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Figure 1: An example scenario using iTrace: (A) an initial stage before tracing, (B) tracing an element from a map to a graph,
where supportive foci (circles on red lines) automatically follow their visual links, and dynamic transitions adjust other links
to reduce clutter, (C) the final stage where the user finishes tracing, and (D) manual link management that to organize links.

ABSTRACT
Exploring data relations across multiple views has been a common
task in many domains such as bioinformatics, cybersecurity, and
healthcare. To support this, various techniques (e.g., visual links and
brushing & linking) are used to show related visual elements across
views via lines and highlights. However, understanding the relations
using these techniques, when many related elements are scattered,
can be difficult due to spatial distance and complexity. To address
this, we present iTrace, an interactive visualization technique to
effectively trace cross-view data relationships. iTrace leverages the
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concept of interactive focus transitions, which allows users to see and
directly manipulate their focus as they navigate between views. By
directing the user’s attention through smooth transitions between
related elements, iTrace makes it easier to follow data relationships.
We demonstrate the effectiveness of iTrace with a user study, and
we conclude with a discussion of how iTrace can be broadly used
to enhance data exploration in various types of visualizations.
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1 INTRODUCTION
Multiple-view visualization (MV) is widely used for visual analysis in
many fields (e.g., bioinformatics [23, 34, 39], cybersecurity [10, 80],
finance [9, 31], health care [18], and education [11, 81]). To gain a
deep understanding of the data, analysts often need to explore data
relations across views [65, 67]. For example, cybersecurity analysts
use network graphs to see device communications, lists to view
suspicious organizations, and maps to check geographical locations,
requiring them to explore relations across these views. To support
such explorations, techniques like visual links and brushing & link-
ing are heavily used. Visual links connect related elements across
views, and brushing & linking highlight related elements after se-
lections. However, the spatial distribution of related visual elements
can make it hard to follow links or interpret highlights, especially
when many connections overlap or when elements are scattered.
Figure 2 shows an example of the challenge, which explores related
visual elements in a graph from a selected location on a map.

Previous attempts to address this have used aggregation-based
techniques to reduce the clutter of visual links [51, 60, 63–65, 67, 68].
Although decreasing the number of visual links reduces overlap,
it does not eliminate the need for users to transition across views,
as the layout of views remains unchanged. As users shift across
views to explore cross-view relationships, they still rely on visual
links. While fewer intersections make it easier to trace a single link,
users must pay close attention to avoid losing track of the link. Any
lapse in focus can disrupt their ability to realign with the original
pathway. This challenge is amplified when tracing multiple links
simultaneously. Without visual guidance, it is hard to navigate com-
plex cross-view relationships effectively, even with fewer visual
links. Techniques based on brushing & linking eliminate the need
for visual links, thereby avoiding issues with line crossings. How-
ever, they struggle to explicitly outline the complex relationships
between elements across views, especially after multiple selections.
As each selection turns a group of elements in MVs into highlights,
multiple brushings result in highlighting various groups. Relying
only on highlights without visual links makes it difficult for users
to discern relationships among elements across views.

To address these challenges, we introduce iTrace, an interactive
visualization technique to facilitate tracing cross-view data rela-
tionships. Unlike conventional methods that leave users to piece
together disjointed visual cues, iTrace features the design of in-
teractive focus transition. This mechanism allows users to visibly
transfer their “focus” from one view to another via an on-screen
marker, allowing them to see, manipulate, and track their focus
while navigating across views. Continuous visual guidance ensures
that even when multiple links must be traced simultaneously, the
active pathway remains clearly highlighted, preventing users from
losing track of connections. Moreover, the versatility of iTrace
makes it applicable to a wide range of visualizations, extending its
usefulness beyond traditional multi-view scenarios. In summary,
our contributions are threefold. First, we conduct an in-depth design
analysis to support tracing cross-view data relationships, expand-
ing the design space of MVs. Second, we introduce a novel design
concept, the interactive focus transition, which emphasizes the vi-
sualization and direct manipulation of user focus points during

Table 1: Four levels of cross-view data relationships [67].

Relationship Level Number of Views Number of Visual Elements
Individual level (1 : 1) 2 2

Group level (1 :𝑚) 2 1 +𝑚 (𝑚 > 1)
Bi-group level (𝑚 : 𝑛) 2 𝑚 + 𝑛 (𝑚,𝑛 > 1)

Multi-group level (𝑚 : 𝑛 : ... : 𝑘) > 2 𝑚 + 𝑛 + ... + 𝑘 (𝑚,𝑛, ..., 𝑘 > 1)

cross-view data exploration. Third, we develop a visualization pro-
totype, iTrace, which embodies our design, and we evaluate its
effectiveness through a user study.

2 RELATEDWORK
2.1 Cross-View Data Relationship
Cross-view data relationships can be grouped into three categories
(Figure 3). The first involves relationships between visual elements
across views, focusing on the detailed connections between el-
ements across views. It examines interactions within individual
views and how elements from separate views are connected. For
example, it explores how five people in a social network graph
might be linked to six organizations in another view. This approach
effectively “breaks” the boundaries of individual views to highlight
components of potential knowledge graphs [32], linking disparate
data elements scattered across views. The second category covers
relationships between visual elements and views, offering a more
abstract connection. Here, views add context or detail to visual ele-
ments in other views. For example, a line chart might show housing
sales trends over the past six months for regions highlighted on
a map. This relationship suggests a hierarchical structure among
views, aligning with Shneiderman’s visual information-seeking
mantra [57], where one view gives an overview and others provide
details as needed. The third category looks at broader connections
between views, prioritizing overall insights from collective data
rather than individual elements. For example, documents placed to-
gether may indicate relevance, showing patterns that span multiple
components. This approach highlights more conceptual relation-
ships for deeper understanding [45].

This work focuses on those between visual elements, which re-
quire investigations of visual elements inside views. These low-
level details across views form a key foundation for extracting
higher-level insights, which are crucial to a data-driven sensemak-
ing process [50]. The relationships can be categorized into four
levels (Table 1), based on the cardinality of involved sets of visual
elements from different views [67]. The complexity increases from
the individual level to the multi-group level [65, 66].

2.2 Visualizing Data Relationships across Views
Three designs for visualizing cross-view data relationships are [65]:
connection, visual highlight, and spatial proximity.

Connection uses visual links to show cross-view data relation-
ships. It draws lines among related visual elements across different
views, corresponding to a one-to-one cross-view data relationship.
Examples include VisLink [12] and its variant versions [22, 60]. It is
widely used in visual analysis tools (e.g., Bixplorer [21], MyBrush
[38], and Flowstrates [6]). However, visual links can lead to clutter,
making it hard for users to trace connections and understand more
complex structures. To mitigate this, some studies have introduced
aggregation techniques that group visual links into clusters (e.g.,
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Figure 2: An example of the challenge on exploring related visual elements across views with visual links and highlights.

Figure 3: 3 types of cross-view data relationships: (a) between
visual elements, (b) between visual elements and views, and (c)
between views. Each box shows a view, orange circles and gray
squares are visual elements, and blue lines indicate relations.

edge bundles) based on specific rules [51, 60, 64, 65, 67]. While
these clusters simplify the presentation, users still need to trace
individual lines to fully understand the underlying relationships.
Notably, previous works have also addressed navigation and focus
management across visual links. For instance, Moscovich’s link
sliding and bring & go approaches [42] as well as Baudisch’s Drag-
and-Pop/Drag-and-Pick technique [4] and the CompaRing method
[69] similarly explore the concept of drawing copies of data entities
to pull them toward the user’s focus.

Visual highlight relies on the coordination of MVs, with a
dynamic update strategy to show relationships between visual
elements across views. When users interact with elements in one
view, corresponding elements in other views are highlighted. It
is used in coordinated MVs [5, 46, 53], and is applied in various
tools (e.g., Cross-Filtered Views [75], Improvise [74], Interver [62],
MissBiN [85], and Jigsaw [59]). While this technique helps users
identify related elements, it requires continuous attention to visual
updates triggered by user interactions. If these updates are missed,
understanding the relationships can be hard. Unlike the connection
approach, visual highlight avoids clutter by avoiding extra visual
markers like lines, but without explicit links makes it hard to check
complex cross-view relations.

Spatial proximity uses spatial distance to reveal relationships
across views. It follows the “near equals similar" visual metaphor,
which depends on the spatial arrangement of views to present their
data relationships. This design requires users to interpret the spatial-
ization of views to understand cross-view data relationships. It has
been used in tools (e.g., Bixplorer [61], ForceSpire [20], GraphTrail
[19], and NodeTrix [29]), which support “space to think" [2] ori-
ented sensemaking activities. As spatial arrangement is controlled
at the view level (i.e., manipulating the layout of MVs [56]) instead

Table 2: A Summary of Visualizations for Tracing

Tracing Target
(number of involved visual element)

One Element Multiple Elements
Data One entity One group Multiple group

Relation

- LineUp[24]
- Parallel Tag
Clouds [14]
- Scatterplot
Matrix [8]

- BubbleSets [13]
- Crossets [47]
- Kelpfusion[41]
- LineSets [1]
- Scatterplot
Matrix [8]

- BiDot [84]
- ChemoGraph [33]
- Mercer [77]
- MyBrush [38]
- Sankey diagram [52]
- VisLink[12]

Location
(spatial

transition)

- SoccerStories [48]
- Traffic flow
visualizations [3]
- Visual
sedimentation [30]

- SoccerStories [48]
- Traffic flow
visualizations [3]
- Trajectory
bundling[17]

- Andromeda[55]
-Animated
transitions [28]
- Traffic flow
visualizations [3]

Analysis
Focus

(analytical
space)

Time
(temporal
trend, or
process)

- À Table [49]
- DimpVis [36]
- egoSlider [79]
- OpinionFlow [78]
- StoryFlow [40]
- ThemeRiver [27]

- EgoLines [82]
- EventThread [25]
- Matrixwave [83]
- Story Curves [35]
- VisTrails [7]

- EgoLines [82]
- EventThread [25]
- Reducing snapshots
to points [72]
- Matrixwave [83]
- Story Curves [35]

of the visual element level, it is hard for users to identify and under-
stand cross-view data relationships in detail. Moreover, interpreting
spatializations requires more cognitive effort than tracking lines or
visual highlights.

2.3 Visualizations for Tracing Information
Visualization techniques for tracing information focus on 4 aspects
of visual analysis: 1) data, 2) relation, 3) location, and 4) time (Table
2). These mainly use visual links, visual highlights, and animation.
Tracing involves individual or multiple visual elements that encode
data from one or more groups. Such elements serve as tracing tar-
gets. Their encoded data corresponds to the analysis focus in the
data space. This aligns with the information foraging loop in sense-
making [50]. The tracing-oriented analysis explores relationships,
spatial transitions, and temporal trends based on the encoded data.

Relation-focused tracing involves analyzing connections be-
tween data entities (e.g., one-to-one, one-to-many, many-to-many).
Simple cases involve tracing single visual elements [8, 14, 24] across
different visual contexts (e.g., lists, scatterplots, small multiples
[73]), using visual links or highlights. More complex cases trace mul-
tiple elements to identify those within the same group or across mul-
tiple groups. For the former, set visualization techniques [1, 13, 41]
use lines or ribbons to connect elements of the same set, requiring
users to follow them to trace visual elements of the same set. Brush-
ing & linking based highlights are also used for tracing groups of
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elements in different visual contexts (e.g., scatterplot matrix [8]).
For the latter, visual links require users to follow multiple lines to
trace elements across groups [33, 38, 77]. However, such techniques
lack effective guidance, expecting users to manually trace paths.

Location-focused tracing examines spatial transitions by ana-
lyzing the movement of visual elements (e.g., sports or urban traffic
analysis [3, 48]). Two main approaches are used: 1) line-based tra-
jectories [3, 17, 48] where lines show paths, and 2) animations
[17, 30, 55] showing dynamic transitions. Line-based trajectories
allow users to follow movement patterns, and multiple lines can
be bundled by spatial proximity. Animations guide user attention
to moving elements, helping them stay focused. However, tracing
animated elements is hard without visible trajectories, especially
when elements move in different directions. Additionally, most tech-
niques lack effective animation controls, forcing users to switch be-
tween traced elements and interface controls (e.g., play and pause),
interrupting the tracing process and complicating task resumption.

Time-focused tracing involves temporal trends and process-
oriented analysis, navigating through time to understand data evo-
lution. Temporal trends are shown with lines [36, 49, 79] or areas
[27, 78], where users follow shapes to observe value changes. For
process-oriented analysis, stories, provenance, or event sequences
are visualized using lines [40, 82] , node-link diagrams [7, 72], and
connected matrices [83]. Users follow line segments or paths to un-
derstand these processes. By adjusting spatial layouts (e.g., ordering
lines [82] or matrices [83]), similar processes are placed near each
other for comparison. However, users must manually trace paths
without supportive features, which is hard with multiple processes.

In summary, while existing techniques use visual links, high-
lights, and animations, they lack assistance features and struggle to
scale with multiple elements, especially for cross-view relationships.
This motivates our design of iTrace.

3 DESIGNING ITRACE
3.1 Term Clarification: Visual Link and Tracing
Our notion of visual link refers to a perceptually continuous geo-
metric shape (e.g., a solid, dashed, or dotted line, curve, or ribbon)
that connects related data scattered across different locations on a
screen. These links are visual marks displayed over existing repre-
sentations to explicitly connect related elements. This aligns with
the definition of visual link discussed in [60], which highlights us-
ing additional visual marks instead of manipulating specific visual
channels of existing visual marks (i.e., brushing and linking).

We consider tracing as an analysis task that guides users through
conceptual spaces to find necessary information for sensemaking.
For example, users can follow colored contours in a scatterplot to
explore a data space and identify clusters, track edges in a graph to
navigate a relationship space or observe line segments in a chart to
examine a time space for trends. Specifically, in the context of cross-
view data relations, tracing involves following visual encodings to
identify connections between visual elements across views, which
helps users understand relationships between visual elements.

3.2 User Tasks and Types of Tracing
In the context of cross-view data relationships, there are three major
types of user tasks [67]: filtering-oriented, refocusing-oriented, and

Figure 4: Three types of tracing: (a) individual oriented, trac-
ing in a single direction; (b) group oriented, tracing in a con-
strained direction, and (c) cluster oriented, tracing in reflected
directions. A blue/red arrow indicates tracing direction and
dotted lines show a constrained range of tracing.

connecting-oriented tasks. Filtering-oriented tasks refer to using
visual elements in one view to filter those in other views. Refocus-
ing-oriented tasks involve exploring the same data across different
views based on selections made in one view. Connecting-oriented
tasks aim to find connections between visual elements across views.
These tasks correspond to data filtering, data identification, and data
connection, respectively. As they all involve visual elements across
views, tracing related elements serves as a key scaffold supporting
the tasks. They are performed based on cross-view data relation-
ships, particularly those between visual elements, as outlined in
Section 2.1.

Considering the structure of cross-view data relationships (see
Section 2.1), there are three primary types of tracing (see Figure
4): 1) individual oriented tracing, 2) group oriented tracing, and 3)
cluster oriented tracing. These correspond to the first three levels
of cross-view data relationships outlined in Table 1.

Individual oriented tracing (T1) follows a single related vi-
sual element in a single direction, reflecting one-to-one relation-
ships. Group oriented tracing (T2) tracks relationships between
a single element and multiple related elements within a bounded
range, resulting in constrained directional tracing. Thus, it involves
a group-level relationship (a one-to-many relationship). Cluster
oriented tracing (T3) examines relationships between two groups
of elements, involving reflected directional tracing. This reveals a
bi-group level relationship (a many-to-many relationship). While
more complex relationships (multi-group level) exist, tracing them
requires progressive analysis through multiple group or cluster-
oriented traces, as they involve chains of information across multi-
ple views. Therefore, this study focuses on the three primary types
of tracing mentioned above.

3.3 Design Analysis: Trade-off & Consideration
Considering the change of a user’s focus, as shown in Figure 5,
there are three possible design strategies for supporting tracing: 1)
context switching, 2) context enriching, and 3) context separating.

The context switching (S1) design strategy focuses on the
necessity for users to transition their focus across views (Figure
5(A)). It acknowledges human cognition’s limited capacity and
the spatial separation of views, assuming users can only focus
on specific elements within a single view at a time. While this
approach preserves each view’s original organization, it has notable
drawbacks. The spatial separation of related elements and constant
context switching increases cognitive load [15]. Users need clear
visual cues to track related elements across views, especially when
views are far apart. Without such cues, users can be confused about
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Figure 5: Designs for supporting tracing: context switching
(A): user focus shifts from one view to another, context en-
riching (B): moving related visual elements from another
view to the current one, and context separating (C): placing
related visual elements outside original views and near each
other. A trapezoid shows a user’s focus at a time. A blue arrow
reveals a moving direction.

which visual elements in the current view correspond to those
previously checked.

The context enriching (S2) design aims to keep a user’s analysis
focus within a single view by reducing the need to switch the focus
between views (Figure 5(B)). This is achieved by moving related vi-
sual elements from other views into the current working view. This
strategy enriches the visual context of the analysis, allowing users
to trace cross-view data relationships without constant focus shifts,
thereby reducing cognitive effort. However, this introduces new
challenges. Moving elements between views requires reorganizing
them, which can impact their structure. Users have to work on
views in transformative forms, where visual elements in views are
no longer confined within the traditional boundaries (i.e., visible
borders) of a view. Instead, elements can be flexibly moved based
on cross-view data relationships. This flexibility blurs boundaries,
potentially complicating perception and leading to visual clutter.

The context separating (S3) design challenges the existing or-
ganizations of MVs by moving all related visual elements out of
their original views (Figure 5(C)). It separates related visual ele-
ments from unrelated ones, effectively dividing a display space into
two parts: 1) original views and 2) relationships among views. The
former are the views as initially designed. The latter are areas where
related elements are extracted into new types of views (e.g., relation-
ship views). Such a division allows users to easily identify related
visual elements, as they sit together and segregated from unrelated
information, minimizing interference and visual clutter. Positioning
related elements outside views can bring them into closer proximity
than when dispersed across different views, minimizing the effort
required for tracing due to reduced physical movement. However,
this separation poses new challenges. Relocating visual elements
strips them of their initial visual context, which might complicate
users’ comprehension of cross-view data relationships.

Supporting tracing with these design approaches involves ei-
ther redirecting a user’s focus between views or relocating visual

elements outside of their original views. The first strategy main-
tains the structure of views at the cost of requiring users to exert
effort in transitioning between them. The second reduces user ef-
fort by minimizing the need to switch between views but disrupts
the organization of views. The third allows users to easily identify
connections without interference by segregating related elements
from unrelated ones but strips elements of their original visual
context. These compromises prompt a reevaluation of the standard
organization of MVs.

Based on our analysis of user tasks, types of tracing, and design
strategies with trade-offs, we have identified four considerations
that the design of iTrace attempts to follow.

C1: Providing usable visual guidance to support transi-
tioning between views. Transitioning between views demands
significant cognitive effort [15], which commonly occurs while us-
ing MVs, so it is vital to offer usable visual guidance to help users
locate the target segment when moving from one view to another.
Specifically, such visual guidance should direct a user’s attention
to three key aspects of cross-view transitions involved in tracing:
direction, path, and destination, corresponding to three main ques-
tions for tracing: which view(s) to navigate to, how to get there,
and where to stop within the target view(s). (a) Showing the tracing
direction helps users understand which view(s) they need to transi-
tion to. (b) Providing transition paths directs users’ attention during
a transition process and helps to maintain focus. (c) Highlighting
related visual elements within the target view(s) guides users to
the destination elements they need to trace, effectively concluding
the transition process.

C2: Scaffolding multi-directional tracing. As related visual
elements are spatially scattered, it is important to offer techniques
to support users in tracing multiple directions. Given the impact of
selective attention [70], it is hard for users to trace several direc-
tions simultaneously, especially in divergent or opposite directions.
While it is possible to turn this into a sequential process in which
each step only involves tracing in one direction (T1), transition-
ing from a one-directional tracing to another creates challenges
(e.g., which direction to pursue next and how users can ascertain
completion of tracing in all directions). As multi-directional trac-
ing (T2, T3) has been commonly involved in real-world analyses,
developing techniques to facilitating this is imperative.

C3: Comprehensive tracing of relationships. To foster a
transparent understanding of intricate interrelations among ele-
ments, it is crucial to allow users to navigate through all relation-
ships associated with a visual element. In complex datasets, ele-
ments often have multiple connections spanning across elements
in different views. Users should be able to confidently explore these
connections. By supporting comprehensive tracing, users can effi-
ciently trace individual elements (T1), follow connections between
an element and a group (T2), and understand how groups relate
to each other (T3). Without the ability to trace them, users may
overlook critical connections, leading to incomplete analyses or
incorrect conclusions.

C4: Dynamic transition via tracing. Dynamic transitions can
be used to reduce visual complexity while a user is engaged in
tracing an element. Factors influencing visual complexity include
the number of elements, visual links, and views. Reducing visual
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Figure 6: Examples of externalizing a user’s focus in iTrace.
(A): iTrace creates a copy of each visual element involved in
a cross-view data relationship and overlays them on exist-
ing views. (B): iTrace enables automatically moving a focus
marker as a user moves a mouse pointer from its previously
focused visual element. Orange circles and blue rectangles
show the focus marker and copy of related visual elements
in iTrace, respectively.

complexity facilitates tracing and helps users effectively explore sig-
nificant connections. Additionally, enhancing the salience of visual
links supports users in tracing connections, allowing them to main-
tain focus and differentiate desired links. Informing users of their
progress during tracing can improve their experience, aligning with
usability heuristics (i.e., visibility of system status and recognition
rather than recall) discussed by Nielsen and Molich [44]. Awareness
of position and progress clarifies task completion, helping users see
what has been explored and what remains. This feedback aids in
resuming interrupted tasks and reduces cognitive load, especially
when tracing spatially distant elements across multiple views.

4 THE ITRACE TECHNIQUE
The iTrace technique highligths a design concept of interactive focus
transition to support cross-view data relationship tracing, which
aims to make a user’s focus visible and manipulable. It has three
components: 1) externalizing a user’s focus during tracing, 2) manip-
ulating a user’s focus to facilitate tracing, and 3) dynamic transition
of a user’s focus. They are applied on top of identified cross-view
data relationships to support users in tracing them, so iTrace re-
quires that cross-view data relationships are computed in advance.
To compute the relationships, iTrace follows prior work [67], which
uses biclustering to compute relationships between visual elements
of pairwise views and chaining of biclusters (i.e., results of biclus-
tering algorithms) to identify relationships among visual elements
of three or more views. The computed cross-view data relationships
serve as the foundation of iTrace, enabling it to provide visual cues
and interactions that help users trace connections. They can be
shown in various means, such as visual links connecting related
elements, highlights that emphasize relationships, and dedicated
relationship views that display visual elements together [67].

4.1 Externalizing User Focus
To make a user’s focus explicit, iTrace introduces visual overlays,
called focus markers, to show the user’s current focus. Users can
enable or disable a focus marker by right-clicking on a visual ele-
ment. When enabled, a semi-transparent, slightly larger copy shows
over the element (orange circles in Figure 6), distinguishing it from
the original visual element without obscuring essential details. By
interacting with multiple visual elements, users can create several
focus markers simultaneously, allowing the tracing of bi-group
level relationships (T3). Moreover, based on computed cross-view
data relationships, iTrace enables users to generate copies of related

visual elements in other views (blue rectangles in Figure 6). These
copies can also be enabled or disabled via a right-click menu on
each focused visual element. They share visual cues with focus
markers and represent related elements. This helps users recognize
copies of visual elements, differentiate visual elements from their
copies, and enable direct manipulations on focus markers.

While the current implementation uses a semi-transparent, scaled
copy for the focus marker, the iTrace technique is designed to be
extensible, allowing its visual encoding to be customized for better
visibility in complex scenarios, as noted in our user study. Instead
of a direct copy, the marker could use distinct shapes (e.g., star,
triangle, outlined circle), have static or density-aware sizing, or be
enlarged relative to the original. Additional enhancements include
high-contrast or saturated colors, stronger outlines or shadows,
subtle animations (e.g., pulsing, blinking), or alternative fill styles
like hatching. These adaptations can be tailored to view character-
istics, information density, or user preference to ensure the marker
remains easily distinguishable during tracing.

In iTrace, visual salience can propagate across multiple views
based on computed cross-view data relationships, showing both a
user’s current and future focus. For example, in Figure 6, orange
circles correspond to a user’s current focus (i.e., where a tracing
starts). Blue rectangles indicate the user’s future focus (i.e., where
the tracing will end). iTrace uses the visual salience in other view(s)
to offer users guidance on tracing direction and destination (C1-a, c).
After creating focusmarkers and copies, iTrace allows users tomove
these markers manually or automatically. For automatic movement,
a focus marker moves by following a user’s mouse pointer (Figure 6
(B)), externalizing the transition of the user’s focus by transforming
it from an internal cognitive process into visible on-screen elements.
Formanual movement, a user can drag andmove the marker flexibly,
which is discussed with more detail in Section 4.2.

4.2 Manipulating User Focus
In iTrace, focus markers are considered the first-level objects for
user interaction. Users can manipulate these markers by moving
them to attract related visual elements from other views (Figure
7). Besides the automatic movement discussed in Section 4.1, users
can manually move a focus marker by dragging it. To guide users
in moving their focus marker, iTrace uses visual links (Figure 7
(A), (B)) from a visual element to its related elements, explicitly
showing possible paths for users to perform tracing (C1-b). Users
can move focus markers along these links (Figure 7 (A)). iTrace
supports cross-link transitions with the focus marker (Figure 7 (B)).
During the movement of a marker by a user, iTrace detects the
closest point on any visual link connected to the current visual
element and adjusts the marker’s position accordingly. To find
the closest point on a visual link, iTrace uses an algorithm with a
linear [16] and iterative bidirectional search process [54]. Figure 8
shows the two procedures in this algorithm (see Algorithm 1). This
algorithm is also used for automatic movement, ensuring that the
focus marker "sticks" to the nearest visual link relative to the user’s
mouse pointer.

Along with the transition of a user’s focus marker, iTrace creates
supportive foci (white circles in Figure 7 (A) and (B)) that move
along all other visual links associated with the element being traced.
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Figure 7: Examples of manipulating externalized user focus in iTrace. (A): When a user moves the focus marker (i.e., a copy of a
visual element in a scatterplot) along a visual link, supportive foci are displayed and automatically move along other visual
links from the previously focused visual element. (B): A user moves the focus marker from one visual link to another. (C):
From a currently focused visual element, a user calls for its related visual elements from other views, which shifts their copies
along corresponding visual links. (D): A user interacts with a focus marker to manually manage links, positioning them as
desired. Note: black dotted arrows reveal the direction of transitions, and the green link indicates a manually managed link.

Figure 8: iTrace’s two procedures to find the closest point on a
visual link by the position of a user’s focus: (A) a linear search
process, and (B) an iterative bidirectional search process.

These supportive foci can be enabled or disabled by left-clicking on
the marker and are designed to assist in multi-directional tracing
(C2) and facilitate comprehensive tracing of relationships (C3).
This supports the context switching (S3) strategy, enabling users
to shift their focus between related visual elements across multiple
views. Supportive foci move in sync with the user’s focus marker,
with iTrace calculating their movement in real time based on the
proportion of the marker’s transition along its visual link. These
supportive foci help users identify visual links that share the same
cross-view data relationship as the focus marker. This reduces the
effort required to locate relevant links, particularly in cases where
many unrelated visual links are present. By acting as visual anchors,
the supportive foci guide a user’s attention to relevant connections.
Research shows that humans better distinguish shapes (e.g., circles
and lines) than color differences [43]. iTrace leverages this by using
circles for supportive foci and lines for visual links. Moreover, when
a user’s focus marker transitions from one visual link to another,
the supportive foci on the new link switch as well (Figure 7 (B)).

iTrace also allows the transition of related visual elements, using
amagnet and dust visual metaphor [58]. From a focus marker (serv-
ing as the magnet, C1-a), the copy of its related visual elements
(considered as the dust) can be attracted from other views (Figure 7
(C)). These copies move along the visual links that connect related

Algorithm 1: ClosestPoint(path, point)
Input :path, a path object; point, a point object
Output :closestPoint, the closest point object on a path

1 closestPoint, flagLen, closestDist← none, 0,∞;
2 step, pathLen, scanLen← 8, path.getTotalLength (), 0;
3 while scanLen < pathLen do /* linear search */
4 scanPoint← path.getPointAtLength (scanLen);
5 scanDist← EuclideanDist (scanPoint, point);
6 if scanDist < closestDist then
7 closestPoint, flagLen, closestDist← scanPoint, scanLen, scanDist;

8 scanLen← scanLen + step;

9 while step > 0.5 do /* bidirectional search */
10 step← step / 2;
11 left, right← flagLen - step, flagLen + step;
12 leftPoint, rightPoint← path.getPointAtLength (left), path.getPointAtLength

(right);
13 leftDist, rightDist← EuclideanDist (leftPoint, point), EuclideanDist (rightPoint,

point);
14 if leftDist < closestDist then
15 closestPoint, flagLen, closestDist← leftPoint, left, leftDist;

16 else if rightDist < closestDist then
17 closestPoint, flagLen, closestDist← rightPoint, right, rightDist;

18 return closestPoint;

elements to the focus marker (C1-b). Users can enable such tran-
sitions with a right-click menu on the element. iTrace offers two
options in the right-click menu to control where the transitions
stop: (C1-c): 1) at the border of the view where the focus marker
is located (Figure 7 (C)), or 2) near the focus marker itself. The
former aligns with the context-enriching design (S2) as user focus
is maintained in a view. The latter supports the context-separating
design (S3) when the focus marker is positioned away from the
views. Users can hover over each moved copy and supportive foci
to show information (e.g., an entity label) of its corresponding vi-
sual element in a popup. Moreover, when hovering over a copy, its
corresponding visual mark in the original view is highlighted.

Moreover, iTrace introduces a manual link management feature
that allows users to interact with visual links using focus markers
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to drag and reposition them (Figure 7 (D)). Users can manage visual
links manually, placing them anywhere within the display space.
This is toggled via a right-click menu on the focus marker. Once
activated, the focus marker moves along a user’s mouse cursor
dragging the visual link it was connected to at the time of activation.
This feature allows users to store specific connections they may
wish to explore later, effectively bookmarking relationships for
future analysis. It also facilitates a more comprehensive tracing of
relationships (C3) between two elements (T1) by providing users
the flexibility to examine connections at their own pace. iTrace also
enables the link management of multiple visual links. Users can
make non-pinned links, either semi-transparent or hidden, via a
right-click menu, allowing them to focus exclusively on the pinned
connections. This enhances the flexibility of tracing, supporting
both group-level tracing (T2) and bi-group level tracing (T3).

4.3 Dynamic Transition of User Focus
As a focus marker moves along a visual link, iTrace uses dynamic
transitions to support comprehensive relationship tracing (C4).
iTrace uses color encoding to indicate which link a user is focusing
on. The visual link currently being traversed is highlighted in yellow,
marking it as the active link. Meanwhile, related links connected to
the same visual element, but not currently followed, are displayed in
red, and all other unrelated links are colored blue. This color scheme
allows users to distinguish among the active link, the related links
available for further exploration, and the unrelated links.

iTrace uses dynamic transparency control, allowing users to ad-
just the visibility of unrelated links as they transition a focus marker.
Users can choose to reduce the transparency of all unrelated links
to focus solely on connections tied to the selected element or fade
all links except the one being traced. The transparency adjusts
dynamically with the transition progress. For instance, when a
user reaches the midpoint of a link, unrelated links become 50%
transparent, with opacity decreasing as the user advances. This
progressive adjustment reduces visual complexity while preserving
the link structure. Users can restore visibility by reversing transi-
tions or revisiting previous paths. These provide users with more
control over the display space, allowing for an in-depth exploration
while reducing cognitive load. By highlighting relevant connections
and subduing unrelated links, iTrace enhances user confidence in
exploring relationships (C3). A challenge in designing dynamic
transitions is maintaining effective visual emphasis in complex
multi-view environments. We address this using a high-contrast
color scheme and dynamic transparency, which highlights the ac-
tive path and related options while fading unrelated links into the
background. This reduces clutter and supports user focus, aligning
with established foreground-background highlighting strategies in
visualization [26].

As a focus marker moves, we explored visual aids to display the
traced path, tracing direction, and transition progress (C1). Figure 9
shows our design alternatives. During the transition, the visual link
is treated as two segments: the path traversed by the focus marker
and the remaining part. Visual distinctions mark these segments:
using dashed versus solid lines, varied line thickness, or dots of
different sizes. While these designs indicate the traced path and
direction, they do not effectively show the transition progress.

Figure 9: Design alternatives to show a transition progress
of a user’s focus marker. (a2), (b2), and (c2) are encodings fo-
cusing on the path that a focus marker has passed. (a1), (b1),
and (c1) show encodings emphasizing the remaining path.
(d): Using a progress bar. (e): Using a proportional filling to
show the progress (i.e., the more a focus marker has transi-
tioned, themore filled area is inside the focus). For cases with
shifts across links, three designs are considered: (f1) no path
highlight, (f2) highlighting the path on each link that a focus
marker has passed, and (f3) highlight on the current visual
link only (to the most recent position of the focus marker),
along which a focus marker is moving.

Focus markers navigate links in two ways: 1) single-link transi-
tions along one path (Figure 9 (a1, b1, c1)), and 2)multiple-link tran-
sitions between different paths (Figure 9 (f2)). For single-link tran-
sitions, the traced path, direction, and progress of a focus marker
transition can be displayed by either adjusting the visual appear-
ance of the visual link (Figure 9 (a1), (a2), (b1), (b2), (c1), and (c2))
or the focus marker itself (Figure 9 (e)), or adding additional marks
(Figure 9 (d)). One design alternative uses proportional filling (Fig-
ure 9 (e)). It uses a circle within the focus marker that expands
during transition. As a marker’s size may limit the visibility of such
changes, another alternative employs a progress bar design (Figure
9 (d)), where a bar is placed above the focus marker, offering better
clarity in tracking movement compared to modifications of the link
or marker alone.

For transitions with shifts across links, we explored three de-
signs: 1) no path highlight, 2) highlighting all traversed links, and
3) highlighting only the active link up to a focus marker’s position
(Figure 9 (f1), (f2), and (f3), respectively). The first design shows
only the marker position and gets ambiguous when multiple links
intersect, making path tracking hard. The second design traces the
complete transition path but creates visual clutter with numerous
highlighted segments across multiple links. To balance clarity and
usability, we adopted a third design that highlights only the current
visual link from the trace origin to a focus marker’s position. It
reveals the transition process while maintaining clarity, even when
other neighboring links are present. Our final design in iTrace high-
lights the current visual link being transitioned only (Figure 9 (f3)),
accompanied by a progress bar positioned above the focus marker
(Figure 9 (d)).

5 USER STUDY
To evaluate the usability of the key design concept, interactive focus
transition, implemented in iTrace, we conducted a user study. Our
study aimed to explore the effectiveness of this design concept for
visual analysis involving tracing cross-view data relationships. We
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(A)

(B)

Figure 10: Visualization of the bundling strategy. (A):Without
bundling – individual visual links connect related entities
across views, resulting in visual clutter. (B):With bundling
– common relationships are aggregated and routed through
a bundle element in a relationship view, simplifying the
structure and revealing shared group-level connections.

focused on three questions. First, would users prefer our interactive
techniques over traditional MV techniques for tracing cross-view
data relationships and why? This helps us understand the com-
parative appeal of our approach. Second, how do users apply our
interactive techniques in practice? Observing their usage patterns
offers insights into the intuitive use of our design. Finally, what do
users perceive as the strengths and weaknesses of our techniques?
This feedback is key to understanding the benefits and identifying
areas for improvement.

5.1 Participants, Apparatus and Data
30 graduate students (14 female and 16 male) from several depart-
ments in a university, aged 23 to 33 years (mean age = 27), par-
ticipated in our study voluntarily. All had normal or corrected-to-
normal vision, no color vision deficiencies, and prior experience
using multiple views. We deployed iTrace on a laptop with a 2.3
GHz Intel Core i7 processor and 16GB of memory, connected to a
49-inch ultrawide monitor with a resolution of 5120 × 1440 pixels.
Visualizations were shown in Google Chrome (version 116, 64-bit),
which fit the screen without requiring scrolling. Participants sat
approximately 55 cm from the monitor and used a mouse and key-
board for interaction. All participants provided informed consent
prior to the study.

We generated eight datasets, each having three types of enti-
ties (e.g., person, location, and organization), with 50 entities of
each type. Each type of entities was shown in a view: the person
entities in a network graph, location entities on a map, and or-
ganization entities in a bar chart. We established cross-view data
relationships by defining individual-level relationships between en-
tities from different types (e.g., persons associated with locations).
These relationships were set at two levels: by picking 10% or 20%
of all pairwise entities (i.e., 2500 pairs) from two sets. Using these
individual-level relationships, we applied LCM [71] to compute bi-
group relationships between pairs of entity sets, ensuring that each
group contained at least two entities. In summary, each dataset con-
tains 3 different entity sets with a total of 150 unique entities, 250 or

Figure 11: An example of the user study setting

500 individual-level relationships, and 8~16 bi-group relationships.
Figure 11 shows an example of the user study setting.

5.2 Method, Procedure and Data Collection
This study used a full-factorial, within-subjects design to explore
the use of iTrace under varying conditions. We controlled two key
factors: 1) data complexity and 2) representation complexity, as
they influence the number of visible cross-view data relationships.
For the former, we tested two levels: fewer versus more number of
relationships in data (i.e., 250 vs. 500 individual-level relationships).
For the latter, we set two levels: without versus with bundling visual
links (i.e., grouping visual links that are in the same bi-group level
relationships). As the two factors are independent, our study had
four experiment conditions. In each condition, participants used
three fixed-position visualizations: a map (left), a bar chart (center),
and a network graph (right), each with 50 entities. In conditions
with bundling, relationship views were displayed, grouping visual
links that are in the same bi-group relationships as outlined in
[67]. Specifically, if multiple elements in one view are commonly
linked to elements in another view, their connections are aggre-
gated and routed through an intermediate "bundle element" shown
in a separate relationship view. This approach reduces clutter and
emphasizes group-level associations by simplifying redundant links.
The bundled connections are visualized explicitly to aid interpreta-
tion of shared relationships (Figure 10).

All of iTrace’s techniques, described in Section 4, were available
for participants to use in each condition. Each participant com-
pleted four information-foraging tasks (one task per experimental
condition). The tasks were designed to reflect the three major types
of tracing scenarios, corresponding to the levels of cross-view data
relationships. An example task is: "Find the organizations in North
America where both the Andrews and Chandler families work." This
task requires participants to trace relationships between specific
individuals (persons), locations, and organizations, involving both
individual and group-level tracing. The order of tasks and their
mapping to experimental conditions were randomized for each
participant to counterbalance any learning effects.

Participants were given 15 minutes per task and could freely use
any interactive techniques provided by iTrace based on their pref-
erences. After each task, participants reported their findings and
could take breaks as needed. Before the tasks, participants received
a tutorial on cross-view data relations and multiple views, followed
by a demonstration of iTrace’s features using a separate dataset. A
training session allowed them to practice identifying relationships
across views. During each task, we collected interaction logs (e.g.,
timestamps, interaction types, and target elements), screenshots,
observation notes, and participants’ findings, and conducted inter-
views to gather their feedback. Accuracy was measured based on
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iTrace

Figure 12: A summary of the number of participants’ wrong findings (left), the average time that participants took to get a
correct finding (middle), and the ratio between hover and click interactions that participants performed to find answers to the
given tasks (right), in each experiment condition.

the correctness of participants’ reported findings compared to the
known relationships in the datasets.

5.3 Results
We observed that the number of participants using iTrace varied
across conditions, and their task performance differed based on if
iTrace was used (Figure 12). This suggests that the decision to use
iTrace may be influenced by the perceived complexity of multiple
views, affecting strategic interactions and leading to varied per-
formance. Despite these variations, participants consistently got
higher accuracy when using iTrace (Figure 13).

With the same visual link settings (i.e., with/without bundling),
more participants chose to use iTrace when there were more cross-
view data relationships. The increase in relationships led to more
visual links. Participants may perceive this as visually overwhelm-
ing. For example, in conditions with more relationships, hovering
over an entity would show a larger number of visual links than
those with fewer ones. This increased visual complexity likely made
it harder for participants to trace cross-view data relations, explain-
ing the higher usage of iTrace in these scenarios. Moreover, more
participants used iTrace when bundling was used than when it was
not. Bundling reduced the number of visual links, but it introduced
relationship views. While reducing visual links outweighed the
increase in views, these new views added more visual elements
(as each bundle was shown by an element), and visual links were
re-routed through the bundles, making them longer. It made the
representation more complex, encouraging more participants to
rely on iTrace for assistance.

Regarding analysis performance, participants who used iTrace-
made fewer errors and took less time to find a correct answer than
those without using iTrace (Figure 12 (left) and (middle)). This was
consistent in all conditions. Even when the number of relation-
ships or bundling settings changed, leading to variations in error
rates and task completion time, participants using iTrace performed
better overall. On average, participants using iTrace had an error
rate of 0.5, whereas those not using iTrace had an error rate of 1.7.
A Mann-Whitney U test indicated this difference was statistically
significant (𝑈 = 180, 𝑝 = 0.02). Regarding task completion time,
participants using iTrace took an average of 9.0 minutes, compared
to 12.3 minutes for those not using it. An independent samples t-test
confirmed this difference was significant (𝑡 (118) = 2.85, 𝑝 = 0.005).

The ratio of hover-to-click interactions was lower when iTrace
was used than when it was not. Both hover and click interactions
highlighted a visual element and its connected visual links. The

Figure 13: A summary of participants’ finding accuracy.

highlights disappeared after hovering, while they remained after
clicking. Thus, the hover-to-click ratio reflects how much effort
participants put into observing changes in highlighting. Without
iTrace, participants seemed to rely more on observing such high-
light changes to trace cross-view data relations. When using iTrace,
participants took less effort for this, as shown by the smaller hover-
to-click ratio. This likely resulted from participants shifting their
focus from observing highlight changes to actively manipulating
visualized foci with iTrace. This redistribution of effort aligned with
better analysis performance, as participants made fewer errors and
took less time to find correct answers. Thus, iTrace appears to help
users adopt more effective strategic interactions during analysis.

Besides these quantitative results and positive feedback on the
“intuitive way of usage" (as noted by P6, P7, P9, and P13), participants’
feedback highlighted three roles that iTrace played in supporting
tracing cross-view data relations: 1) scaling up tracing, 2) diversi-
fying tracing purpose, and 3) strengthening confidence. iTrace
helped participants scale up their tracing capabilities by allowing
them to perform multi-directional tracing even in the presence of
many visual links. For example, P10 mentioned “It’s really helpful
to set up [see and use] copies to find a node connected to different
other ones in other views"; P1 said, “[iTrace] is very useful especially
when you have many things selected, and [it is] more useful when
there are more connections"; and P17 appreciated, “It [iTrace] is very
useful to find out the exact link when there is more data in the view."
Additionally, iTrace expanded the purpose of tracing beyond just
searching for connections. It also supported verification, helping
participants confirm if two visual elements were connected. For
example, P14 stated, “[iTrace] really helped to verify the data exactly
and check appropriate connections... [iTrace] made the task easier to
verify the connections" ; and P7 said, “[iTrace] makes it easy to verify
and understand the connections between data points." Finally, using
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iTrace made participants more confident in their analyses. For in-
stance, P6 said, “It helps me keep track of which line I’m looking at, so
I’m more confident [of my findings]", and P16 commented, “[iTrace]
is good to give me the confidence to draw a conclusion."

Despite the observed benefits of using iTrace, participants’ feed-
back indicated two possible improvements. First, while copies of
visual elements created by iTrace can be helpful for tracing in mul-
tiple directions and find related elements quickly, it can sometimes
lead to visual clutter. For example, P16 said, “It [iTrace] introduced
more nodes [copies of visual elements] in the visualizations, and made
it slightly confusing due to the visual clutter of many nodes on neigh-
boring links", and similarly P7 mentioned, "[copies of visual elements]
get congested when there are too many connections." These suggest
that for visual elements with many visual links, it may be more
effective to adjust the position of related visual element copies. In-
stead of placing them directly along the visual links, repositioning
them to nearby areas could help reduce overlap and avoid visual
clutter. Second, the focus marker’s visual encoding was perceived
as insufficiently salient, especially when many visual links existed.
For example, P15 mentioned, “When not moving [focus marker], it is
hard to differentiate between its line and other lines." P4 said similarly,
“[After moving], it is confusing [locate where my focus was]." This
implies that the current encoding of the focus marker lacks the visi-
bility needed for participants to easily track their focus, particularly
when there are many highlighted links and supportive foci.

6 DISCUSSION AND CONCLUSION
We present iTrace, an interactive technique to support tracing cross-
view data relations. It introduces the concept of interactive focus
transition, which transforms users’ focus into on-screen, manipulat-
able objects. By showing and allowing direct manipulation of these
foci, iTrace facilitates multi-directional tracing across multiple lev-
els of data relationships while reducing visual clutter associated
with traditional linking methods. It enhances the flexibility and
dynamism of MVs, moving beyond conventional, view-constrained
layouts and instilling greater confidence in visual analysis.

6.1 Generalization
The interactive focus transition concept extends beyond MV ori-
ented data analysis and can be adapted to a variety of visualizations
(Figure 14). For instance, it can be used on node-link diagrams (e.g.,
graphs and trees) to check neighboring connections and paths, or
to line charts for analyzing temporal trends across one or multi-
ple lines. For visualizations with variant visual encodings of lines
(e.g., ribbons in a Sankey diagram, parallel sets [37], or ThemeRiver
[27]), this design concept can also be used. By assigning forces to
supportive foci, the design can improve readability in cases with
many overlapping lines by pulling them apart (Figure 14 (f)). This
aligns with existing interactive techniques such as EdgeLens [76],
which employs a lens-based interaction to effectively manage edge
congestion in complex graphs. This directly addresses usability
concerns related to visual clutter, as identified in Section 5.3. Com-
pared to traditional visual links and highlights, this design concept
makes the user’s focus more explicit by turning it into visible, on-
screen objects that serve as anchors for attention and facilitate
spatial transitions. Instead of replacing conventional techniques,

Figure 14: Applying iTrace to other visualizations: (a) lists,
(b) graph, (c) line chart, (d) parallel sets, (e) area graph, and
(f) pulling nearby lines apart.

it complements them by enhancing their ability to explore related
information. Unlike typical animation techniques that rely on UI
widgets (e.g., play and pause buttons), this design emphasizes direct
manipulation. Users can interact with animated objects to control
transitions, allowing them to focus on the content rather than the
control mechanisms. This reduces cognitive load by eliminating
the need to switch attention between a visualization and separate
control widget(s).

6.2 Limitations and Future Work
The implementation of our presented interactive focus transition
concept in iTrace supports direct manipulations on an individual
copy only (e.g., focus marker or one of the supportive foci). It can
be improved by grouping nearby foci moving in similar directions,
enhancing iTrace for complex data handling. Future studies may
explore how to merge and split these foci effectively. Some tech-
niques, like manual link management and dynamic transitions in
iTrace, introduce an extra level of control that requires further ex-
ploration. While our user study showed the usefulness of iTrace
and its possible impact on tracing-based analysis, it was limited
(e.g., datasets with a relatively small number of visual elements
and views with fixed positions). Whether our findings would hold
with larger datasets or varying distances between views remains
uncertain, indicating the need for a more in-depth evaluation. Fur-
thermore, participants’ self-selection to use iTrace during tasks led
to unequal group sizes, limiting the ability to definitively attribute
performance differences solely to the tool and highlighting the need
for future studies with controlled usage conditions.

Additionally, iTrace potentially "breaks" traditional view bound-
aries by allowing flexible arrangements of visual elements and their
copies to support tracing tasks. Future studies are needed to explore
the potential costs of this approach, such as how users perceive
and interact with these “broken" views. Performance issues such
as lag and choppy interactions during tracing were caused by the
real-time rendering demands of dynamic transitions and manipula-
tions involving multiple visual links. These limitations can disrupt
smooth tracing and negatively affect user experience. Although
this study prioritized demonstrating conceptual and practical util-
ity, future implementations could enhance usability by optimizing
rendering through caching, incremental loading, or precomputed
transitions.
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