memorized by the AI and have limited control over the
memory management strategies of these AI-driven conversational
agents [8, 31, 93]. Additionally, users have difficulty discerning
which memories are being used for generation, which hinders their
ability to assess if the model accurately reuses desired memories
for the current task [23, 51, 54, 95]. Therefore, to gain control over
AI generation and to ensure that specific prior memories are reused
without hallucinating, users often need to sift through numerous
pairs or prompts/responses to find the relevant context and man-
ually copy and paste it into the new conversation with AI. This
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process can be quite challenging and time-consuming, as it requires
users to make sense of and recall memories [38, 49, 65, 81], extract
relevant memories from various conversations [6, 11, 28], organize
and integrate these memories based on their usage [14, 64], specify
how AI should reuse the memories [94], and iterate on this process
until the generation satisfies the users’ needs [48, 79].

This research aims to explore designs that enable users to have di-
rect control over how they want to reuse memories during conversa-
tions with generative AI. Derived from prior theories on knowledge
reusing [2], information foraging [68, 69] and knowledge external-
ization [56], we identified several challenges and design guidelines
to support users across the stages of the memory reusing process.
We introduce a novel concept, Memolet, which reifies the notion
of reusing memories from past conversations with generative AI
(Figure 1). Memolet is an interactive first-class object that enables
users to specify what and how the memory should be reused by
direct manipulation. Users can begin by searching and extracting
related Memolets from a long-term memory repository consisting
of all past conversations with AI to specify what memories should
be reused for the current task (Figure 1.B). Then, users can organize
and schematize these extracted Memolets within a curated space,
externalizing their thoughts on how thesememories are related (Fig-
ure 1.C). Afterward, users can articulate prompts referencing these
Memolets to specify how they should be reused. Finally, users can
refine the AI generation by manipulating the referenced Memolets
to align with their intentions (Figure 1.D&E).

We evaluated our system through a two-phase within-subject
study involving 12 participants who regularly converse with gener-
ative AI. We demonstrate the versatility ofMemolet in three distinct
scenarios (i.e., expository writing, programming, and travel plan-
ning), wherein participants were tasked with interacting with both
our system and Baseline in phase two, reusing conversations gath-
ered from phase one. Our findings suggest that our system can
help participants recall memories, reduce their cognitive load in
organizing multiple memories, have greater perceptual control over
the generative process, and be able to express how they wish to
reuse memories. Overall, this paper explores the concept of memory
reuse as an interactive object and an interactive system in which
users can interact with these Memolets to express their intentions.

2 RELATEDWORK
We review prior theories and systems related to information and
knowledge reuse, current methods for factual text generation and
techniques formanagingmemory inAI-driven conversational agents.

2.1 Information Sensemaking and Reusing
Reusing information and knowledge is common across various
fields like writing [16, 82], programming [19, 46], and web content
management [71, 96], especially in collaborative settings where
knowledge dissemination is crucial [63, 66]. Previous studies in
information sensemaking have developed systems aimed at facil-
itating the preceding stages of knowledge reuse as proposed by
Markus [2]. Mapping out these systems to the process of knowledge
reuse includes capturing or documenting knowledge [6, 11, 28],
packaging it for reuse [6, 11, 28], and distributing and reusing

it [5, 20]. These systems have proven beneficial for individuals or
groups in sensemaking information to accomplish assigned tasks.

Recent works have also introduced systems to support the sense-
making of LLM-generated content [81]. These systems support
users in exploring and organizing generated results by breaking the
linear structure of conversational interfaces and providing a curated
space for users to make sense of the generation. This organization
and structuring of information serve as a vital initial step for users
to efficiently reuse the information [22, 58]. Building upon this
prior research, our work extends the focus on understanding and
supporting the process of user-AI conversational memory reuse.
We grounded our proposed memory reuse stages and design guide-
lines (Figure 2) with the existing theory of knowledge reusing [2],
information foraging and sensemaking [68, 69] and knowledge ex-
ternalization [56]. By operationalizing these design guidelines into
our system, we aim to scaffold users’ sensemaking of memories
before reusing them in new conversations with generative AI.

2.2 Memory Reuse in AI-Conversational Agents
LLMs have become an essential building block of current AI-driven
conversational agents due to their human-like response genera-
tion [13]. However, current LLMs often are limited to handling
long-term memory [37, 72, 77] and remain opaque about how they
use longer contexts in downstream tasks [50, 92]. As a result, users
may find it challenging to resume previous conversations where
they left off and may need to manually copy and paste related mem-
ories for the AI to anchor to the correct context for the generation.
Several conversational management strategies have been proposed
even before the widespread adoption of transformer-based lan-
guage models [84], including techniques for retaining the persona
of chatbots [41, 97]. Other methods have also been suggested to
guarantee that the responses generated are contextually appro-
priate, such as summarization [85] and refinement [99], aiming
to minimize redundancy while maintaining essential information.
Moreover, relevant memories can be retrieved utilizing information
retrieval techniques to contextualize current inputs to AI [8, 26, 93].
However, the process of “remembering” remains complex for ma-
chines [44, 85], requiring human interventions to control the reuse
of memory. Further, current AI-driven conversational agents en-
counter challenges in navigating diverse and complex conversations
[25, 83, 90], require users to go back and forth between different
conversations to collect the needed memories for reuse.

Despite improvements in memory-augmented generation, users
often lack a clear understanding of how generative AI and con-
versational agents handle memories [31]. Current tools focus on
accessing and editing chat histories to manage conversational mem-
ories [31, 61]. Our work shifts the focus from managing histories to
supporting memory reuse. We transform conversational memories
from static text entries into dynamic, interactive objects, Memolets,
enabling users to retrieve, review, and directly manipulate these
memories to express their intentions for reuse.

3 SCENARIO AND DESIGN GUIDELINES
To elucidate the motivations underlying the design of Memolet, we
walkthrough an example scenario of how a programmer interacts
with conversational AI, which presents several key [C]hallenges
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Figure 2: User-AI conversational memories reusing process with four Design Guidelines and Challenges. The first three stages of
memory reuse are derived from the foraging loop within the information sensemaking process [69], outlining the processes of
users seeking information, searching and filtering it, and reading and extracting information. Additionally, we draw inspiration
from knowledge externalization strategies, where users extract, organize, and integrate pieces of information to scaffold the
comprehension process [35]. These stages are further mapped to the knowledge reusing framework [2], which encompasses
capturing and documenting knowledge, packaging and distributing knowledge, and reusing knowledge.

across different stages of memory reusing derived from the theory
of knowledge reusing [2], information foraging [68, 69] and knowl-
edge externalization [56]. Aligning with these challenges, we then
introduce [Design G]uidelines for crafting systems that support
conversational memory reuse (Figure 2).

3.1 Motivating Scenario
Consider a programmer, Alicia, who is asked to preprocess and
visualize a time series dataset. Having worked on the same datasets
before, Alicia aims to leverage past conversationswith generative AI
about data preprocessing and visualization. However, this relevant
information is scattered across numerous previous conversations.

[C1] Extracting Memories without Effective Recall. Alicia
wants to reuse past conversations about time-series data prepro-
cessing. However, she must manually search through multiple con-
versations to find relevant snippets, such as dynamic time warping
(DTW) and seasonal decomposition. Eventually, she finds snip-
pets from various methods but faces the tedious task of repeatedly
copying and pasting them into the current conversation.

[C2] Organizing Memories without Structural Aid. After ex-
tracting memories, Alicia must reinterpret them for reuse [53]. She
might categorize them based on their suitability for specific tasks,
like handling seasonal patterns. However, Alicia is constrained to
structuring the usage of these memories within a small input box.
Without space for organizing memories hampers her to categorize
them according to relevance and fully understand these memories.

[C3] Articulating Memories Usage without Scaffolding. Ali-
cia aims to synthesize results aggregated from various memories
from past conversations. However, expressing her intentions solely
through words poses a challenge. She can only use keywords to
reference the memory and lacks certainty if these keywords will
guide the AI accurately. A single prompt might contain indications
of which memories should be reused, how they should be reused,
and Alicia’s overall expectations for the generation.

[C4] Refining Generation without Control. Alicia may in-
struct the AI to modify, remove, or combine memories from various
sources to refine responses. She might request the AI to “include
the low-pass filter code into the pattern search technique from DTW
and add visualization steps from [Source X]...” However, this ap-
proach is challenging as it requires precise articulation and a clear
understanding of how AI handles these provided contexts. Without
this understanding, Alicia can not discern the reason for an incor-
rect generation or how to rectify it, potentially distracting current
models and impacting future interactions [77].

3.2 [DG1] Interacting with Memories at
Multi-Layers

Overall, Alicia’s process of reusingmemory involves multiple layers
(Layer1-3 in Figure 2). First, she searches and extracts memories
that might be related to her current task (1𝑠𝑡 layer). After extract-
ing relevant memories, she organizes and schematizes them in
a curated space, grouping them according to themes or subtopics
(2𝑛𝑑 layer). Then, she articulates her synthesized thoughts and
insights into natural language prompts for the AI, guiding it in
generating code that matches her intention (3𝑟𝑑 layer). Notice the
3𝑟𝑑 layer involves an iterative process where Alicia must refine
the generation until she is satisfied.

This multi-layered interaction mirrors how humans cognitively
encode and retrievememories from the past. Inspired by theAtkinson-
Shiffrin Model [7] and Baddeley’s Model of Working Memory [76],
we aim to design the interaction with Memolet involving multiple
layers as well, progressing from long-term memory (1𝑠𝑡 layer) to a
central executive space that controls working memories (2𝑛𝑑 layer).
This process is complemented by the episodic buffer (3𝑟𝑑 layer),
serving as a temporary storage that retains integrated memories
from various sources. Next, these extracted Memolets transition to
a curated space, where users can actively organize them based on
their own reinterpretation of how these memories should be reused.
Lastly, we employ the metaphor of an episodic buffer to retain the
results from the curated space, allowing users to apply them in the
input box of the chat and serve as the context for the generative AI.
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Furthermore, we explore several interaction designs to assist users
in navigating through different layers, thereby easing the cognitive
burden of context switching.

3.3 [DG2] Provide Visual Cues to Recall and
Extract Memories

Memory recall is the prime requisite for effectively reusing mem-
ories in future conversations with AI [43]. With the exponential
growth of conversations serving various purposes, it has become
challenging for users to recall where specific conversations are
located and retain the low-level detail of the memory. In the above
scenario, Alicia recalled several memories about time series data pre-
processing thatmight be suitable for reuse. However, the exactmem-
ory may not contain keywords like “dynamic time warping,” but
encapsulated in a function euclidean_distance_matrix(x, y).
Therefore, the design of Memolet should incorporate crucial mem-
ory anchors that facilitate easy recall of memories. Considering that
memories may scattered across various conversations, our design
aims to support users in recalling and extracting memories based on
their semantic meaning, eliminating the need to navigate through
numerous conversations to find relevant memories.

3.4 [DG3] Flexibly Externalizing Users’
Sensemaking Results about Memories

As users extract multiple memories potentially applicable to new
conversations, they encounter the challenge of managing them
cognitively [45, 47]. To mitigate this, our design aims to external-
ize users’ thought process of reusing Memolets, encompassing the
organization and integration of memories from various sources
to align with their reuse intentions. This memory organization
stage aligns with the knowledge externalization strategy steps,
involving selection, organization, and integration [15, 56]. By lever-
aging knowledge externalization strategies, users can record their
thought processes using persistent and manipulable representa-
tions [15, 18, 35]. While various representations can operationalize
this externalization process, graphical representations are more ef-
fective than simple note-taking [70, 80]. Additionally, maintaining
flexibility in representing users’ sensemaking results on memories
is important due to the diversity across tasks and users.

3.5 [DG4] Aligning Users’ Intentions to Reuse
Memories by Direct Manipulation

In considering the intention behind reusing memories with AI
through memory manipulation, we draw from Elizabeth Loftus’
reconstructive memory theory [53]. This theory suggests that mem-
ories are not precise replicas but are reconstructed during recall,
implying that users may reuse memory for various purposes [75].
Consequently, we conceptualize the interaction with a Memolet as
a form of semantic interaction [24, 78]. Here, the manipulation of
Memolets serves to convey how users intend the memories to be
reused. Given the diverse semantic meanings assigned by individ-
ual users, interactions with Memolets should allow users to create,
modify, delete, and integrate memories based on their intentions
to iterate on the generation. For example, when Alicia articulates

prompts to generate code with a specific pipeline that reuses mem-
ories from noise reduction, pattern search, and visualization, she
should be enabled to effectively add and remove memories based on
her current input to AI. Additionally, she should be able to adjust
the usage of memories after validating the generation. For instance,
if the generation does not include the low-pass filter step within
the dynamic time-warping function, she can directly convey the
idea of combining these two memories with ease.

4 SYSTEM DESIGN
Our design process follows a user-centered iterative approach in-
volving four frequent users of AI-driven conversational agents, all
of whom use such systems daily (3 males, 1 female; aged 21-34,
𝑀=26.8, 𝑆𝐷=3.12). Based on feedback, we validate the challenges
and operationalize the design guidelines above. Major iterations
(Appendix A.1), including the integration of latent space into the
linear chat interface, were implemented. However, participants
reported the need to use an external notebook application to exter-
nalize their thoughts. Another low-fidelity prototype revealed that
long-term memory space and sensemaking space should be sepa-
rated, as the memories are interacted with for different purposes.

4.1 Reifying the Reuse of Memory
To support users expressing intentions of memory reusing, we reify
the reuse of user-AI conversational memory as a persistent, interac-
tive, first-class object calledMemolet [10, 27]. AMemolet (Figure 3.C)
represents a piece of past conversations users have had with AI,
which may include one or multiple prompt/response pairs based on
their semantic similarity. Specifically, we encode all conversations
(pairs of prompts/responses) through sentence embedding to cap-
ture semantic similarities between conversations. When aggregat-
ing consecutive prompt/response pairs into a Memolet, considering
both temporal relationships and semantic similarities between them
(Appendix A.2.1). Users can interact with theseMemolets to convey
their intention of reusing memories within their new conversations
with agents [9]. To enable users to flexibly repurpose the usage
of Memolet according to their needs in different scenarios [75],
we unified the design of Memolets, with variations only in colour,
keywords, and icons.

4.2 System Overview and Multi-Layer
Interaction with Memolet [DG1]

In the system, we design the user interaction with Memolet at mul-
tiple layers based on different stages of memory reusing described
in Figure 2. Here, we provide an overview of the system and in-
teractions with Memolet. Detailed techniques applied from natural
language processing (NLP) and information retrieval (IR) in our
implementation will be described in Section 4.6.

According to DG1, we propose a multi-layered approach for
interactingwithMemolets. First, users access a long-termmemory
repository containing Memolets, where they can search and recall
memories using visual cues like keywords and summarizations
(Figure 1.B). Users can select and extract relevant Memolets and
then pass to a curated memory sandbox, serving as a space for
organizing and schematizing them based on users’ interpretations
of how they should be reused (Figure 1.C). Users can move around
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Figure 3: Long-Term Memory Repository. (A) Users can utilize semantic search to find related Memolets; (B) Users can adjust
parameters to re-cluster or modify the bin size of Memolet; (C) Each Memolet is accompanied by visual cues such as icons,
keywords, clustering colors, and summaries; (D) Each Memolet may contain one to many pairs of prompts/responses based on
semantic meaning.

these Memolet and group related memories together based on their
understanding. Lastly, users can reference these curatedMemolets in
the input box when articulating the prompt to converse with agents
(Figure 1.D). The AI-generated content also provides references on
how it used these memories. We refer to these Memolet passed
to the AI as “contexts” in thememory buffer, allowing the user
to adjust their utilization by direct manipulation throughout the
iterative generation process. Users can further refine the generation
by manipulating the Memolets, such as merging, emphasizing, or
adding/removing memories (Figure 1.E).

4.3 Memories Recall and Extraction [Layer1/DG2]

The process of reusing memory begins with the recall of rele-
vant past conversations with the AI. To facilitate memory recall,
we provide various cues to users. Textual summaries are offered
for each conversation utilizing the OpenAI gpt-3.5-turbo (Appen-
dix A.7.4) [62], providing insights into their content and the usage
of specific Memolet (Figure 3.D). We also extract keywords for
individual Memolets and clusters using the TF-IDF vectorization,
highlighting significant terms within the conversations (Figure 3.C).
Additionally, unique IDs are allocated based on their location (e.g.,
ID: 𝑥_𝑦 refers to theMemolet at column 𝑥 and row𝑦). EachMemolet
is assigned a unique icon as well, selected based on the most se-
mantically similar icon to its contained conversations. We achieve
this by utilizing the same Sentence Transformer model for encod-
ing Memolets to encode the name of icons into dense embeddings,
calculating similarity using cosine similarity1. Users can also hover
1The icon data is provided by the Full icon Image Dataset from Kaggle

over conversations to view additional details about their content
via tooltips.

To help users easily understand the holistic view of all memories
across various conversations, we visualize all embedded conversa-
tions within a long-term memory repository by reducing dimen-
sionality via UMAP. By employing sentence embeddings, users
can extract related Memolets effectively since conversations with
similar themes appear adjacent to one another. We further leverage
the K-means algorithm to cluster Memolets based on their content
similarities to colour code these Memolets. For instance, consider a
student named Celine who is planning a trip to Hawaii using our
system. She can extract memories related towater sport by selecting
all coral-coloured Memolets besides a Memolet representing scuba
diving and snorkeling (Figure 3).

Additionally, we include a semantic search feature that allows
users to search for Memolets based on their queries (Figure 3.A). As
users type their query, we dynamically encode it and compute the
cosine similarity against the stored Memolets. Related Memolets are
then highlighted with exact sentences extracted from the original
prompts/responses in the conversations that closely match the
search query. Users can also adjust the binning size of the Memolet,
thereby modifying the threshold to include more or fewer pairs
of prompts/responses within a Memolet (Figure 3.B). This binning
mechanism is a common visualization method for dealing with
large amounts of data points to reduce users’ cognitive load [52].
The long-term memory repository is presented as a toggleable
drawer, and users can navigate between this repository and the
curated memory sandbox via a toggle button (Figure 4.A). When
users add or remove Memolets, an animation displays the newly

5



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Ryan Yen and Jian Zhao

Figure 4: The Curated Memory Sandbox. (A) Users can organize and schematize the extracted Memolets from the repository
based on their own sensemaking results; (B) All movement will be snapped to the active grid; (C) When multiple Memolets get
closer, they will be grouped together; (D) Users can extract Memolets from prompts/responses or selected text.

added or removed Memolets in the curated memory sandbox, while
maintaining their original positions in the repository.

4.4 Memories Organization and
Schematization [Layer2/DG3]

We provide a curated memory sandbox for users to externalize
their sensemaking results of these Memolets extracted from the
long-term memory repository, offloading users’ cognitive load.

Drag & Drop. The sandbox is populated with “active grids”
where Memolets can be positioned, rearranged, and resized. All
interactions with these Memolets will snap to the active grid. For
example, when the user drags a Memolet, the system provides feed-
forward via a shadow to tell the user that the nearest active grid
will snap to it; users can release the mouse and drop it onto that grid
(Figure 4.B). Additionally, users can drop Memolets into a cornered
delete area to remove certain memories.

Grouping Similar Memories. In this curated memory sandbox,
the background is partitioned and coloured according to groups
determined by the similarity of these Memolets using the Voronoi
diagram. For example, if Celine selectsMemolets about tourist spots,
restaurants, and traffic, the background colour will display three
different colours, separating the Memolets. When users drag the
Memolets, the background colour and partition dynamically update.
In Figure 4, Celine is dragging aMemolet6_0 towards anotherMemo-
let9_3, which is indicated by a feedforwarded white border and glow
effect. When Celine drops the Memolet6_0, both Memolets are then
partitioned into another group, indicated by a different background
colour. A summarization of allMemolets in this group is then gener-
ated by GPT-3.5-turbo (Appendix A.7.4) and displayed beside. The

ungrouping mechanism is activated when a Memolet6_0 is dragged
away beyond a threshold from other Memolets, the Memolet6_0 will
automatically be removed from its original group and assigned the
background colour of the original group. This grouping feature is
helpful when Celine wants to create subgroups, such as separating
water sports from tourist spots.

Extracting Memories at Different Granularity. The user can
extract a child Memolet—a pair of prompt/response from a Memolet
(Figure 4, Memolet3_8). Users can drag this child Memolet listed
beside the parent Memolet and then drop it onto any active grid.
Clicking on the Memolet also displays the associated conversation
beside the memory sandbox, allowing users to extract sentences
or code snippets from original prompts/responses to create a new
Memolet. For instance, if Celine clicks on a Memolet6_2 containing
multiple conversations about Hawaii’s tourist spots, she can pick
one childMemolet about the resort and turn it into a newMemolet3_8.
Later, she might want AI to provide the accommodation details in
the resort, so she clicks on Memolet3_8, selects and drags related
text to the sandbox and create a new Memolet3_8-1 (Figure 4.D).

4.5 Generating with Memories [Layer3/DG4]

After organizing Memolets based on users’ interpretation of the
usage of these memories, users can begin usingMemolet as contexts
provided for conversational agents (Figure 5).

Articulating a Prompt with Memories. When sent a prompt,
the system will retrieve related contexts from all memories in the
sandbox for generation (Section 4.6.1). Users can type in “@” and
traverse through the Memolets among the curated space to refer
to them inside the prompt (Figure 5.A). For example, Celine can
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Figure 5: The memory buffer considers the Memolet during generation. (A) Users can refer to Memolets in the sandbox while
articulating prompts; (B) The generated results will cite the Memolet; (C) Users first attempt to refine the generation by
interpolating twoMemolets, deselecting oneMemolet from citations; (D) Users regenerate results by resizing aMemolet to highlight
context contained.

select a Memolet2_8 about accommodation while articulating the
instruction about this memory. She can construct a prompt such as
“adding the accommodation details based on �2_8 at the end of each
day in my trip itinerary.” By referencing these Memolets directly in
prompts, users can directly control the articulation of prompts and
convey how they expect these memories to be used.

Generation with Memory Citations. To facilitate users’ evalu-
ation of whether the AI utilizes the provided memories rather than
hallucinating, the model is instructed to “cite” theseMemolets inside
the generated results (Figure 5.B; Appendix A.7.1); users can hover
over them to see the corresponding Memolet highlighted in the
sandbox. Continuing the previous example, Celine observes that
the generation added accommodation details inside the itinerary,
citing both �2_8 and details of sightseeing spots citing Õ6_3
She clicks on the Õ6_3 and theMemolet6_3 in the sandbox is high-
lighted with a glow effect, indicating that this memory is in the
tourist spots group about a culture center.

Refining Generation through Direct Manipulation. Con-
sider that Celine is dissatisfied with the generated results because
she prefers to add more details about accommodations. Our system
provides a direct way of expressing these adjustments in how mem-
ories should be used by enabling users to manipulate the Memolets.
For instance, Celine can click the regeneration button and remove
Memolet6_3, related to tourist spots, and addMemolet3_8 about hotel
room, and Memolet9_4 that were not originally used in the genera-
tion (Figure 5.C). This selection/deselection instructs the AI to
include or exclude context from these Memolets, giving users more
control over the required memories.

We also provide manipulation such as interpolation, allow-
ing users to combine multiple Memolets to create a new Memolet
that summarizes these memories with different weights. Users can
hold onto the circle control centered at Memolet2_8 and drag a line
towards Memolet3_8, with feedforward showing which Memolet
is being connected before the cursor is dropped. A smaller-sized
Memolet is generated in the middle of the line, and users can drag
it towards connected Memolets to determine the summarization’s
leaning. The model will consider this interpolation and generate
content that combines these memories instead of illustrating them
separately with citations �2_8 �3_8 (Figure 5.C).

Lastly, users can resize the Memolets to convey the importance
of certain memories. For instance, Celine can resize Memolet9_4 to
specify the need to highlight more context about water sports in
the generation. The regenerated results will add a section about
water sports citing 09_4 that related to water activities (Figure 5.D).
These instruction-based generation refinements are accomplished
by adapting the RAG process described in Section 4.6.2.

EncodingNewConversations. After users complete a conversa-
tion session, the system will encode all pairs of prompts/responses
to the long-term memory repository for future use. Users can also
extract text from a response and create a new Memolet during the
conversation, supporting in-session memory reusing.

4.6 System Implementation
We detail retrieval-augmented generation used for both the Baseline
and our system, along with instructed generation for our system,
and the overall system architecture (Figure 12).
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4.6.1 Retrieval Augmented Generation. We employ a retrieval aug-
mented generation (RAG) process to integrate context retrieval
with text generation. The adapted RAG consists of several steps:
generating queries to capture various aspects of the context, retriev-
ing similar context using vector similarity search, fusing retrieved
results using reciprocal rank fusion, determining top-k results based
on fused scores, and utilizing these results as context for the gen-
eration model to ensure the generated responses are grounded in
relevant information [73] (Appendix A.2.2).

4.6.2 Instructed Generation. The “refining generation with manipu-
lation” feature follows most of the steps described above but uses
different prompts to instruct model generation based on the pro-
vided instructions. The system first modifies the user’s prompt
according to the instructions, constructing a new query prompt
that let the AI to extend the user’s question as specified, such as
adding or removing context, highlighting or obscuring context,
or merging context with relative weights (Appendix A.7.2). Con-
texts relevant to the user’s question are then retrieved from the
data store based on the provided instructions and separated into
different sections of the prompt (e.g., Context to add; Context to
highlight) for incorporation into the AI’s response (Appendix A.7.3).
This approach ensures that the response adheres to the instructions
and incorporates the relevant contexts.

4.6.3 System Architecture. Both our system and the Baseline are
implemented in Typescript using the Svelte framework [17]. They
utilize Python as the backend server for handling the RAG process
and Firebase Firestore for event logging. We utilized the state-of-
the-art NLP models (i.e., GPT-4) for generation in both the Baseline
and our system [60]. Additionally, GPT-3.5 is utilized for generating
summarizations when grouping Memolets and generating queries
in the RAG process within our system [59]. Through pilot testing,
we found that GPT-4 could better adhere to users’ instructions
when refining generationwithout repeating responses [3]. However,
our main contribution lies in reifying users’ intentions of reusing
memories and supporting users in interacting with their memories
throughout the reuse process. We do not claim contributions to our
adapted RAG pipeline. As the algorithm advances, we believe this
design of interaction with Memolet will remain applicable.

5 USER STUDY
The system aims to support the comprehensive memory reuse
process by enabling users to interact with the Memolet. To investi-
gate the usefulness of the system for memory reuse, we conducted
a within-subject study and tested its flexibility in three different
scenarios. The study was divided into two phases, with the first
phase requiring participants to perform tasks using an LM-driven
conversational interface. A day later, the same participants were
invited to perform tasks using assigned systems that followed up
the previous task, which required them to reuse the knowledge and
conversations gained from the first phase. The study investigated
four different aspects aligned with four design guidelines:
1. User interactions withMemolet across stages of memory reusing.
2. How users recall and extract memories for reuse.
3. How users organize Memolets to externalize their sensemaking.
4. Alignment of users’ intention of reusing memories with AI.

5.1 Participants
We recruited 12 participants through convenience sampling via
a university email list (7 women and 5 men; age: 21-38, 𝑀=26.67,
𝑆𝐷=4.75). Participants reported frequent use of AI-driven conver-
sational agents (𝑀=5.16, 𝑆𝐷=1.72 days/week) and familiarity with
AI conversational agents (𝑀=4.33, 𝑆𝐷=0.74 on a 5-point scale).
Participants were asked in advance about their familiarity with
programming and expository writing to avoid assigning them to
unfamiliar scenarios (Appendix A.5).

5.2 Scenarios and Tasks
To demonstrate the versatility of Memolet, we selected three dis-
tinct scenarios for participants utilizing AI-driven conversational
agents. Participants engaged in tasks spanning expository writing,
programming, and trip planning (Appendix A.4). Tasks for each
scenario in phase one involved seeking information, synthesizing
a report based on provided context, and providing a comparison
table to compare different options. In phase two, participants were
required to reuse information conversed with agents from phase
one and generate a report, program, or a thorough plan. To mitigate
carry-over effects from learning and order effects, participants were
assigned two different tasks, ensuring counterbalancing such that
they encountered a different task with each condition.

5.3 Phase One Study Setup
To contextualize users’ memory reusing process, participants in
each scenario were assigned identical tasks. The purpose of this
phase is to motivate the user to actively converse with AI to re-
member the context of what is being discussed.

5.3.1 Study Procedure. Participants were required to fill in a con-
sent form and complete a pre-study questionnaire regarding their
demographics before the study. During the study, participants as-
signed to the same scenario were tasked with two different tasks.
They were asked to use our Baseline, similar to ChatGPT (Figure 13),
for each task within 20 minutes. During a total of 20 × 2 = 40 min-
utes, participants freely interacted with the system and wrote the
synthesized report in a Google Doc. They were instructed to think
aloud about their thought processes throughout the session [39].

5.3.2 Collected Conversations. All participants were able to com-
plete the assigned tasks, with a total of 38 conversations (i.e., new
chats created) (𝑀=3.16, 𝑆𝐷=0.98) and 347 pairs or prompts/responses
(𝑀=28.92, 𝑆𝐷=9.54) collected in the first phase.

5.4 Phase Two Study Setup
We compared our system to a Baseline system simulating a standard
conversational agent in a within-subject study design.

5.4.1 Procedure. During the study, each participant used both sys-
tems to conduct the two assigned tasks designed to nudge them to
recall and reuse past conversational memories from the first phase.
To control for individual differences and learning behaviour, we
counterbalanced tasks and conditions to reduce order effects. Each
task lasted 20 minutes, and participants were instructed to think
aloud. Before using our system, participants were given a 5-minute
tutorial and another 5 minutes to explore its features. Following
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the completion of each task, participants were asked to fill out
the same post-study questionnaire. The study concluded with a
20-minute semi-structured interview, bringing the total duration to
approximately 75 minutes. Participants received $35 compensation
for their time.

5.4.2 Baseline System. The Baseline condition utilized a conversa-
tional agent that simulated ChatGPT, which is currently the most
prevalent LLM-driven conversational agent. We developed this
Baseline because the specific methods used by ChatGPT to handle
chat memories remain a black box. To ensure a fair comparison, we
employed the same techniques to handle conversational memories
and used the same prompt and technique for retrieval augmented
generation for both our system and the Baseline. Additionally, we
implemented a semantic search feature on Baseline to provide both
systems with the same starting point, allowing participants to focus
on the subsequent procedure of memory reuse. All user actions,
such as copy/paste, switching chats, scrolling through conversa-
tions in a chat, and writing prompts, were logged for further data
analysis. The detail of the Baseline is in Appendix A.6. We do not
consider the concurrent 2D prompting interfaces (e.g., Grapho-
logue [33]) as a baseline because they mostly focus on exploring
AI outputs in a two-dimensional space, whereas our study focuses
on past memories for contextualizing AI’s input.

5.4.3 Measures. Usability was measured using the UMUX-LITE
scale, which is directly related to the SUS score [40], and the NASA-
TLX scale for perceived cognitive load [29] (Appendix A.3.1). Utility
was measured using self-defined Likert scale items (Appendix A.3.3).
Both systems logged various types of events based on participants’
interactions during the study, including written prompts.

5.4.4 Data Analysis. We transcribed the think-aloud data and post-
study interviews for all participants by Otter.ai [1]. Subsequently,
we analyzed these transcriptions using reflexive thematic analy-
sis [12]. Our approach combined inductive and deductive methods
to identify codes and themes, with a particular emphasis on par-
ticipants’ interactions with Memolet across stages of the memory
reusing process. We conducted statistical analysis on the compara-
tive survey data by comparing responses between the Baseline and
Memolet conditions using the Wilcoxon signed-rank test, given the
ordinal nature of Likert-scale responses and the small sample size.
In the upcoming sections, we will present the results in the follow-
ing format: for questionnaire data, (Qquestion #: MedianMemolet vs.
MedianBaseline , 𝑝=𝑝-value, 𝑟=effect size), and for other quantities,
(Mean/MedianMemolet vs. Mean/MedianBaseline , 𝑝=𝑝-value). Addi-
tionally, prompts collected from the system log were categorized by
whether or not referred to past memories and the type of prompt
(Figure 9). Two researchers coded the data collaboratively, achiev-
ing an initial inter-coder agreement of 92%, which was iteratively
refined to 100%.

6 FINDINGS
In this section, we present findings from our analysis of participants’
survey responses, think-aloud protocols, interviews, and system
usage logs. Our overarching goal was to explore how users inter-
act with Memolet during the memory reuse process, methods of

recalling and extracting memories, organization of Memolets to ex-
ternalize their thought process, and alignment of users’ intentions
of reusing memories with AI.

6.1 Overall Usage of Memolet in
Memory-Reusing Process

Participants were able to complete all assigned tasks in both con-
ditions without a significant difference in task completion time
(𝑀𝑀=12.62 min vs.𝑀𝐵=14.37 min, 𝑝=0.072).

Our system supports different stages of memory-reusing process.
The average system usability scores computed from UMUX-LITE
were significantly greater (𝑝 = .003) for our system (Mdn = 91.67),
compared to the Baseline (Mdn = 41.67). Participants consistently
reported significantly better results with our system on all sub-
jective metrics (Figure 6) from searching memory (Q7:𝑀𝑑𝑛𝑀=4.5
vs.𝑀𝑑𝑛𝐵=2.5, 𝑝=0.0023, 𝑟=0.204), extracting related memories (Q8:
𝑀𝑑𝑛𝑀=4.0 vs. 𝑀𝑑𝑛𝐵=2.5, 𝑝=0.0021, 𝑟=0.204), organizing memo-
ries (Q9: 𝑀𝑑𝑛𝑀=4.5 vs. 𝑀𝑑𝑛𝐵=2.0, 𝑝=0.002, 𝑟=0.204), articulat-
ing prompts to specify how the memories should be reused (Q10:
𝑀𝑑𝑛𝑀=5.0 vs. 𝑀𝑑𝑛𝐵=2.5, 𝑝=0.005, 𝑟=0.541), to refining genera-
tion which contained memories (Q11: 𝑀𝑑𝑛𝑀=5.0 vs. 𝑀𝑑𝑛𝐵=3.0,
𝑝=0.0032, 𝑟=0.353).

Participants recall and extract memories first before conversing
with AI. Based on the observations in Figure 7, participants using
our system tended to extract memories first and then engage in
conversation with the AI in relatively later stages, whereas with
Baseline, participants tended to extract memories later in the pro-
cess. P2 explained, “I initially trusted that ChatGPT [Baseline] can
remember my memories if I am continuing on the same chat, but it
turns out not.” Other participants mentioned similar reasons, such
as feeling the need to extract related memories after “cannot validate
the generation” [p3] and “if AI could not understand what memories
refer to” [p8], as it required too much effort to “find related mem-
ories to reuse” [p10]. Most participants (N=10) felt that our system
reminded and assisted them in extracting and organizing memo-
ries, which proved it helpful when articulating prompts and further
evaluating and refining the generated results.

Using our system helps focus on participants’ current tasks. Over-
all, participants had more conversations using Baseline compared
to that using our system (𝑀𝑑𝑛𝑀=26.0 vs. 𝑀𝑑𝑛𝐵= 10.5, 𝑝=0.0049,
𝑟=0.309). To understand the reason, we further analyzed both prompts
and generated results, schematizing them based on participants’
types of prompts. From Figure 9, we observed that 82% of prompts
from the Baseline referred back to memory, where participants
primarily aimed to summarize multiple memories (26%), acquire
more detailed information about memories (28%), and clarify their
prompts (20%). We found that most prompts in the Baseline were
about ‘get info’, which included finding related memories by con-
versation, validating if the generation correctly attributes to mem-
ories, and acquiring what memories Baseline remembers. We also
observed that participants using Baseline tended to start from sum-
marizing, aggregating, and getting information about the memo-
ries by continuing on their previous chats. Most participants (N=9)
preferred this approach due to concerns about feeling “lost while
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strongly disagree strongly agree

Mean difference & 95% CI

Figure 6: Participants’ responses when rating the 5-point self-defined Likert scale questionnaire for both our Baseline and our
system. Dots represent the mean differences of our system compared to the Baseline. Bars indicate the 95% CI calculated using
the studentized bootstrap method.

Figure 7: Distribution of logged events across normalized time aggregated by 12 participants, comparing the Baseline and our
system. The graph indicates an increase in conversations (with AI) during the later stages of the study for our system, with
participants extracting more in the early stage compared to the Baseline.

scrolling up and down” [p4] and “copying and pasting previous con-
versations into the current chat” [p10]. While using our system, par-
ticipants tended to provide prompts that move on to the ‘next step’
toward the goal of the task (29%). Participants explained that us-
ing our system helped “not wasting the time on engineering the
prompt” [p2] or “ask GPT [AI] to clarify where the memories came
from.” [p7]

6.2 Recalling and Extracting Memories
Participants recalled the holistic view of memories (Q4:𝑀𝑑𝑛𝑀=4.5
vs.𝑀𝑑𝑛𝐵=2.0, 𝑝=0.0031, 𝑟=0.352) as well as the use of single mem-
ory more easily using our system than those with the Baseline (Q3:
𝑀𝑑𝑛𝑀=5.0 vs.𝑀𝑑𝑛𝐵=2.0, 𝑝=0.0031, 𝑟=0.353).

Our system assists them to recall what the memory was. Most
participants (N=10) expressed that our system helped them recall
memories throughout the stages of reusing, including through key-
words, summarization, clustering, and grouping mechanisms. P2
elaborated that elaborated that Memolet and the clustering better
helped recall the context compared to the “scrolling and reading
text-heavy conversations in ChatGPT [Baseline].” However, two par-
ticipants mentioned that the Baseline could help them recall a single

memory better because the way they encoded the memory in the
phase one study was the same as they decoded it when using Base-
line in phase two. Despite this, theymentioned themost challenging
aspect is locating a single memory across numerous conversations.
Without a latent space for them to explore and recall, participants
using the Baseline indicated that the semantic search function was
inadequate because they sometimes could not recall any keywords.

Extracting memories using our system is easy. While there is no
significant difference in terms of the amount of extraction com-
paring the two conditions (see Figure 8), participants overall find
using our system to extract needed memories easier and more in-
tuitive (see Figure 6, Q8). The representations of Memolet in the
long-termmemory repository also make it easier for them to extract
“memories that are similar” [p12]. The clustering helps participants
understand “whether enough context has been extracted to tailor
to the current need” [p11]. Participants mentioned that when they
reused the same context multiple times, it becomes cumbersome in
Baseline where they decide not to create new chats but extend their
prior conversations. However, this approach hinders them when
they need to “synthesize results from multiple different sources” [p8].
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Refer to 
Memory? 
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Prompt Category 
(%)

baseline

Memolet
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Memolet Figure 8: Distribution of system log events comparing the Baseline System and
our system. Black dots represent means, and the bars denote 95% CI.
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Memolet
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Memolet

Figure 9: Left: Whether prompts referring to
memory. Right: Categories of prompts.

Focusing on the gist and reinterpret the Memolet during extrac-
tion. Several participants (N=7) preferred how our system presents
memories in the long-term memory repository, which they found
intuitive when finding related memories for new interactions with
the AI. We noticed that participants were more focused on the
high-level gist about each memory provided by Memolets when
providing the context for AI, rather than the low-level details of
the content. P1 highlighted the usefulness of keywords onMemolet,
stating that “the keywords are enough to recall without the need to
look into the original conversation.” Additionally, participants using
our system tended to reinterpret memories based on their current
needs due to the unified design of Memolets. P6 explained, “I can
reuse the same Memolet for different purposes since it might provide
context for different prompts in different ways.”

6.3 Externalizing Users’ Sensemaking Results to
Lower the Cognitive Load

We used NASA-TLX to measure the perceived workload. Com-
pared to Baseline, our system required lower mental (𝑀𝑑𝑛𝑀=2.5 vs.
𝑀𝑑𝑛𝐵=5.5, 𝑝=0.020), physical (𝑀𝑑𝑛𝑀=2.0 vs. 𝑀𝑑𝑛𝐵=3.0, 𝑝=0.05),
and temporal (𝑀𝑑𝑛𝑀=2.0 vs.𝑀𝑑𝑛𝐵=5.0, 𝑝=0.002) demand, required
less effort (𝑀𝑑𝑛𝑀=2.5 vs. 𝑀𝑑𝑛𝐵=5.0, 𝑝=0.002), and led to better
performance (𝑀𝑑𝑛𝑀=6.0 vs.𝑀𝑑𝑛𝐵=4.0, 𝑝=0.002) and statistically
significantly less frustration (𝑀𝑑𝑛𝑀=1.0 vs. 𝑀𝑑𝑛𝐵=3.5, 𝑝=0.032).
The overall perceived workload, obtained by averaging all six raw
NASA-TLX scores, was also lower for our system compared to that
for Baseline (𝑀𝑑𝑛𝑀=2.083 vs.𝑀𝑑𝑛𝐵=4.16, 𝑝=0.002).

Organizing Memolets helps planning their next step. Participants
utilized the curated memory sandbox for various purposes. Most
participants (N=7) used it to externalize their sense-making results
of Memolet and its corresponding memories. P6 and P7 used this
space to recall memories; P3, P5, and P10 used it to plan for the
next step and how to approach the task. P10 also mentioned that
organizing these Memolet helped to identify what context was
still needed, for example, “I just found that I haven’t planned for
emergencies.” In contrast, most participants (N=9) using Baseline
expressed difficulties organizing memories within the input box.
Some participants (N=4) also requested to use Google Docs to record

their copied text before sending it for generation. P11 mentioned
that “when finding related memories, I do not have enough bandwidth
to think about what I have extracted already.”

Our system reduces the need for context switching. From Fig-
ure 8, we observed that participants navigated (i.e., going back
to prior conversations) significantly less when using our system
(𝑀𝑑𝑛𝑀=9.0 vs. 𝑀𝑑𝑛𝐵=17.0, 𝑝=0.031). Participants also reported
that context switching in our system required lower mental de-
mand (Q12:𝑀𝑑𝑛𝑀=4.0 vs.𝑀𝑑𝑛𝐵=2.5, 𝑝=0.006, 𝑟=0.61). This reduc-
tion in context switching can be attributed to several factors: firstly,
the visual cues designed for Memolet required participants to recall
from conversations; secondly, participants possessed more trust in
our system, eliminating the need to validate results from original
conversations; and lastly, they could extract all required Memolets
at once without going back and forth when writing new prompts.

6.4 Aligning Users’ Memory Reuse Intention
Participants reported a significantly better understanding of how
AI reused the provided memories (Q5: 𝑀𝑑𝑛𝑀=5.0 vs. 𝑀𝑑𝑛𝐵=2.0,
𝑝=0.003, 𝑟=0.35) and higher satisfaction with the generation re-
sults (Q6:𝑀𝑑𝑛𝑀=4.5 vs.𝑀𝑑𝑛𝐵=3.0, 𝑝=0.003, 𝑟=0.35) from our sys-
tem compared to those from the Baseline.

Using our system requires less prompt engineering and articulate
more precise prompt. All participants noted that using our system
required less prompt engineering than using Baseline. We observed
from Figure 9 that participants required more ‘clarification’ (20%
among all prompts) when using Baseline compared to using our
system (2%). This indicates that participants had to clarify their
intentions to the AI more frequently when using Baseline. One
reason cited was that participants could refer to and select/deselect
memories with control, allowing them to “understand what context
[memories] were provided”p8. P1 mentioned that the generation pro-
cess tended to “understand what to do based on my [their] provided
context [memories].” These mechanisms also provide users more
control in defining the scope of memory reused. Another advan-
tageous feature mentioned was the use of ‘@’, which referred to
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specific Memolets participants preferred to use. For instance, P6 uti-
lized this feature extensively, stating that “the generation would not
hallucinate and stick to my provided Memolets.” This feature helped
participants express their intentions clearly, leading to “more pre-
cise answers using memories correctly although it can serve multiple
purposes” [p11].

Refining generated results by manipulating Memolet is intuitive.
All participants attempted to regenerate results by manipulating the
citedMemolets at a later stage of the study (see Figure 7). They found
the manipulation, including add/remove, interpolate, and resize
Memolets, to be “intuitive” and “convey their intention without the
need for writing prompts” [p11]. Some participants (N=3) mentioned
that these manipulation features helped “disambiguate” [p3] the
AI and “enhance the explainability” [p11] since they progressively
match their intention with AI’s understanding. Participants using
Baseline expressed frustration when attempting to rectify errors, as
they did not know “how to specify the required changes”p6.

Our system enhances the controllability over the generation. Most
participants (N=10) reported that the AI-generated results not only
better aligned with their intentions but also provided them with
more control over the generation process itself (Q2:𝑀𝑑𝑛𝑀=5.0 vs.
𝑀𝑑𝑛𝐵=2.0, 𝑝=0.002, 𝑟=0.34). All participants expressed that the cita-
tion included in the generation and the direct reference (i.e., ‘@’) to
the Memolet helped them evaluate “whether the generation followed
their instruction clearly” [p2]. P7 further explained that the visual
representation of memory (i.e., Memolet) provided the feedback on
what they were trying to reuse the memories, “I know that when I
interpolated two memories together, the generated results will combine
them.” In comparison to Baseline, participants expressed the loss
of control when the generation does not match their intention and
did not know “how to repair from the failure” [p6].

Users develop custom memory reusing strategies through interac-
tion with Memolet. Compared with the Baseline, participants were
able to guide our system more effectively towards the goal of their
task (Q1:𝑀𝑑𝑛𝑀=5.0 vs.𝑀𝑑𝑛𝐵=3.0, 𝑝=0.003, 𝑟=0.35). P12 explained
that the curated sandbox provided a canvas to express their own
“strategy of how to reuse them [Memolet],” enabling them to steer
the system towards their goal based on their plan. We observed
that some participants (N=4) carefully planned their approach to
synthesizing the report while organizing Memolets in the sandbox.
Figure 10 demonstrates how P1 and P3 organized Memolets in the
sandbox to synthesize their final report for the task. P10 elaborated
on the reason for spending time organizing the curated space: to
understand what “memories are needed or not being covered before.”
By doing so, participants can control their own strategy of memory
reusing towards their goal, “step by step” [p2].

7 DISCUSSION
We discuss the trade-off between the need for sensemaking spaces
and designing spatial effects, the differences between tasks, the
balance between trust and over-reliance, and the applicability of
our concepts to media other than conversational memory.

7.1 The Design of Space
Two participants mentioned that the curated space might not be
necessary for them when not many contexts need to be reused;
however, they indicated that organization “still happens, but in my
mind.” [P3]. We acknowledge that the current system is a proof-of-
concept prototype designed to support stages of interacting with
Memolet. Further studies are needed to understand its applicability
to tasks that may not be knowledge-intensive. In such cases, the
need for externalizing sensemaking results may be less critical,
as we discovered that participants sometimes organize memories
within the input box. Nonetheless, we argue for the necessity of the
sensemaking space to reduce cognitive load, organize information,
and carry information across stages of information seeking [65, 81].

7.2 Scenarios and Tasks
The inclusion of three different scenarios is not meant for com-
parison but rather to demonstrate the flexibility of the concept
of Memolet. However, interesting insights have arisen due to the
distinct nature of these scenarios. For instance, participants in sce-
nario three (i.e., trip planning) tend to refer to memories in prompts
less frequently (37.5%) compared to the other two scenarios (60%,
68.6%) when using our system. This might be attributed to the fact
that less factual accuracy is required for trip planning compared
to expository writing and programming scenarios. We also noted
that participants in the first two scenarios navigated back to the
original conversations more frequently. They required more de-
tailed information rather than just the overall gist of each Memolet.
Nonetheless, participants in scenario three still reused memories to
“reduce the time required to look for history [memories]” [P10]. There
is also no significant difference among subjective self-defined ques-
tionnaire questions across the three scenarios after conducting a
one-way ANOVA test (𝑝=0.12).

7.3 Trust and Overreliance
Some participants (N=5) reported in the interview that they trusted
the generation from our system more, because of the alignment of
generated results to their intention of memory reuse. However, two
participants placed excessive trust in the system, as evidenced by
P6’s stress upon discovering missing conversations not covered in
phase one (e.g., the web-augmented generation) and the need for
organizing Memolets in the sandbox. P6 explained, “I kinda panic
when found that I did not have that memory to reach the goal [in
phase two] and had to put down my current work first.” Similarly, we
observed that many participants N=8 tended to skip the validation
(i.e., click on the references) in the later stage of conversations. Al-
though this might be attributed to that they already grasp what that
Memolet is for, P2 explained, “I found the system understands me all
the time, so I skip the validation part.” This further raises the concern
if the generation cited Memolets but still hallucinates. Future im-
provement can adopt techniques such as automatic evaluation [95]
and explain the AI-generated results.

7.4 Polymorphism and Reuse of the Memolet
Further, Memolet represents the reification of how users reuse con-
versational memories, embedding a concept that can exhibit poly-
morphism and be repurposed to various types of memories [10]. For
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Figure 10: The examples of participants’ curated memory sandbox after organizing and manipulating Memolets. The arrow
indicates the order in which they synthesized their report.

instance, it could be reused to accommodate the embedded text of a
corpus of papers’ abstracts in a scholarly setting, enabling scholars
to ideate and engage in expository writing [4]. Similarly, it could
be utilized in programmers’ codebases, facilitating exploratory pro-
gramming [34, 42]. Within our system, we also exemplify this con-
cept’s reuse by empowering users to transform extracted text from
documents or ongoing conversations into new Memolets. Users
could manipulate those Memolets using the same concept of ex-
pressing their intentions of memory reuse. We believe that future
designs can provide users with more customized features based on
their own datasets.

8 LIMITATIONS AND FUTUREWORK
To contextualize the results, we designed three knowledge-intensive
tasks that required participants to reuse the memory they acquired
in phase one. However, we did not assess whether our system
performs equally well in real-world scenarios where tasks are more
varied. For instance, our systemmight not be useful for tasks that do
not prioritize context, such as rewriting or grammar fixing, or tasks
where only the prompt template matters, such as image generation.
Future designs could consider the variations between tasks and
validate the usefulness of reusing the concept ofMemolet in specific
scenarios. Furthermore, our study was divided into two phases with
a one-day gap in between, during which participants might recall
memories not solely based on the visual cues provided by Memolet.
Future studies could extend to long-term deployment studies to
understand the effectiveness of our system as memory degradation
occurs over time. Additionally, the current memory reusing process
described in Figure 2 was synthesized from existing knowledge
in externalization, information foraging, and information reusing
theory or frameworks. Future work could build upon our research
by further investigating the validity of this memory-reusing process,
which might vary over time, such as differences observed with long-
term usage.

In terms of system design, we believe future work could extend
the memory-reusing concept beyond conversational interfaces. For
example, it could be integrated into in-IDE code generation [91]
or in-document text generation. This notion involves a trade-off
between the need for sensemaking spaces and the design for space
effectiveness as previously discussed in Section 7.1. We anticipate

the future design could be condensed and minimal, allowing users
to utilize it as an extension for reusing memories while retaining
the concept of organization and manipulation of Memolet when
needed. While our evaluation used relatively small datasets to con-
textualize results, Memolet is designed to handle larger data. Key
features include merging and extracting memories across different
granularities; dynamic sizing of text and Memolet squares based
on data volume; and adjustable binning to change the amount of
data in a single bin (Figure 3b), proven effective for conveying both
global patterns and local features in literature and production sys-
tems [52, 86]. These mechanisms, along with semantic search and
zooming/panning, support users in exploring larger datasets. How-
ever, issues such as text overlap can potentially be addressed using
text exclusion techniques from [36]. Lastly, we acknowledge the
importance of privacy concerns, which were not the main focus of
this paper. Future deployment of these memory management tools
should consider techniques such as data encryption, access con-
trol, and data anonymization, which are being studied in software
development.

9 CONCLUSION
In this paper, we explore novel ways of interacting with memories
from past conversations with generative AI. We propose a memory-
reusing process and four design guidelines derived from prior theo-
ries. We introduce Memolet as a reification of ‘memory reusing’ for
users to manipulate their conversation memories with AI directly.
We demonstrate Memolet’s utility across multiple memory-reusing
stages with a novel system and evaluate its effectiveness through
a two-phase study. Our findings suggest improved memory recall,
reduced cognitive load, and enhanced control over the generative
process. We believe Memolet offers valuable insights for enabling
the intuitive and controlled reuse of conversational memories.
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A APPENDIX
A.1 Design Iterations

(a) first iteration using scatter plot

(b) low fidelity prototype of the second iteration

Figure 11: Our system design process underwent several iter-
ations based on feedback from four participants.

A.2 System Implementation Detail
A.2.1 Combining Consecutive Pairs of Prompts/Responses. To de-
termine when to merge two consecutive conversations, we define a
threshold 𝜏 based on the distribution of semantic similarity scores.
This threshold governs whether to combine consecutive conversa-
tions into a single data point, ensuring that the merging process cap-
tures meaningful semantic similarities while avoiding the fusion of
unrelated conversations. The equation for calculating the threshold
𝜏 is 𝜏 = percentile(𝑆 (𝑅𝑖 , 𝑅𝑖+1), 𝑝), where percentile(𝑆 (𝑅𝑖 , 𝑅𝑖+1), 𝑝)
denotes the 𝑝𝑡ℎ percentile of the distribution of semantic simi-
larity scores between consecutive conversations, allowing for a
data-driven determination of the threshold 𝜏 .

A.2.2 Adapted RAG. The steps involved in our adapted RAG are
as follows:
1. Generate Queries: Based on the user’s input, multiple related

queries are generated to capture various aspects of the context.
2. Retrieve Similar Context: Using a vector similarity search, sim-

ilar context is retrieved based on the generated queries. This
step aims to identify relevant information that can enrich the
response generation process.

similarity(q, d) = q_embedding · d_embedding
∥q_embedding∥ · ∥d_embedding∥

Figure 12: The implementation of adopted RAG for the gen-
eration with memories.

where 𝑑 is the document and 𝑞 is the user’s query.
3. Reciprocal Rank Fusion: The retrieved results are fused using

the reciprocal rank fusion algorithm [73]. We aggregate the rele-
vance scores of search results acrossmultiple queries, prioritizing
documents that are consistently highly ranked.

RRF_score(𝑑) =
𝑄∑︁
𝑞=1

1
rank(𝑑, 𝑞) + 𝑘

- 𝑑 is the document
- 𝑄 is the total number of queries
- rank(𝑑, 𝑞) is the rank of document 𝑑 in response to query 𝑞
- 𝑘 is a constant to mitigate the effect of small reciprocal ranks

4. Determine Top-k Results: The top-k results are determined based
on the fused scores. This step selects a subset of the most rele-
vant context for further processing. It determines the number of
top results to select, considering the distribution of scores and
identifying a suitable threshold.

𝑘 = next (𝑖 | diff > threshold)
- diff represents the differences between consecutive scores
- threshold is the standard deviation of the differences multi-
plied by 0.8, determining the cutoff point

5. Utilize Retrieved Context for Generation: The selected top-k
results are provided as context for the generation model, in-
forming the generation process and ensuring that the generated
responses are grounded in relevant information.

A.2.3 Architecture.

A.3 Questionnaire
Below we list the questions we used in the evaluation study ques-
tionnaire.

A.3.1 UMUX-LITE.

1. This system’s capabilities meet my requirements.
2. This system is easy to use.
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A.3.2 NASA-TLX.

1. How mentally demanding was the task?
2. How physically demanding was the task?
3. How hurried or rushed was the pace of the task?
4. How successful were you in accomplishing what you were asked

to do?
5. How hard did you have to work to accomplish your level of

performance?
6. How insecure, discouraged, irritated, stressed, and annoyed were

you?

A.3.3 Self-Defined Likert Scale Items.

1. I had a good understanding of why the system generates such
results.

2. I could steer the system toward the task goal.
3. I had more control when managing the output of the AI.
4. I can recall what the memory is about easily.
5. I have a holistic understanding of all my memories.
6. I can see how the AI is using my memories.
7. I am satisfied with the overall suggestions from the system.
8. Finding related memory to reuse is easy.
9. Extracting needed context from memory is easy.
10. Organizing and schematizing memories is easy.
11. Specifying how the memory should be reused is easy.
12. Refinement and iteration of the generated results is easy.
13. Switching between searching memory, providing memory for

AI, and chatting required low mental demand

A.4 Study Scenarios and Tasks
A.4.1 Scenario 1 (Expository Writing)—Phase One.

Task 1 (20min). You are provided with four articles talking about
education and children’s cognitive development, you may copy the
content to the chatGPT for reading quickly, and you can also ask
GPT to provide more opinions on this topic. You need to write a
paragraph ( 100 words) to demonstrate your understanding of these
4 articles.
• Showing emotional feeling on disparity of education: Strategies
in Class Differences in Child Rearing-Are on the Rise

• Importance of Educational Games for Cognitive Development of
Children

• Nurturing Creativity & Imagination for Child Development
• Power of Play

Task 2 (20min): Now you are provided with four articles talking
about physical exercise and brain development, you may copy the
content to the chatGPT for reading quickly, and you can also ask
GPT to provide more opinions on this topic. You need to write a
paragraph ( 100 words) to demonstrate your understanding of these
4 articles.
• 10 Benefits of Exercise on The Brain and Body — Why You Need
Exercise

• How Exercise Protects Your Brain’s Health
• 5 Ways To Improve Your Brain Health and Lower Your Risk of
Alzheimer’s

• Is exercise actually good for the brain?

A.4.2 Scenario 1 (Expository Writing)—Phase Two.
• Condition A: Now, write a report based on all provided articles
on “the effect of physical exercise on education” which should
be no less than 5 paragraphs.

• Condition B: Now, write a report based on all provided articles on
“the effect of games on children’s cognitive development” which
should be no less than 5 paragraphs.

A.4.3 Scenario 2 (Programming)—Phase One.

Task 1 (20 min): You are developing a system that enables users
to perform semantic searches in a corpus of summaries of ACL
by entering search queries. We provide you with several different
approaches, and your task is to find the best pipelines for accom-
plishing this task and provide how to implement these pipelines
using Python code.
• Semantic Search
• Build a semantic search engine in Python
• Document Embedding Techniques

Task 2(20 min): You are now trying to find a way to prompt GPT
to generate results without hallucinating. There are various process-
ing methods available and you need to discuss and understand them
in depth. You need to generate a comparison table that reports the
techniques, algorithms/methods, advantages, disadvantages, and
how you can roughly implement a simple generation pipeline.
• Advanced Prompt Engineering for Reducing Hallucination
• Retrieval-Augmented Generation (RAG) from basics to advanced
• Advanced Retrieval-Augmented Generation: From Theory to
LlamaIndex Implementation

• GPT-4 Enhanced with Real-Time Web Browsing
• ReAct Prompting

A.4.4 Scenario 2 (Programming)—Phase Two.
• Condition A: You now need to build a retrieval enhancement
generation pipeline to help programmers solve problems by re-
trieving through a large code base.

• Condition B: You need to write Python code that enables a user
to ask a question about a PDF from the web, the user can type
in the question and the system will search the web for relevant
PDFs and display the extracted relevant sentences.

A.4.5 Scenario 3 (Trip Planning)—Phase One.

Task 1 (20 min): Engage in a conversation with GPT to gather
information about Hawaii, including details about scenes, weather,
visa requirements, and more.

Task 1 (20 min): Chat with GPT to arrange accommodation,
tourist spots, activities, transportation, and other aspects, and syn-
thesize a table comparing different approaches.

A.4.6 Scenario 3 (Trip Planning)—Phase Two.
• Condition A: Come up with a five-day travel plan, including the
spots plan to visit

• Condition B: Come up with transportation and hotel arrange-
ments for a five-day round trip from Boston to Hawaii
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A.5 Demographic Table
Participants included graduate students, research scientists, software engineers, and university students, with reported usage of AI-driven
conversational agents for various tasks such as writing emails (4), reports (8), academic papers (8), coding (10), ideation (4), general question
answering (12), and information seeking (8).

Gender Age Education ChatGPT Familarity ChatGPT Usage Python Experience Writing Experience

Men 5 20-29 9 Bachelor 4 Extremely 6 2 times/ week 1 Extremely 3 Extremely 4
Women 7 30-39 3 Master 6 Moderately 4 3 times/ week 1 Moderately 2 Moderately 3

Doctoral 1 Somewhat 2 4 times/ week 3 Somewhat 3 Somewhat 4
Professional 1 Slightly 5 times/ week 2 Slightly 1 Slightly 1

Not at All 7 times/ week 5 Not at All 3 Not at All 0

A.6 Baseline Design

Figure 13: Our adopted Baseline, resembling the current prevalent AI-driven conversational agent ChatGPT, allows users to
semantically search related context (A) and switch or create new conversations (B). To ensure a fair comparison with our system,
we adopted the same iterative conversational history summarization methods (C) and the retrieval augmented generation
approach (D). The generation is powered by the latest large language model, GPT-4 [60].

A.7 Prompt Template
A.7.1 Prompt for Retrieval Augmented Generation.
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You are a large language AI assistant helping users to complete tasks or answer questions.

You are given a user question or prompt, and please write a clean, concise and accurate answer
to the question or conduct the task. You will be given a set of related contexts to the question or
prompt, each starting with a reference number like [[citation:x_x]], where x_x is a referenced number.
Please use the context and cite the context at the end of each sentence if related.

Your answer must be correct, accurate and written by an expert using an unbiased and profes-
sional tone. Please limit to 1024 tokens. If users prompt for a task, complete the quest asked by users
with related citations. and if the given prompt contains a citation, please complete the task based on
the context from that citation and cite the context at the end sentence using information from that
context.

Please cite the contexts with the reference numbers, in the format [citation:x_x] (for example:
6_8 => [citation: 6_8]). If a sentence comes from multiple contexts, please list all applicable
citations, like [citation:3_2][citation:5_1]. Other than code and specific names and citations, your
answer must be written in the same language as the question.

Here is the set of contexts: [context]

Remember, don’t blindly repeat the contexts verbatim. And here is the user question or prompt:

A.7.2 modify query with instructions.
You are a large language AI assistant. You are given a user question, and please rewrite the given
question based on the instructions. Your modified question must be written in the same language as the
user’s question.

The user might provide several instructions to modify the question, such as: (1) ADD_CONTEXT:
where all these contexts are needed to be included to answer users’ questions; (2) REMOVE_CONTEXT:
where the context should not be included in the answer; (3) HIGHLIGHT_CONTEXT: where the context should
be included MORE PROMINENTLY in the answer; (4) OBSCURE_CONTEXT: where the context should be included
LESS PROMINENTLY in the answer; (5) GROUP_CONTEXT: where the context should be included in the same
sentence and cited together. (6) GENERAL_CONTEXT: cite the context if applicable.

You have to extend the user question based on the given instructions. For example, if the user
question is "What are citations 6_1 and 6_2 about?" The instructions are: 1. ADD_CONTEXT: 6_3, 6_4 2.
REMOVE_CONTEXT: 6_2 3. HIGHLIGHT_CONTEXT: 6_1 4. GROUP_CONTEXT: 6_1, 6_3; 3_2, 3_1

Reasoning:
The user question is asking context about 6_1 and 6_2
user wants to remove 6_2 and add 6_3 and 6_4
user wants to highlight 6_1
user wants to group 6_1 and 6_3 together
user wants to group 3_2 and 3_1 together

The example output should mention citation by [[citation: x_x]]: “What are citations [[citation:
6_1], [[citation: 6_3]], [[citation: 6_4]] about. Highlight more context from citation [[citation:
6_1]], remove [[citation: 6_2]] and merge the context from [[citation: 6_1]] and [[citation: 6_3]]
together. Also, merge the context from [[citation: 3_2]] and [[citation: 3_1]] together.”

Here are the users’ instructions: {instructions}

And here is the user question:

A.7.3 instructed rag prompt.
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You are a large language AI assistant. You are given a user question, and please write a clean, concise
and accurate answer to the question. You will be given a set of related contexts to the question, each
starting with a reference number like [[citation:x_x]], where x_x is a referenced number. Please use
the context and cite the context at the end of each sentence if applicable.

Your answer must be correct, accurate and written by an expert using an unbiased and professional tone.
Do not give any information that is not related to the question, and do not repeat. Say ïnformation
is missing onf̈ollowed by the related topic, if the given context does not provide sufficient information.

Please cite the contexts with the reference numbers, in the format [citation:x_x]. If a sentence comes
from multiple contexts, please list all applicable citations, like [citation:3_2][citation:5_9]. Other
than code and specific names and citations, your answer must be written in the same language as the
question.

There are six types of contexts with instructions:
(1) ADD_CONTEXT: where all these contexts are needed to be included to answer users’ questions;
(2) REMOVE_CONTEXT: where the context should not be included in the answer;
(3) HIGHLIGHT_CONTEXT: where the context should be included MORE PROMINENTLY in the answer;
(4) OBSCURE_CONTEXT: where the context should be included LESS PROMINENTLY in the answer;
(5) GROUP_CONTEXT: where the context should be included in the same sentence and cited together.
(6) GENERAL_CONTEXT: cite the context if applicable.

Please answer the user question strictly based on the given context and the instructions.

ADD_CONTEXT: {add_context}

REMOVE_CONTEXT: {remove_context}

HIGHLIGHT_CONTEXT: {highlight_context}

OBSCURE_CONTEXT: {obscure_context}

GROUP_CONTEXT: {group_context}

GENERA_CONTEXT: {general_context}

Remember, don’t blindly repeat the contexts verbatim, CITE the contexts, and DO NOT MISS ANY
INSTRUCTIONS! And here is the user question:

A.7.4 summarize prompt. This prompt summarizes all the context within a Memolet and also serves as a summary for grouped Memolets
during organization.

You are a large language AI assistant that describes what are the main points of the given con-
texts. You will be given a set of contexts from past conversations between users and AI, please
reason the usages of each context and aggregate them concisely. Start with: "These memories are re-
lated to the following topics:" and list the topics that are related to the contexts extremely concisely.

Related Contexts: {context}

A.7.5 summarize chat history prompt. This prompt summarizes the conversations from 1 to 𝑛 − 12, and subsequently aggregates all new
conversations into the initial summarization.
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Progressively summarize the lines of conversation provided, adding onto the previous summary and
returning a new summary.

EXAMPLE
Current summary:
The human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is
a force for good.

New lines of conversation:
Human: Why do you think artificial intelligence is a force for good?
AI: Artificial intelligence will help humans reach their full potential.

New summary:
The human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is
a force for good because it will help humans reach their full potential.
END OF EXAMPLE

Current summary:
{summary}

New lines of conversation:
{new_lines}

New summary:

A.7.6 generate more queries prompt.
You are a helpful assistant that helps the user to generate 4 6 search queries based on a single input
query, based on the user’s original question and your own knowledge. Please identify worthwhile topics
that can be follow-ups, and write questions no longer than 20 words each.

Please make sure that specifics, like events, names, and locations, are included in follow-up
questions so they can be asked standalone. For example, if the original question asks about "the
Manhattan Project", in the follow-up question, do not just say "the project", but use the full name
"the Manhattan Project". Your related questions must be in the same language as the original question.

And here is the user query, generate 4 to 6 related queries based on this query:
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