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ABSTRACT
This paper proposes using face as a touch surface and
employing hand-over-face (HOF) gestures as a novel input
modality for interaction with smartphones, especially when
touch input is limited. We contribute InterFace, a general
system framework that enables the HOF input modality
using advanced computer vision techniques. As an examplar
of the usage of this framework, we demonstrate the feasibility
and usefulness of HOF with an Android application for
improving single-user and group selfie-taking experience
through providing appearance customization in real-time.
In a within-subjects study comparing HOF against touch
input for single-user interaction, we found that HOF input
led to significant improvements in accuracy and perceived
workload, and was preferred by the participants. Qualitative
results of an observational study also demonstrated the
potential of HOF input modality to improve the user
experience in multi-user interactions. Based on the lessons
learned from our studies, we propose a set of potential
applications of HOF to support smartphone interaction. We
envision that the affordances provided by the this modality
can expand the mobile interaction vocabulary and facilitate
scenarios where touch input is limited or even not possible.

CCS CONCEPTS
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interaction(HCI); Interaction design; • Computing method-
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobileHCI ’19, Oct. 01–04, 2019, Taipei, Taiwan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/19/06. . . $15.00

KEYWORDS
Computer vision; input modality; smartphones
1 INTRODUCTION
With the success of mobile devices, touch-based interaction
has become the dominant method of interacting with
computing systems. Touch input, including tapping and
flicking, is currently the leading interaction mechanism.
However, there are many situations where touch is limited,
for instance, when outside is too cold to remove the gloves
for touch interactions, when driving a car where touch input
is not recommended, and when the device is in a certain
distance from the user. In these scenarios, users could benefit
from alternative interaction mechanisms not involving touch
input, although they might not be used all the time.
In addition to some input modalities such as mobile sen-

sors [15], mid-air gestures [6, 41], and natural languages [28],
face-based input, by utilizing the phone’s front-camera, has
been demonstrated as an effective means for interacting with
smartphones. Face-based input has been used for auto-screen
rotation [5], authentication [8], mobile interaction [45], and
camera control [7]. One promising approach is to utilize face
as a touch surface for mobile interaction, i.e., hand-over-face
(HOF) gestures. This input modality has three main benefits:
1) the face offers a larger space for interaction without
occluding the smartphone display, 2) the face is often touched
and always available for interaction [32], and 3) the unique
layout of the face allows for more semantic and intuitive
interaction (e.g., face AR, and virtual makeup).
Recently, HOF gestures have been used for interaction

(e.g., panning and zooming) with head-worn displays [39, 44],
but not with smartphones. Thus, in this paper, we explore
the use of the HOF input modality for interaction with
smartphones in situations where touch input is limited. We
introduce InterFace (§3), a general system framework, that
employs computer vision techniques on the front-facing
camera frames to identify HOF gestures. As a start, we focus
on addressing the detection of one single hand gesture (i.e.,
index finger pointing) and triggering different functionalities
based on the hand gesture location to the facial elements.DOI: 10.1145/3338286.3340143
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However, the technique is not limited to a specific hand
gesture; and the framework could be extended to include
more diverse hand gestures.
To demonstrate the feasibility and effectiveness of

InterFace, we integrated it in the design of an Android
selfie-taking application with the goal of improving both
single-user and group selfie-taking experiences (§4). The
application enables one or more individuals to select and
apply Augmented Reality (AR) lenses (i.e., visual add-ons)
onto their photos by pointing to different areas on their
face while taking selfies. We chose this specific use case
because it has received global attention within recent
years [23]. Furthermore, photos often need to be taken
when the smartphone is in a distance from the user (e.g.,
an extension rod is usually used), so that using touch input
is challenging. However, we believe that the HOF input
modality for smartphone interaction can be easily applied in
other touch-challenging scenarios mentioned above.
In a within-subjects study with 18 participants, we

compared the HOF input modality against the conventional
touch input in the single-user selfie-taking scenario. Results
of the study showed that the HOF input led to significant
improvements in both accuracy and perceived workload.
Participants also indicated a strong overall preference
towards the HOF input, although there were concerns
about the social acceptability of this modality. In an
observational study focusing on multi-user photo taking
scenarios, participants also reported positive experiences
of the HOF input and commended its potential to support
group-based interactions.
In summary, our main contributions are: 1) development

of a general backend framework to enable the novel HOF
input modality based on computer vision techniques, as
a first exploration of HOF for smartphone interaction; 2)
implementation of a selfie-taking application, enabled by
our proposed system framework, as an examplar of using
HOF input modality in practice, and 3) results from two
user studies that demonstrate the potential of the HOF input
modality for improving the user experience in both single-
and multi-user interactions.
2 RELATEDWORK
This research is inspired by recent developments of
interaction methods for smartphones, in particular work
on mid-air gestures, face-engaged interactions, and on-body
input modalities.
Mid-air gestures: Gestural interactions are a natural

way of human communication shown to be effective in
diminishing some barriers between users and computer
interfaces [11]. One of the promising types of gestural
interactions are mid-air gestures, using one or two hands.
The detection of mid-air input either requires additional

sensor-based equipment (for instance on the shoes [3], or
on the wrist [10, 24]) or needs a camera to detect the
mid-air gestures performed by the hands [6, 34, 41]. In
recent years, mid-air gestures have started appearing in some
commercialized products, such as Gesture Control developed
by BMW to control some car functionalities [1]. Despite the
usefulness of mid-air hand gestures, they suffer from the lack
of haptic feedback. Additionally, they do not have a spatial
surface as a reference point, which results in dedicating each
single gesture to only one interaction and thus, reducing the
number possible interactions with the device. On the other
hand, a single gesture such as tap can be assigned to multiple
commands using HOF interactions depending on the face
area that the user performs the interaction with.
Face-engaged interactions: Recognizing gestures based

on computer vision techniques has shown to be an effective
method in human computer interaction [34]. User’s face
can be easily detected using the smartphone’s front-facing
camera, while the user is holding the phone. This makes
face an effective channel for interaction with the device.
There have been some attempts at employing face tracking to
provide an extra affordance for smartphone interfaces. User’s
gaze information can be used for natural scrolling [26, 33].
Eye movement and blinking can be used for mobile browsing
and text entry [38]. Hansen et al. [13] describes the “mixed
interaction space” between the user and the device and
proposes using the face to perform image navigation similar
to Image Zoom Viewer [9]. Along the same lines, a face
tracking technique is applied in panorama viewing [20]
and screen rotation with mobile phones [5]. Recently, facial
gestures have emerged in some off-the-shelf systems, such
as smiling in Huawei’s smartphone camera for shutter
release. Taking advantage of face-engaged input channel
alone provides a number of new interaction possibilities.
However, they still need effort from the user to make facial
gestures (e.g., blinking, eye, and head movement), and some
unintentional interactions may occur (e.g., blinking).
On-body interactions: A large body of work has been

invested on using human body as an interaction surface.
It has been explored for many different parts of the body
such as palm [12, 42], nail [22], fingers [18], arms [27], and
back of the hand [40]. Only a few studies have investigated
the use of HOF as an input modality for interaction with
head-worn displays [39, 44]. However, to the best of our
knowledge, HOFmodality as an input channel for interaction
with smartphones has not been explored in the literature.
This new input channel could enable a more ubiquitous and
natural usage for the next generation of mobile platforms.
3 INTERFACE FRAMEWORK
We introduce InterFace framework and its architecture as a
potential system capable of interpreting HOF input modality.
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InterFace allows one or more people, present in the camera
frame, to interact with the smartphone, while using their
face as a touch surface.
InterFace Architecture Overivew
Figure 1 shows the architecture of our proposed InterFace
framework. It consists of two major computer vision
based components including: 1) Face Landmark Detection
& Localization, and 2) Hand Gesture Detection & Localization.

Face Landmark Detection & Localization (FLDL):
This component is responsible for detecting and localizing
the position of facial landmarks on each of the frames
received from the camera. The located landmarks will then
be used in combination with the Hand Gesture Detection &
Localization component to calculate the touched target area
on the face.
HandGesture Detection & Localization (HGDL):Our

proposed HOF input modality treats face as a touch surface.
Thus, depending on the target application, various static
or dynamic hand gesture types need to be detected and
classified (e.g., index finger pointing, pinch to zoom, and
facepalm). Moreover, the task to be performed on the
smartphone depends not only on the gesture type but also
on the location of the hand relative to the face elements. For
instance, pointing index finger to lips could mean turning
the microphone on during a phone conversation, while
the same gesture of pointing the index finger on the nose
could mean turning the microphone off. Identifying the hand
gesture type and localizing the gesture in the frame is the
responsibility of the HGDL component.
In InterFace system, each frame received from the

smartphone’s built-in camera (Camera component) goes
through the two models embedded in the FLDL, and HGDL
components to detect the coordinates of the facial landmarks,
the gesture type, and the coordinates of the gesture in
the frame. The outputs of these two components enter
the Interaction Control unit. Using the gesture coordinates
(output of HGDL) in relation to the facial landmarks
coordinates (output of FLDL), the controller identifies the
face area that the interaction has been performed on. This
calculation is based on the greatest proximity (e.g., minimum
distance) of facial landmarks with the gesture location.
Utilizing this result and the gesture type (output of HGDL),
the Interaction Control unit identifies the user interaction.

Figure 1: The InterFace system framework architecture.

The result will be then sent to the Output component,
where depending on the target application an appropriate
action will be performed and feedback will be provided to
the user. For instance, if the user employs HOF gestures
to change the music volume of a song while driving, the
performed HOF interaction will be reflected in the audio
level of the smartphone.
InterFace Implementation Details
Based on the overall architecture of InterFace described
above, we implemented a potential prototype of the system
in the form of an Android application to demonstrate its
feasibility. In our implementation, we employed the Mobile
Vision API [2] for FLDL component to detect 8 main facial
landmarks (see Figure 3-b). For the HGDL component, in
this research, we only considered one static and common
hand gesture (i.e., pointing with index finger) to be detected
on the face. However, depending on the use case, the HGDL
component could be extended to include the detection and
classification of other gestures. Focusing on this single
gesture, the HGDL component further needs to localize the
fingertip of the index finger within each frame to locate
the gesture. However, there exist no publicly available
model capable of detecting the index fingertip especially
on the face. Thus, we collected a dataset of images with
various backgrounds and lightings and annotated the index
fingertip location within each image. We then trained an
object detection model to localize the index fingertip within
each frame. In the following, we describe in detail our data
collection, model training process, and the implementation
details of our Android application for detecting small index
fingertips within the frames.
Data Collection
In our implementation, the goal of HGDL component
is to localize the absolute location of the users’ index
fingertip within each of the frames received from the
smartphone front-facing camera using computer vision
techniques. Detecting fingertip from captured RGB frames of
a smartphone’s camera is challenging due to 1) background
complexity, 2) hand orientation, 3) lighting varieties,
and 4) image blurriness due to the camera movements.
Furthermore, detecting fingertip over the face is even
more challenging due to color similarity of hand with face
skin. These challenges make traditional skin color-based
fingertip detection techniques (e.g., [21, 36]) not suitable for
recognizing HOF interactions with smartphones.
Deep learning (DL) has proved to be very effective in

addressing computer vision problems. Specifically, DL-based
object detection and localization (e.g., YOLO [37], and
SSD [29]) appears to be a promising direction for locating
the users’ fingertip within each of the received frames
from the camera. For training an object detection model
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Figure 2: Examples of HOF collected image data under 2
sample lighting conditions, with 2 pre-defined distances,
with varying backgrounds, and hand posture orientations.

capable of detecting fingertips, publicly available datasets
do not contain appropriate HOF image data. For instance,
Cam3D [31] andHand2Face [35] datasets focus on employing
hand over face occlusions to better recognize the human
facial emotions. Thus, their hand gestures are limited to
those relevant to facial emotions and very few instances of
our target gesture (i.e., index finger pointing) can be found
in these datasets. Thus, we collected a dataset of HOF images
consisting of 8500 annotated images (the process of our data
collection is described below). We combined our dataset with
22000 images collected by Huang et al. [19] for detecting
finger key points from an egocentric vision with a mobile
camera. Thus, in total, our collected dataset includes 30500
images, each annotated with the fingertip locations.
For collecting our HOF image dataset, we asked eight

volunteers (four females and fourmales) to record 6—10 short
videos-clips (20-40 seconds) from themselves individually
with the front-facing camera of their smartphone, while
using their index finger to point and touch on different
areas of their face as well as the environment around them.
We asked our volunteers to record videos with various
indoor and outdoor backgrounds, with varying lighting
conditions, distances (i.e., normal distance, and at arm’s
length distance), and different hand posture orientations
to make the resulting trained model support fingertip
detection in diverse situations. Figure 2 shows sample
collected images considering the aformentioned criterias.
Our collected images consist of the extracted frames from the
recorded videos. For automatically annotating the location
of index fingertip inside each extracted frame, we took
advantage of Visual Object Tracking (VOT) which is the
process of locating a moving object over time in a video [25].
Among various VOT techniques, we specifically chose
CSRDCF technique [30] due to its high accuracy [25] and its
integration into the OpenCV library.
Index Fingertip Detection Model Training
Using our collected dataset, we trained an object detection
model for index fingertip detection and localization. For

training, we used the single shot multibox detector (SSD) [29]
with MobileNet [17] as the backbone feature extractor.
SSD and MobileNet were chosen as they are considered as
efficient network architectures (low computational burden)
and implementations for the applications of mobile vision.
For the training, we initialized the weights with a truncated
normal distribution with a standard deviation of 0.03. The
initial learning rate is 0.004, with a learning rate decay of 0.95
every 5,000 iterations. The input image size is 300 * 300 pixels
as well. For our experiment, we randomly divided the dataset
in a ratio of 8:2. The former part is used as the training data
and the latter as evaluation data. Thus, 24,400 images were
included in the training set and the evaluation set included
6,100 images. Another alternative for dividing the dataset is
using Leave One Subject Out Cross Validation (LOSOCV).
However, we do not expect a significant difference between
the two approaches due to similarities in features of humans’
fingertips. The performance of InterFace in our user studies
(§5) confirms this as none of the participants in data
collectioin phase were among the study participants and
the system still performed with similar accuracy.
We trained the model on CentOS 7 (1708) OS with

two NVIDIA Tesla P100 GPUs. In the evaluation, we set
the Intersection Over Union (IOU) threshold to 0.6 and
achieved 93% mAP (mean Average Precision) for fingertip
detection on our test images. For the development of the
Android application, a Sony Xperia XZ2 smartphone with
an MSM8998 Snapdragon 845 CPU and 4GB RAM was used.
The results on our testing smartphone revealed that the
application can detect and localize the users’ index fingertips
8 frames per second.
InterFace Implementation to Detect Small Fingertips
As we described above, for detecting index fingertip, we took
advantage of computer vision based object detection models.
However, localizing very small objects is a known challenge
in object detection models. Positioning the smartphone in
distant from the user’s face for performing interactions
results in obtaining frames with very small index fingertips,
which might result in poor detection and localization. To
alleviate this, in our developed Android application of
InterFace, we increased the feature resolution of fingertips
by magnifying each input frame with respect to the face
boundaries of user(s) present in the frame.
4 USING INTERFACE FOR SELFIE-TAKING
To investigate the feasibility and usefulness of InterFace,
we focus on investigating its application for improving the
experience of selfie photo taking as an exemplar use case.
we integrated our framework into an exemplar selfie-taking
application. We chose selfie-taking as our representative use
case as it is a commonly used application in which touch
screen input is challenging, due to the frequent need of
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holding the phone from an extended distance to capture
mid- or wide-shot selfie photos.
Exploratory Study: Selfie-taking in Practice
To inform the design of our HOF-based selfie-taking
application, we conducted a series of semi-structured
interviews exploring current challenges in selfie-taking
and common tasks supported in current selfie-taking
applications. We recruited four students and professionals
(3 females, 1 male, aged 17—34) who had experiences using
existing selfie-taking applications. Each interview session
lasted 45—60 minutes and were audiotaped.
Study findings: For taking selfies, two main tasks were

highlighted by our participants: 1) adjusting camera settings
(e.g., shutter release, and zooming), and 2) customizing facial
appearance. In this paper, we focused on the second task
which includes augmenting the face with AR lenses (e.g.,
virtual makeup or accessories), “we always add stickers. Makes
our photos look fun. [...] but it’s hard to select the right sticker”.
Participants also mentioned that they prefer customizing
their appearance before the photo is taken as they may not
be the camera owner, “sometimes its my friend’s camera and
I can’t edit my face later”.
Many face customization applications (e.g., Instagram,

Faceu, and Snapchat) allow users to select AR lenses using
touch input modality. However, using touch to navigate
through the large collection of AR lenses and apply them
to the face while holding the phone from a distance is a
challenging task. HOF gestures could be a more natural
and effective alternative for this task. Thus, we focused on
addressing this challenge in our selfie-taking application.
Furthermore, our results show that selfie-taking can be

categorized into two classes: 1) single-user, and 2) group selfies.
Adjusting the facial appearance is not only a challenge in
single-user scenarios but is also a big issue in group selfies
as it requires simultaneous customization, “most apps are
designed for a single user. It’s difficult to make everyone happy
about the stickers,” and “the person whose photo is taken can’t
control anything, may not in a nice facial expression.” Some
people in the group may prefer their face without any AR
lenses, while othersmight prefer adding some, “maybe we can
choose for each person to add or not add the emojis.” Our HOF
input modality could potentially provide effective support
for multi-user facial customization, thanks to the ability to
detect and track multiple fingertips and faces.
Facial Customization Tasks
Based on our study findings and literature review, we
articulated the tasks of enhancing face with AR lenses into
three main categories:
T1. Selection of the target AR lenses: In most selfie-

taking applications, there is a relatively large database of

Figure 3: a) Facial areas where InterFace supports interac-
tion and augmenting the face with AR lenses, b) 8 facial
landmarks detected on each face.

AR lense that users can choose from. However, selecting
the right one is challenging based on their small previews,
“looking through many small stickers isn’t fun”.

T2. Modification of the selected AR lenses: The users
needed ways to adjust the selected lens to their own face,
“some people’s faces are wide. Some are narrow. Stickers are of
the same size and can’t be much customized”. Examples of
such adjustments include resize, and rotation.
T3. Creation of new AR lenses: Within currently

available solutions for augmenting the facial features, there
is not much room for users to be creative and generate their
own AR lenses. Thus, HOF input modality can be effectively
and intuitively employed for creating such ARs on the face.
HOF is a natural and intuitive input modality for

performing all the aforementioned tasks. However, Selection
is the only task that almost all AR-based selfie-taking
applications allow users to perform and has been widely
employed by users. Thus, as an initial step, we focus on
addressing the selection task (T1) by integrating InterFace
into an Android selfie-taking application that allows users
to select and apply AR lenses on their face in real-time by
pointing with index finger to their different facial areas.
Adapting InterFace for Selfie-taking Scenario
We extended the InterFace Android application to enable
the selection of AR lenses on different areas of the face
using HOF input modality. Our application allows one or
more individuals, present in the camera frame, to choose and
apply facial AR lenses using the simple and static gesture of
touching their target facial area using their index fingertip
(see Figure 4). Figure 3-a shows the target areas of the face
that touching them results in augmenting the face with
lenses using our application. For each of these facial areas,
we embedded four alternative lenses to be selected from.
However, this database of lenses could easily be extended.
As an example, when a facial area such as lip is touched

for adding a beard, the available beard AR lenses appear on
his chin sequentially every ten frames apart. When the user
wants to make the selection, he simply removes his index
fingertip from his chin area and the last shown beard AR
lens will stay on his face. Covering the face with the hand
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Figure 4: a) The man has first touched his forehead to
add a hat and then touches his chin for a beard. The lady
touches her eye to add glasses. b) The user selected elements
corresponding to the touched areas (hat and beard for the
man and glasses for the lady) are added on the users’ faces.

results in removing all the added lenses. As each user’s index
fingertip and HOF gestures is tracked individually, multiple
users can perform the above interactions at the same time
without interfering each other in group selfie-taking.
5 EVALUATION OF HOF INPUT MODALITY
To evaluate the user performance and experience of the HOF
input modality, we conducted two user studies. In the first
study, we evaluated HOF against touch input in a single-user
interaction scenario. We chose touch-based interaction as
our baseline condition as touch has been considered the
most common input modality used in smartphones to date.
In the second study, we assessed the user experience of HOF
in a multi-user interaction setting by analyzing qualitative
feedback from pairs of participants who used the HOF input
modality for group selfie-taking.
Single-user Study: HOF vs. Touch Input
We compared our HOF-based selfie-taking application to a
functionally equivalent touch-based Android application. As
in the HOF application, the touch-based application uses the
Face Landmark Detection module to detect four target areas
of the face, each of which has four alternative AR lenses to
be selected from. To select an AR lens for a specific area, the
user presses a finger at the target area on the touchscreen
and holds the finger at that position on the screen to rotate
through the alternative lenses, which appear every 10 frames
apart. Once the user has found the desired AR lens, she
removes the finger from the screen to make the selection.
To remove all the added lenses, the user simply moves the
phone away from the face. Both applications were run on a
Sony Xperia phone with a 5-inch touchscreen display.
Participants: We recruited 18 participants (6 female, 12
male, ages 18-36, mean 24.6) with occupational backgrounds
in science, technology, accounting, sales and administration.
All participants were regular touchscreen-based smartphone
users, and 55.6% of them used selfie-taking smartphone apps
on a regular basis. 44% of participants indicated that they
never used hand gestures to interact with smartphones in the

past, while 55.6% of participants stated that they had tried
using gestures on smartphones a few times. Participants
were compensated for their participation.
Study design: The study was a 2x2 within-subjects,
single-session factorial design with two factors: Input Method
and Distance. The levels of Input Method were (HOF, Touch),
and the levels for Distance were (Close, Far). For the “close”
distance, we asked participants to hold the phone at a normal
distance fromwhich they normally interact with their phone,
in order to take a close-up shot of their face. For the “far”
distance, we asked participants to stretch their arms as far as
they could and hold the phone at that distancewhile selecting
AR lenses. We hypothesized that the HOF input method
would lead to better user performance and experience,
especially when users interact with their smartphone from
a far distance. The ordering of the presented input methods
was counterbalanced across participants.
Procedure: Following a sociodemographic questionnaire at
the beginning of the session, we introduced participants to
the task of applying leses to different areas of their face while
taking selfies using two different input methods. For each
application, participants progressed through 3 sets of tasks:
1. Guessability tasks: Before introducing our applica-

tion, we first collected participants’ feedback on what they
considered as suitable methods for AR lens selection. We
gave participants 4 tasks of applying a lens to their nose, eyes,
lip, and forehead. For each task, we asked participants to
suggest their own ways to perform the task, using the given
input method. For the touch input, we asked them to suggest
any methods that use the touchscreen. For the HOF input,
we asked them to suggest and perform any methods that use
hand gestures on the face. We encouraged the participants
to suggest as many suitable methods as they would like.
2. Practice tasks: Following the guessability tasks, we

introduced the tested application to the participants. We then
asked them to perform 4 AR lens selection practice trials to
familiarize themselves with the application.
3. Study tasks: Upon the completion of the practice trials,

we asked participants to perform 10 close-distance trials and
10 far-distance trials, for a total of 20 trials per application.
Each 10-trial set contains 4 trials that require selecting
one AR lens per trial, and 6 trials that require selecting 2
lenses per trial. Participants were instructed to perform the
trials as quickly and accurately as possible. The trials were
shown on a 13-inch laptop display located in front of the
participants. The ordering of the 20 trials were randomized
across participants.

After each application, we asked participants to complete
two questionnaires: (1) the NASA-TLX questionnaire
measuring perceived task load [14]; (2) the Absolute Rating of
InputMethod questionnaire assessing the usability and social
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acceptability of the tested input method. Upon completing
both applications, participants filled out the Relative Rating
of Input Methods questionnaire (Figure 5) to compare
the two input methods. We concluded the session with
a semi-structured interview, prompting for comparisons
of the two input modalities as well as suggestions for
improvement and further use cases. The study session
took approximately 60 minutes and was videotaped. The
phone screen was also video-captured for analysis of user
performance. The applications were also instrumented to log
all timestamped interactions with the smartphone, including
detected landmarks and displayed AR lenses.
Results

We evaluated the user performance and experience of the
two input methods using the following measures.
Guessability score: This metric was measured as the per-
centage of participants that suggested index finger-pointing
or touching a specific facial area as one of suitable selection
methods, as identified in the guessability tasks. This measure
is an indicator of the intuitiveness of the input methods
supported in our applications.

Table 1: Guessability scores of the two input methods
Task Touch (%) HOF (%)
Apply an AR lens to your nose 72.22 88.89
Apply an AR lens to your eyes 72.22 72.22
Apply an AR lens to your lips 72.22 72.22
Apply an AR lens to your forehead 72.22 66.67

Table 1 presents the guessability scores of the two input
methods for each facial area. Overall, both finger-pointing
and touching at a specific facial area were suggested by
the majority (>50%) of the participants, demonstrating the
intuitiveness of these methods. Besides finger-pointing,
participants also suggested a variety of area-specific
gestures (e.g., making circle gestures around the eye
areas). However, index finger pointing remained the most
commonly suggested gesture that can be uniformly applied
for all facial areas.
User performance:We evaluated the user performance of
the two input methods using two measures:
Completion Time: measured as the time taken (in

milliseconds) to complete a trial, starting from the first
touch/finger pointing until the participant successfully
selects the target AR lenses.

Error Rate: measured as the number of errors made by the
participant in each trial, manually counted from the video
recordings of the phone screen during the trials. An error is
defined as an instance at which the app incorrectly detects
the facial area that the participant intends to touch on or
point to (e.g., the participant points to the nose area but a
lip lens is displayed). We excluded performance data of one
participant due to technical difficulties. From the remaining

participants, we collected 20 trials ∗ 2 input methods ∗ 17
participants, for a total of 680 trials. Time and error rate data
were first aggregated by participant and the two factors being
investigated. Results of Shapiro-Wilk tests showed that time
and error rate data were not normally distributed (W>.69,
p<.001). Thus, we performed the non-parametric Aligned
Rank Transform procedure [43], which enables the use of
ANOVA after aligning and ranking data. We then analyzed
the transformed data using a generalized linear mixed-effects
model of variance with Input Method and Distance as fixed
effects and Participant as a random effect.

Table 2: Completion time and error rate for close and
far distances of the two input methods (Mean (SD))

Distance Touch HOF
Time
(ms)

Error
rate

Time
(ms)

Error
rate

Close 9834.27
(432.06)

.17
(.05)

10855.57
(684.33)

.02
(.01)

Far 13033.81
(1111.95)

.47
(.09)

12209.81
(892.71)

.07
(.03)

Table 2 presents user performance results of the two
input methods for close and far distances. The average
completion time across all trials for the HOF input was
11532.69 ms (SD=566.23). For the touch input, it was 11434.04
ms (SD=650.04). There was a significant effect of Distance
on completion time (F1,64 = 13.76,p < .001). However, there
were no significant effect of Input Method and no significant
interaction effect of Input Method ∗ Distance.

The average number of errors per trial for the HOF input
was .05 (SD=.02). For the touch input, it was .32 (SD=.06).
There was a significant interaction effect of Input Method ∗
Distance on error rate (F1,64 = 15.74,p < .001). To further
examine the effect of each factor, we performed post-hoc
pairwise comparisons using Wilcoxon signed-rank tests on
the original, non-normal error rate data. Results showed
that the HOF input method led to significantly lower error
rates compared to the touch input for both close distance
(Z = −2.83,p = .005) and far distance (Z = −3.42,p = .001).
For the touch input, the error rate at the close distance
was significantly lower than that at the far distance (Z =
−3.00,p = .003). In contrast, for the HOF input, there was
no significant difference in error rate between the close
and far distances (Z = −1.51,p = .13). Overall, these
results demonstrate the superior accuracy of the HOF input
compared to the touch input, and the consistency in the
performance of the HOF input across different distances.
Perceived Workload: Based on the results of NASA-TLX
questionnaire, the average overall workload score for the HOF
input was 42.61 (SD=3.09). For the touch input, it was 52.84
(SD=5.36). Results of ANOVA tests showed significant effects
of the input method on the overall workload score (F1,16 =
4.58,p = .048), in favor of the HOF input.
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Figure 5: Relative rating of the two input methods (*
indicates statistical significances).

Absolute Rating of Input Method:We asked participants
to rate each input method using a 13-item, 5-point scale
questionnaire. The questionnaire consists of two subscales:
Usability: This composite subscale consists of 7 usability

measures, including intuitiveness, speed, accuracy, ease of use,
comfort of use, enjoyment, and learnability. The composite
usability rating (Cronbach’s α = .84) of the touch input was
3.47 (SD=0.70). For the HOF input, it was 3.86 (SD=0.72).
Results of an ANOVA test showed that there was no
significant effect of Input Method on the composite usability
rating (F1,16 = 3.69,p = .07). Results of Wilcoxon
signed-rank tests on individual scale measures showed that
the HOF input was rated as significantly more enjoyable than
the touch input (Z = −2.52,p = .012).
Social acceptability: This subscale consists of 6 mea-

sures assessing participants’ willingness to use the input
method in 6 social contexts (alone, family or friend, stranger,
home, public space and workspace), as used by Serrano
et al. [39]. The reliability (Cronbach’s α ) of our social
acceptability questionnaire was 0.844. Participants expressed
a strong willingness to use the HOF input method when
being alone (median = 5.0, IQR=4.0-5.0), at home or with
family or friends (median = 4.0, IQR=4.0-5.0). However, they
expressed either neutral or low willingness to use this
gesture input when being with a stranger or at a public space
(median=3.0, IQR=1.5-4.0), or when being at a workspace
(median=2.0, IQR=1.0-3.0).
Relative Rating of Input Methods: After participants
completed both conditions, we asked them to indicate which
of the two input methods performed better on the same 13
criteria included in the Absolute Rating questionnaire, in
addition to their overall preference (figure 5).
Results of Chi-square tests showed the HOF input was

rated significantly better in terms of enjoyment (χ 2(1) =
4.77,p = .029), and overall preference (χ 2(1) = 4.77,p = .029),
compared to the touch input. Participants were significantly
more willing to use the HOF input than the touch input

if they were at home (χ 2(1) = 7.11,p = .008). However,
they expressed a significantly stronger willingness to use the
touch input in public (χ 2(1) = 7.11,p = .008), at workspace
(χ 2(1) = 9.94,p = .002), or when being with a stranger
(χ 2(1) = 7.11,p = .008).

In summary, quantitative results of the study showed that
the HOF input method led to significantly higher accuracy,
higher enjoyment level, and were overall preferred by the
participants, compared to the touch input.
Qualitative Feedback:We performed thematic analysis on
the transcribed interviews and categorized the participants’
feedback into two themes.
1. User experience: Participants described their experi-

ences of the HOF input method as “fun”, “cool”, “intuitive”,
and “enjoyable”. Many of them commended the accuracy
and consistency in the performance of the HOF input across
different distances, “There was not much of a difference when
holding the phone close vs. far with the gesture. With the
touch, if you are holding it further away, it’s annoying. Also
your face is smaller, so it’s easier to get confused between
eyes and forehead”. The HOF method also eliminated the
occlusion issues inherent in the touch method, “I found
it more comfortable because I was able to see on the screen
what was happening with the gesture. . . [With the touch]
I had to keep removing my finger to check what’s behind”.
Although this study focused on single-user interactions,
participants also envisioned the potential of HOF input to
improve group-based interactions, “I can imagine taking
selfies withmy kids. It would be funny to point atmy daughter’s
eyes and change the sticker on her eyes”. Despite the general
positive experiences of the HOF method, four participants
still expressed their overall preferences towards the touch
input, mainly due to its familiarity and intuitiveness.

Participants offered several suggestions for improving the
usability of the HOF method. They suggested to improve
the robustness of the fingertip tracking. In addition, instead
of time-based scrolling through alternative AR lenses, they
proposed the use of swiping, tapping, or hand wave gestures
to rotate through those lenses at their own pace.
2. Social acceptance: In consistent with the quantitative

results, most participants expressed a strong willingness to
use the HOF input method in private settings (e.g., at home,
or with family or friends). However, they had concerns for
using the gesture input in public settings, and preferred the
touch input in those cases, “if I’m in public places and more
exposed, I’d prefer the touch one just because it’s more hidden.
It makes me fit more and less stand out”.
Multi-user Observational Study
To gain a further understanding of the potential of the
HOF input method to support group-based interactions, we
conducted 3 observational study sessions, each of which
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included two participants. Our aim was to observe users’
interactions with the HOF input in the context of group
selfie-taking, collect qualitative feedback on the value of
HOF input for group interactions, and explore other use
cases of this modality.
Participants: We recruited three pairs of participants
(3 females, aged 17—44) from a variety of backgrounds
including technology, accounting, and sales who had not
participated in the previous studies. Five participants
had previous experience using off-the-shelf products to
augment their face. One mentioned that she always applies
modification on her selfies such as AR lenses, skin smoothing,
and adding text.
Procedure: Each observational study session began with a
brief training session, inwhichwe introduced ourHOF-based
selfie-taking application, and walked participants through a
sample scenario covering the features of the application.
Following the training session, participants filled in a
background demographic questionnaire.We then asked them
to perform a number of tasks that involved taking selfies
with the other participant. We also asked them to think aloud
while performing the tasks. Afterwards, the participants
of each session took part in a semi-structured interview.
Interviews focused on the participants’ experience with our
application, its benefits, challenges, future extensions, and
other use case scenarios of HOF input channel. In each
session, one researcher observed the user interactions with
the camera and took notes. Each session lasted for about
30—60 minutes and was audio recorded.
Results

We analyzed the collected data and grouped comments by
emerging themes.
Overall response: In general participants were very
positive about HOF input channel , “To me, it looks pretty
straightforward. [...] I’m always looking at my phone. Why not
use it to make changes”. The usefulness of the HOF interaction
was clear for the participants especially for taking group
selfies, “if you have a group, everyone wants to do it at the
same time”, and “that’s the dream [laughing]. My wife loves
adding make-ups on our selfie photos but I don’t need them,
and there is no easy way to get rid of them”.
HOF gestures for camera controls: Users found HOF
interactions useful for controlling the camera settings such as
the lighting, zoom level, and camera focus, “I’d use it for group
photos. Maybe not just for filters but if someone wants to make
sure that their face is focused, they can point at themselves”.
Support for devices with varying screen sizes: Partici-
pants hypothesized that HOF input channel can go beyond
smartphones and can be employed in devices with varying
screen sizes with embedded cameras. Smart watch is an
example that using HOF interactions can eliminate the

occlusion issues resulting from using touch as the input,
using only the built-in camera of the device.
User experience: Users suggested future extensions of our
prototype based on the user characteristics and context.
1) Prioritizing AR lenses according to user char-

acteristics: Participants reported that they prefer the
appearance of the AR lenses to be adjusted based on their
own characteristics (e.g., gender, and age). “It’d be cool if men
and women can have different options to choose from”, and “if
my age was 60, I’d have liked to see elements of 70’s or 80’s”.
2) Filtering lenses by context: Participants suggested

considering the contexts (e.g., gym, beach, and restaurants)
and filter the lenses based on only the related contexts, “when
I’m working out at the gym, I can’t easily find workout stuff to
add to my photo before sharing with my friends”.

6 DISCUSSION AND FUTURE WORK
Value of HOF Input Modality
The results of our evaluation studies clearly demonstrated
the potential of the HOF input channel to improve the user
experience of smartphone interaction in scenarios where
touch input is limited. In the single-user selfie-taking study,
HOF input led to significant improvements in both accuracy
and perceived workload, and was rated as more enjoyable
compared to the touch input. As a result, participants
expressed strong preferences towards the HOF input, even
though there were concerns about the social acceptability
of this modality in public settings. Qualitative findings from
our two user studies also indicated that the HOF input
was not only effective for interacting with smartphones
from a distance, but also especially useful for supporting
simultaneous interactions in group settings. Furthermore,
this new input channel shines not only for interaction with
smartphones but also for interacting with other devices of
different screen sizes such as smart watches, as suggested
by our participants. Similarly, we hypothesize that large
interactive displays commonly used for collaboration or art
installations can also benefit from HOF input modality for
allowing people to interact with them from a distance.

Applications of InterFace Framework
Based on the qualitative results of our studies and review of
literature we propose a number of applications where HOF
input modality, enabled by our InterFace framework, could
potentially improve user experience.
Supporting smartphone interaction while driving:

Smartphones are nowadays used for functionalities such
as navigation, playing music, and making phone calls while
driving. People often mount the device to their car front
decks at a certain distance. This significantly reduces the
ability to perform touch input. Serrano et al. [39] showed the
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usefulness of panning and pinching gestures on the user’s
cheek and chin for navigation applications with head-worn
displays. Thus, HOF gestures can potentially be employed
to interact with smartphone applications such as navigation
and music playing in the car.
Enabling visually impaired users to interact with

smartphones: Bennett et al. [4] investigated how teens
with visual impairment access smartphone photography. The
results reveal that adding AR lenses on face is a challenge
for this group of users, “I can’t tell which lens is coming up or
where I need to click. [...] I’ll have to get close to the camera,
find the lens, and then back”. Thus, the HOF input modality
can potentially improve the experience of this group of users
in taking photos.
Photo editing of faces with semantic interaction:

People use photo editing softwares such as Adobe Photoshop
for face editing. However, this task could be challenging with
smartphones due to their limited screen size, and the need to
navigate through menus for selecting functionalities. HOF
gestures could assist in this scenario by mapping the editor’s
facial elements to the face of the target person selected for
editing in the photo. The editor can then improve the target
face by performing HOF gestures on her own face.
Enhancing shopping experience through Virtual

Reality: Live virtual try-on of products such as beauty
items has grown interest in the shopping domain recently.
However, selection and filtering of products using touch
and menus might be challenging for users. HOF gestures for
purchasing facial related products (e.g., lipsticks, eye glasses)
could be a potential way of trying products without the need
to use public touch screens, and customers would be able to
perform these interactions from a distance.
Video conference meetings: During the video con-

ference meetings, it could be challenging to manage the
interaction (e.g. muting/unmuting the microphone) when
multiple people are in the same room and are participating
using a single device. HOF gestures could potentially be
useful to control the video conferencing device from a
distance. For example, one of our participants suggested
placing index finger on the nose for muting the device,
“instead of looking for a button on the device to mute it or
asking someone else to do it, I’d prefer just shushing”.
Future Directions
Performance improvement: As we described in §3, two
DL models are constantly running to detect the face
landmarks and fingertips. This might negatively affect the
performance of our application. As future work, we plan to
create a single model for both detecting the face landmarks
and HOF gestures to maximize the performance of InterFace.
Also, our study results indicate that the completion time of
HOF is slightly higher (but not statistically different) than

the touch condition for close distance. We hypothesize that
the slow fingertip detection frame rate is the main factor
affecting the completion time. In future, we will test this
hypothesis with an improved fingertip detection model.
Expanding the gesture vocabulary: Using HOF input

channel opens up many new interaction possibilities. In the
application of selfie-taking, new gestures could be embedded
to address the Modification (T2) and Creation(T3) tasks
identified in §4. Examples include pinching to zoom in/out
for resizing the lenses, tapping for skin smoothening, and
sketching the shapes of desired lens on the target face area
to filter lenses based on both shape and position.
HOF gesture activation: given the relatively high

frequency at which people touch their face, Midas touch
problem [16] (i.e., unintentionally issuing a command to
the device) may occur. One solution is to use a delimiter
at the start of the interaction (e.g., voice command, or
pressing a button) to explicitly activate the HOF gestures.
The frequency of occuring Midas touch problem depends
on the target use case. For instance, for the selfie-taking
scenario, this may not be a very frequent issue as people
often do not unintentionally touch their faces before taking
photos. Thus, we left out the examination of this factor in
this first exploration.
Evaluating HOF input in new use cases: Depending

on the target use case of HOF gestures, the accessibility and
social acceptability of touching facial areas need to be further
studied. For example, in driving, touching eyes might not be
acceptable in comparison to cheeks or chin.
Touch vs. hover: Identifying whether the user has

touched her face or hasmoved her hand over her facewithout
touching is challenging with the current 2D photos taken by
smartphones. In future, we aim to explore the use of depth
sensors to differentiate touching vs. hovering over the face.
7 CONCLUSION
We presented HOF input modality as a novel input channel
for interaction with smartphones, offering extra possibility
of interacting with the phone under certain situations,
e.g., when the phone is at a distance from the user. We
introduced InterFace as a framework for realizing the HOF
gestural interactions with smartphones. We demonstrated
the usability of InterFace in practice by integrating it into
an exemplar selfie-taking application. In a study comparing
HOF with touch input for augmenting face with AR lenses,
we found that HOF significantly improved accuracy and
perceived workload, and was preferred by the participants.
Qualitative evaluations of our application revealed the
potential of HOF input to enhance user experience in both
single and multi-user interactions, its suitability for new use
cases, and future extensions of the system.
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