
Governor: Turning Open Government Data Portals into
Interactive Databases

Chang Liu
c.liu@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Arif Usta
arif.usta@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Jian Zhao
jianzhao@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Semih Salihoğlu
semih.salihoglu@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Figure 1: Governor: an interactive system to help users effectively search, preview, and integrate tables from OGDPs. The main
interface of Governor consists of: (a) Search view which allows findind open data tables by the description of the dataset or the
values stored in the table; (b) Original Table view which provides a preview of the original open data tables; (c,d,e) Working
Table view which facilitates integrating multiple tables through automatically detecting unionable and joinable tables.

ABSTRACT
The launch of open governmental data portals (OGDPs) has popular-
ized the open data movement of last decade. Although the amount
of data in OGDPs is increasing, their functionalities are limited to
finding datasets with titles/descriptions and downloading the actual
files. This hinders the end users, especially those without technical
skills, to find the open data tables and make use of them.We present
Governor, an open-sourced[17] web application developed to make
OGDPs more accessible to end users by facilitating searching actual

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems (CHI ’23), April 23–28,
2023, Hamburg, Germany, https://doi.org/10.1145/3544548.3580868.

records in the tables, previewing them directly without download-
ing, and suggesting joinable and unionable tables to users based on
their latest working tables. Governor also manages the provenance
of integrated tables allowing users and their collaborators to easily
trace back to the original tables in OGDP. We evaluate Governor
with a two-part user study and the results demonstrate its value
and effectiveness in finding and integrating tables in OGDP.

CCS CONCEPTS
• Information systems → Information integration; Search in-
terfaces; • Human-centered computing → Interactive systems
and tools.

KEYWORDS
open data, data integration, database, user interface

https://doi.org/10.1145/3544548.3580868

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

ACM Reference Format:
Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu. 2023. Governor:
Turning Open Government Data Portals into Interactive Databases. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3544548.3580868

1 INTRODUCTION
The launch of open governmental data portals (OGDP), such as
data.gov, open.canada.ca, data.gov.in, data.gov.uk has popularized
the open data movement of the last decade. These portals publish
large numbers of datasets about many aspects of governments and
the countries these governments govern. Example topics include
how governments distribute research funds, how much meat the
country exports, or the CO2 emissions of different factories in a
country. The core goal of opening datasets to the public is to make
governments more transparent and fulfill the information needs of
different members of the society [10]. In their usage vision, these
datasets can be analyzed by policy analysts, journalists, researchers,
and engaged citizens to find rooms for improvement in how govern-
ments operate and identify corruption and systematic injustices in
a country. In light of this vision, the potential societal value of mak-
ing government datasets more open and easier to find, understand,
and analyze for the users can be invaluable. However, as identified
in prior studies on datasets and open data users [18, 25, 35, 39, 45],
existing OGDPs fall short on delivering their potential value to their
intended users due to several shortcomings on these portals that
do not address some complex user needs. We next discuss several
of these shortcomings that motivate our work.

ExistingOGDPs, including dataset search engines, such as Google
Dataset Search [21], have search interface that only supports meta-
data search which heavily relies on the accuracy and availability
of metadata information of the datasets. Yet, low metadata quality
negatively impacts users’ dataset discovery to find and consume
datasets [39]. Furthermore, there have been user studies [18, 35, 45]
where OGDP users share their frustration of not being able to find
desired datasets and indicate the need for improvement of search ca-
pabilities. In order to alleviate search ineffectiveness in OGDPs, one
promising solution is to provide tuple/record search to complement
metadata search. Many questions that are of interest to users can
be answered through a few records. Consider the questions: “How
many refugees from Afghanistan, Syria, Ukraine, etc. did Canada
accept in 2022?” The answer to these questions can be found in a
few tables with cells containing the country names but a search of
keywords such as “refugees” in open.canada.ca returns more than
50 tables based on metadata, most of which are unrelated.

Furthermore, as reported by open data users in [35] finding
datasets also involves the step of data sensemaking, which includes
exploring dataset contents, e.g., column headers, descriptions and
types of columns, and first few rows. Existing OGDPs primarily ful-
fill the functionality of publishing datasets in some raw file format,
not offering features to make it easier for users to explore and under-
stand the dataset. In dataset search setup, users are more interested
in extending the current table they have in their hand rather than
finding a specific one [25]. Morever, many user tasks often span
over multiple datasets, which requires data integration features,
also reported as a recommendation in a related user study [35].

However, in existing OGDPs, this can be accomplished through
a tedious and manual task of finding related tables, downloading
them, and putting them together in a spreadsheet software.

Finally, the prevalence of need for integrating datasets makes
provenance management critical, as users are also interested in the
history and processes of data collection [35]. Provenance is also
vital in verifying an analysis based on a dataset [41]. In a recent user
survey [35], the feature of dataset sharing in open data portals is
identified as important, for which provenance can be instrumental,
as provenance helps users assess trustworthiness of data. However,
currently, once datasets are downloaded, users have to manually
keep track of provenance information, which is challenging if not
impossible especially for tasks involving many datasets.

In this paper, we argue that the above challenges would be ad-
dressed by the core functionalities of database management systems
(DBMSs). For example, one can ask queries in DBMSs to search
through records. Similarly, tables that integrate multiple other ta-
bles can be modeled as views [29] over the base tables. DBMSs
also store information about how the views have been constructed,
which can serve as provenance information. Indeed several systems
in literature [42, 50] provide a subset of these features by storing
the tables in data “lakes” in a DBMS and making this data accessible
through a programming or query language, such as SQL. However,
such systems are not accessible to many potential users of OGDPs
who are not programmers. While several interactive data wrangling
systems support non-programmers for transforming and cleaning
data, such as Wrangler [34] and Rigel [26], they assume that users
have already found the relevant data tables and integrated them.
However, it is currently challenging for users to arrive at this step
without laborious operations.

Hence, we argue that for OGDPs to deliver their potential value,
they should evolve from mere publishing websites into interac-
tive visual systems with database capabilities that are familiar to
non-programmers. To achieve this overarching goal, we propose
Governor (Figure 1), a browser-based system to address the above
drawbacks of OGDPs. Governor models an OGDP as a database
of published tables, which can be accessed and integrated interac-
tively. Governor is designed for non-programmer users with the
basic skills for exploring and integrating data tables, thus making
it convenient to later wrangle and analyze the data through other
tools such as Excel, Tableau, and Wrangler [34].

Governor uses the open.canada.ca portal as a test-bed and in-
dexes all of the records in its tabular corpus. First, it allows users to
search original records about specific entities, such as “Afghanistan”,
and preview the result tables/records in a single interface without
downloading them and using a separate tool. Second, starting from
one of the original tables, users can start data integration sessions.
By interactively performing two core relational operations, unions
and joins of tables, through a few clicks, users can construct aWork-
ing Table that integrates multiple tables. These data integration
capabilities can be very useful when putting together frequently
and periodically published tables, such as daily COVID-19 case ta-
bles. The data integration sessions are generally guided through the
system’s suggestions for tables to union and join with the Working
Table. Lastly, Governor summarizes the integration task through a
simple color-guided provenance summary, Working Table Structure
(WTS), which visually presents the tables that have been integrated

https://doi.org/10.1145/3544548.3580868

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

and how (see the top-right panel in Figure 1c). For fact-checking and
verification, users can also view the original tables that have been
integrated or go to the cells in the original table that correspond to
the cells in the Working Table through a few clicks.

To assess Governor, we conducted a two-part user study, where
in Part 1 we employed three definitive tasks to test the system
with 12 participants and in Part 2 we devised an open-ended task
to evaluate the system with additional 6 participants. This study
helps evaluate the system in both controlled and natural settings,
providing different perspectives to user experience with Governor.

In summary, our contributions in this paper include:
• The design and development of an in-browser interactive system,
Governor, to assist non-programmers with finding and integrat-
ing data tables in OGDPs;

• Empirical findings of users’ experiences and behaviors on com-
pleting various tasks with the system on real-world datasets.

2 RELATEDWORK
In this section, we review prior work on four areas: (i) open data
search tools; (ii) interactive data integration systems; (iii) systems
and algorithms for finding related tables; and (iv) tools and visu-
alizations for data transformation or cleaning. Table 1 shows the
comparison between the closest prior systems and Governor.

2.1 Open Data Search Tools
Several systems support searching through large collections of
enterprise or open data lakes. These systems support search through
two search modes: (i) keyword queries, or (ii) table queries, in which
users search for tables related to a query table.

Google Dataset Search (GDS) [21] is a large-scale search engine
that indexes both public and private datasets. GDS crawls webpages
that contain special HTML tags indicating that the page contains a
dataset, and indexes the metadata about the dataset, which includes
their descriptions, publisher information, or data licences. Unlike
Governor, GDS is solely a search engine and does not index the
contents of the records, nor supports data integration.

RONIN [40] is a data lake exploration system that supports both
types of search modes we mentioned above. Users issue a keyword
query, then get back a list of tables, and then navigate the data lake
starting from a result table, which can be used as a table query to
further get a set of related/joinable tables. Internally RONIN uses
several indexing techniques, e.g,. the faiss index [32], to search
for related/joinable tables. However, RONIN is not designed to
integrate tables and provide provenance capabilities.

Auctus [23] is similar to RONIN and supports keyword and table
queries. The latter are issued by manually uploading a table into the
system. Auctus can also search the contents of temporal and spatial
columns. Auctus also supports limited data integration, where the
table can be joined or unioned with only one table at a time. To
integrate multiple tables, users have to download and re-upload the
intermediate data tables multiple times, which is tedious.

Toronto Open Data Search (TODS) [54] supports joining multi-
ple tables; however, TODS does not support unions, another key
database operation, which results in limitations for integrating data.
Governor instead supports integrating large numbers of tables with

both join and union operations, and is designed to manage these
integrated tables and their provenance.

2.2 Data Integration Systems
Several researchers have developed interactive systems that have
capabilities for data integration in data lakes. Voyager [20] is a data
search and discovery system. Voyager is an extension to Jupyter
Notebook. As such, Voyager is accessed through a programming
language, such as Python. Voyager supports both keyword and
table queries. Although not targeting data integration tasks, the
results of these searches are tables that can be integrated with other
tables in the user’s programming language. Voyager assumes an
interactive user experience, albeit the interaction happens through
a programmer writing snippets of programs, instead of Governor’s
clicking-based web interface.

Juneau [50] is also a Jupyter Notebook extension. We refer to
these notebooks as Juneau notebooks. Users can perform table
queries to search source data lakes, and the results can be integrated
with other tables in Juneau notebooks. However, the primary goal
of Juneau is to manage data science pipelines. To achieve this, the
Juneau notebooks, which contain both data integration and analyti-
cal codes are themselves stored in Juneau’s server. The computation
graphs of how the tables in Juneau notebooks were constructed
(i.e., their provenance) is used to suggest related tables to users.
Instead, Governor uses provenance information to facilitate fast
fact-checking in the original tables published in OGDPs.

KGLac [31] is another system that supports table queries. Sim-
ilar to Voyager and Juneau, KGLac targets programmers. KGLac
generates a knowledge graph out of a data lake, whose nodes con-
tain tables and columns and edges represent different relationships,
such as how similar different columns are. This knowledge graph is
stored in an Resource Description Framework (RDF) database [46],
which can be queried through the SPARQL query language. In ad-
dition, users can use the KGLac library in Python to perform table
queries and find related tables, which can be integrated in Python.

DICE [42] is a system in which users provide example tuples
of a desired table to the system. DICE then finds SQL queries that
could have generated those tuples. Although data integration is not
the focus of DICE, these SQL queries can perform automatic data
integration to generate a table that conforms to users’ examples.

2.3 Techniques for Finding Related Tables
Effective data integration requires algorithms for suggesting related
tables in data lakes. Prior research has studied the foundations of
finding unionable and joinable tables with respect to a current table
of interest. The literature assumes a setting in which a system
supports table queries. Given a query column, Zhu et al. [51, 53]
proposed efficient LSH indexes to find other columns that have
high value overlap with the query column. Nargesian et al. [38]
proposed a suite of indexing, searching, and ranking techniques for
the problem of finding unionable tables. Some of these techniques
are based on the values in the columns, some are based on ontology
mappings of the columns of the tables (if they exist), and others
are based on semantic similarity [19, 37]. KTabulator [47] uses
information in knowledge graphs to recommend columns and rows
for creating and extending ad-hoc tables from Wikipedia. These

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

Table 1: A comparison between features offered by Governor and closest related work. ✓denotes full support; ∼ denotes partial
support; × denotes not available.

GDS [21] RONIN [40] Auctus [23] TODS [54] Voyager [20] KGLac [31] Governor

Metadata Search ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tuple Search × × ∼ × ✓ × ✓
Data Preview × ✓ ∼ ✓ ✓ × ✓

Related Tables Suggestion × ✓ ✓ ✓ ✓ ✓ ✓
Data Integration × × ∼ ∼ × × ✓

Provenance Management × × × ∼ × × ✓
Interactive User Interface ✓ ✓ ✓ ✓ ∼ × ✓

techniques are complementary to our work. Governor uses a set
overlap-based technique for finding joinable tables and searches for
pairs of tables with the same schema to suggest unionable tables
(see Section 5.1). Our design principle here was simplicity but our
algorithms can be extended by other techniques from literature.

2.4 Data Visualization and Wrangling Tools
Data transformation and cleaning (a.k.a. data wrangling) is another
key step in data analytics pipelines in practice. Wrangler [34] is
an interactive tool that combines direct manipulation of visualized
data with automatic inference of relevant data transformations,
allowing users to iteratively explore a set of wrangling operations
and preview their results. Rigel [26] allows for rapidly transforming
tabular data by formulating data wrangling operations as direct
mappings from data to row, column, and cell channels of the target
table. Other tools have been proposed with the concept of “program-
ming by example” such as Wrex [28] to facilitate non-programmers
with data transformation tasks. These tools assume that users have
already possessed relevant data tables and integrated them, which is
currently challenging in existing OGDPs. Instead, Governor focuses
on the prerequisite steps to search and integrate tables.

Our premise of facilitating fact-checking and auditing through
provenance management in OGDPs has been articulated in other
data science settings. For example, researchers have noted the im-
portance of capturing provenance when teams of analysts share
data and analytics [27, 33, 41]. Several systems have been pro-
posed for visualizing and analyzing data wrangling pipelines. Vis-
Trails [22] is an early scientific workflow and provenance manage-
ment system for data simulation, visualization, and exploration.
Heer et al. [30] studied the design of history mechanisms for vi-
sual data exploration within Tableau [13]. Tools have also been
proposed for visualizing data science scripts such as Somnus [48]
and Unravel [43]. A recent survey on the provenance analysis of
user interaction and data visualization can be found in [49]. These
systems assume more general data transformation capabilities and
therefore propose more advanced solutions for provenance visu-
alization than Governor. Instead, Governor’s data transformation
capabilities are limited to joining and unioning tables. As such,
we designed Governor’s color-guided provenance summary, the
Working Table Structure, to intuitively present these operations.

3 USAGE SCENARIO
Shufan is a journalist who has been tasked with a specific ques-
tion: Are the vaccinations reducing COVID-19 cases in Ontario?

Figure 2: (a) Search results showing relevant tables grouped
under their datasets given the query and (b) original table
view when a particular table is clicked by the user.

Shufan decides to answer this question by correlating 1.5 years
of COVID-19 hospitalization cases with administered vaccination
doses. Knowing that this information is periodically published by
the government, he decides to construct a dataset using Governor.

He types “Ontario COVID” on Governor’s landing page and
clicks “Search Description” (Figure 2a), which returns back, among
other results, a dataset of COVID-19 Data in Ontario with many ta-
bles in it, since this information is published quarterly. He clicks on
the Vaccine data 2021-Q1 table, which opens the table in Original Ta-
ble View (Figure 2b). He notices 90 tuples in this table, one for each
day of the first quarter of 2021, with a total_doses_administered
column storing the number of vaccines administered in that day.

Shufan decides to enrich this table with data from other quarters
and also hospitalization cases. He clicks on the “Add to Working
Table” button (Figure 2b) on the right panel which copies this data
to the “Working Table” view. Next, he inspects the “Add Rows
From Other Tables (Union)” sub-panel in the Actions Panel, where
Governor lists its suggestions of other tables (Figure 3a) that have
the same schema. These are the tables in open.canada.ca that can be
union with the Working Table. There he sees multiple suggestions
for each quarter. He clicks on all the tables of vaccine data from Q2-
2021 to Q2-2022 and generates a table (Figure 3b) with hundreds of

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: (a) The panel for suggested unionable tables given
the working table, (b) Working table along with WTS on
top-right of the view after performing unions, (c) The panel
for suggested joinable tables and columns given the updated
working table, (d) Working table with color-coded rows, (e)
Working table component view showing the provenance of
the original tables constituting the bottom-most component.
(f) Join confirmation pop-up indicatingwhich of the previous
unioned tables’ rows can be populated with the columns that
the user selects.

tuples and two columns; report_date, and total_doses_administered
(hiding several other columns).

Next, Shufan decides to integrate hospitalization data into the
Working Table. Since these data are in separate files with differ-
ent schema, Shufan inspects the “Add Columns From Other Tables
(Join)” panel and sees several tables there (Figure 3c), including
“COVID-19 Hospitalizations”. The tables here all have close to per-
fect overlaps with a key (or almost key) column in the Working
Table, i.e., that is unique for each tuple in the table. In Shufan’s
current table, this is the report_date column. Shufan inspects the
columns that he can gather from COVID-19 Hospitalizations and
infers that icu and nonicu columns must be reporting the number
of hospitalizations that were (icu) and were not (nonicu) in inten-
sive care units. He clicks on these columns, upon which a pop up
menu indicates which of the 6 previous unioned tables’ rows can
be populated with these columns (Figure 3f). Shufan sees that each
of the 6 unioned tables can be populated and clicks OK, which ex-
tends the Working Table with two new columns (and no new rows)
(Figure 3d). This operation effectively joins each of the previously
unioned 6 tables with COVID-19 Hospitalizations.

Shufan next decides to do his analyses. He downloads the in-
tegrated table as a csv file and opens it in Excel. He plots a line
chart of total_doses_administered and icu and sees a sharp decline
starting in the second quarter of 2022, though without a clear effect
on hospitalization. He thinks that it would still be worth raising the
question of what has caused this decline in an article. He prepares

his article that contains the chart and sends it with a shareable
Governor link to the editors for fact-checking.

Upon opening the link, the editor sees the integrated table (Fig-
ure 3d) and inspects the Working Table Structure (WTS) panel (at
the top-right corner of Figure 3d) to understand the tables that
has been integrated. She sees that many tables have been unioned
thanks to color coding, and after inspecting the names of these
tables, understands that they correspond to quarterly vaccination
data. She knows that Shufan’s article mentions a decline in vacci-
nations in the second quarter of 2022, so clicks on the rectangle for
Q2-2022 on WTS, which opens the “Working Table Component De-
tail” pop-up (Figure 3e). She then clicks on the link to Vaccine data
2022-Q2 and opens it in the Original Table View. Here she eyeballs
the total_doses_administered column of the 92 tuples in this table
and notices that they are in the few thousands, which indeed looks
very low. She double checks the line chart in the article, and sees
that it plots numbers in the few thousands for the second quarter
of 2022. She then clicks on the Show Dataset Details link (at the
top-right of Figure 2f) and reads the dataset details to verify that
these are COVID 19 vaccination data published by the ministry of
health. She fact-checks the data in a few other quarters and lets
Shufan know that she has verified the article’s data.

4 DESIGN GOALS
Governor’s design was guided by three goals driven by our ap-
proach of providing DBMS capabilities to OGDPs through a non-
programming interface to address the drawbacks of existing OGDPs
we discussed in the introductory section.

G1: Improve dataset search: Finding the desired datasets is
a 2-step process [35] that involves search and data sensemaking.
In previous user studies [35, 45] done with open data users, it was
reported that users often find it challenging to locate what they
are looking for. An ideal data discovery tool should be designed
to provide effective features to enhance user experience for both
these processes. Existing OGDPs provide search functionality over
many attributes stored under metadata of the dataset; including
title, description, publisher name. However, this is not sufficient
for searching particular entities such as persons, universities, or
companies. Values identifying such entities often are not present
in dataset descriptions. Hence, our first design goal was to sup-
port searching over records to complement metadata search. After
search, users spend time studying the contents of the dataset, which
has to be done through third party applications outside the portal.
We further wanted to implement features to ease data sensemaking,
including previewing the data without downloading, listing column
names along with descriptions (if available), and performing basic
spreadsheet functionalities such as filtering.

G2: Support joining and unioning tables through a user-
friendly interface: In contrast to general web search engines, in
a typical dataset search session in OGDPs users tend to grow what
they find by adding external information rather than trying to find
new relevant information [25]. The results of a recent user study
[35] with open data users affirms that many user tasks require ac-
cess to multiple datasets. Tools to discover relationships between
datasets to link and ideally integrate them are highly recommended
as additional features for OGDPs. However, existing OGDPs do

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

Figure 4: Governor System Architecture.

not have features to find links between related datasets, let alone
integrate them. The publication style in OGDPs also have two prop-
erties that increase the importance of detecting and integrating
related datasets: (i) periodic publishing: tables being published at
certain time intervals, e.g., every month, week; and (ii) normaliza-
tion [44]: some information is published in a normalized form, i.e.,
partitioned into multiple tables to avoid data redundancy. Manually
finding related tables to integrate one by one is not practical, which
is what users have to go through using existing OGDPs. Therefore,
our second design goal is to have a functionality that supports
automatically detecting and integrating related tables through a
user-friendly interface. Particularly, we design table integration as
a combination of join and union operations, where join is handy
to detect related tables that share common columns while union is
effective to capture related tables that are periodically published.

G3: Support exploring provenance of the information in
integrated tables: As suggested in a recent user survey [35], an
important use case for OGDP datasets is to be able share data which
may include information from multiple tables to other potentially
interested users. For instance, a journalist publishing an article
based on data she gathered through an OGDP would also want to
affiliate provenance of the data to her article to increase trustwor-
thiness. The outcomes of the analyses based on the information
gathered by integrating tables from OGDPs can be sensitive and
require fact-checking, for which provenance is reported to be in-
strumental to ensure credibility [41]. Hence, our third design goal is
to provide a functionality to users so that they can track provenance
of the data gathered by integrating tables.

5 GOVERNOR SYSTEM
In this section, we give a detailed description ofGovernor’s imple-
mentation. Many of the existing OGDPs use the CKAN system to
host their portals. For example, each of the largest OGDPs that pub-
lish in English, open.canada.ca (Canada), data.gov (US), data.gov.uk
(UK) use the CKAN system. Although we have used open.canada.ca
in our study, Governor can work with any CKAN-based portals.
We discuss how to run Governor on a different portal in Section 5.3
and provide documentation in our GitHub repository [17]. As a
background, we note that CKAN-based OGDPs are comprised of a
set of datasets, each of which contains multiple data files, e.g., csv
files, and a metadata file providing descriptions of the data files.
Governor indexes only the tabular files.

Figure 4 shows an overview of Governor’s architecture. The
front end of Governor is a single-page Vue.js [15] web application.

In the front end, we use the DuckDB-Wasm system, which runs in
the browser and handles the data transformation operations in the
Working Table or the original tables in the Original Table View (e.g.,
sorting or filtering). The back end of Governor combines multiple
technologies and provides a unified interface for the front end via
a HTTP server. The back end fetches the open datasets from the
government data portal through CKAN[3] API, indexes the dataset
with MongoDB [9] and Elasticsearch[7] for querying, and serves
the data files by converting them into a compressed Apache Parquet
[2] format using Apache Arrow [1], as illustrated in Figure 4.

5.1 Core Functionalities
Governor’s core functionalities aim to support non-programmers
to interactively search, explore, and integrate datasets on OGDPs.

5.1.1 Searching Datasets (G1): We implemented two different search
modes in Governor: Search Tuples and Search Description. Users can
perform a search by typing a keyword and select one of the search
modes. The search results, which are a set of tables, are grouped
by dataset and contain the notes, subjects, and release date of each
dataset, which can be seen in Figure 2a.

In the back end, we use MongoDB to index the metadata descrip-
tion of each dataset and the tables under it as one document (∼30K
in total). We use Elasticsearch to implement tuple search. We index
each tuple t of each table 𝑇 in open.canada.ca as one document
(∼323M in total). The document contains the table ID of 𝑇 and all
of the values in 𝑡 ’s column as a single array value. An alternative
design can store each column value separately but for tables with
many columns, this design runs into Elasticsearch’s limitations on
number of different document fields. When users ask a tuple search
query, we first retrieve Elasticsearch results, then go toMongoDB to
retrieve the metadata information about table IDs and the datasets
these tables are from.

5.1.2 Table Integration (G2): Governor supports gathering more
data into the Working Table (WT henceforth) through the two core
data integration operations of join and union. We first describe the
conceptual components of the WT and the user interactions that
Governor supports. Then we discuss how the system detects and
suggests joinable and unionable tables. In Appendix A discuss our
choice of using DuckDB-Wasm to achieve interactive speeds when
performing these operations.

Conceptual Components of WT: We divide the tables in WT
into 2 conceptual classes:
• Unioned tables contain the original table the user populated WT
with and any other table that the user unioned this table with
to add new rows to WT. Unioned tables have exactly the same
schema.

• Joined tables are those that are joined with one or more of the
unioned tables to add new colums to the WT.

At any point in time any subset of the columns of unioned and
joined tables are visible in WT. We refer to these as the unhidden
unioned/joined table columns. Users can perform the following data
integration operations.
• Joins are performed through the “Add Columns fromOther Tables
(Join)” panel that presents to the user a list of of suggested tables
SJ = {𝐽1, ..., 𝐽𝑘 } and the columns of these tables that can be

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

integrated to WT through joining (Figure 3c). These tables do not
share the same schema as the unioned tables and is joinable with
at least one unioned table𝑈𝑖 on join columns𝑈𝑖 .𝑘𝑖 = 𝐽 .𝑘 𝑗 , where
𝐽 .𝑘 𝑗 ≠ 𝐽 .𝑐 . We discuss how Governor populates its joinable table
suggestions momentarily. When a user clicks on a column 𝐽 .𝑐

from a suggested table 𝐽 , the user is provided with the list of
unioned tables U𝐽 = {𝑈 𝐽 1, ...,𝑈 𝐽 ℓ } ⊆ U, where U is the set of
previously unioned tables that 𝐽 can be joined with. For example,
in our usage scenario, our journalist Shufan was presented with
6 possible unioned tables (one for each quarter of Vaccine data
from Q2-2021 to Q2-2022) after clicking on the icu and nonicu
columns of the suggested Hospitalization table (Figure 3f). The
user clicks on any subset U′

J ⊆ U𝐽 and clicks OK. This joins
(on the join columns) each of the unioned tables inU′

J with 𝐽

and fills the new 𝑐 column for each row 𝑟 of these tables with
values from 𝐽 (based on 𝐽 ’s row(s) that 𝑟 joins with).

• Union a new table𝑈𝑘+1 (assuming currently there are 𝑘 unioned
tables) to WT from the suggested list of unionable tables un-
der the “Add Rows From Other Tables (Union)” panel (see Fig-
ure 3a for an example). We discuss how Governor populates its
unionable table suggestions momentarily. This will add the rows
𝑡1, ..., 𝑡𝑚 of 𝑈𝑘+1 to WT and display the values of the unhidden
unioned table columns of these rows. If the𝑊𝑇 .𝑐 is column that
was integrated into the table from a joined table, i.e., one of the
previous unioned tables was joined with a table 𝐽 to add 𝑐 , the
system will put the value “Unfilled” for the 𝑐 column of 𝑡1, ..., 𝑡𝑚 .
Detecting and Suggesting Unionable and Joinable Tables:

For unionability, we opted for a schema-based approach, where we
required the schemas of unionable tables (i.e., sets of column names)
to be the same with the unioned tables in WT. Our goal here was
to choose a simple definition of unionability that can detect period-
ically published tables which overwhelmingly have same schemas.
This is the most common case of unionable tables that we observed
across open data portals. More advanced definitions of unionability
have been proposed [19, 37, 38], such as when subsets of columns
have high content similarity. We leave the robust implementations
of these techniques to future work. In our implementation, we pre-
process the entire corpus to find pairs of tables that have the same
schema and put these pairs into MongoDB. During a user session,
the “Add Rows from Other Tables (Union)” panel is populated by
querying MongoDB with the first unioned table.

We also preprocess the corpus to find joinable table-column pairs.
We use the containment score (a.k.a overlap set similarity metric) to
compute a joinability score between table-column pairs. This is a
frequently used joinability metric in the literature [24, 40, 51–53].
The containment score is defined as |𝑄.𝑐∩𝑐𝑖 |

|𝑄.𝑐 | where𝑄𝑐 is the query
column that the system needs to find joinable columns for, and
𝑐𝑖 ∈ 𝐶 are the set of other candidate columns from a corpus of
columns𝐶 . This containment score ranges from 0 to 1, where 1 has
perfect containment. We store table-column pairs 𝑇1 .𝑐1 and 𝑇2 .𝑐2
that satisfy the following three constraints in MongoDB; (i) the
containment score of 𝑇1 .𝑐1 and 𝑇2 .𝑐2 is high (>0.7 by default), to
ensure the join will not result in many NULL values; (ii) either c1
or c2 has to be a key (or almost a key >80% of values being distinct)
to ensure that WT will not grow much after the join; and (iii) T1
and T2 have to be under the same dataset. We observed that there

Figure 5: Join plan panel that suggests how to fill each non-
joined unionable table inside the working table.

are many pairs of tables from unrelated datasets having entirely
different subjects that accidentally share columns with many value
overlaps, e.g., date attributes that are spanning same period of time
for unrelated tables. The third constraint prevents Governor to
suggest such pairs of tables. After applying these constraints, we
found ∼200K many pairs in open.canada.ca. During a user session,
the “Add Columns from Other Tables (Join)” panel is populated by
querying MongoDB for each of the unioned table’s key/almost key
columns.

In many use cases, users may need to join each unioned table
with a separate table to enrich WT with a single common col-
umn. We observed that this is in fact the more frequent scenario in
open.canada.ca and happens on datasets that contain periodically
published and normalized tables. For example each NSERC Awards
dataset for each year (e.g., 2022 Awards), joins with a different
NSERC Partners dataset (2022 Partners). We provide a feature to
streamline this workflow. After the users adds a column 𝑐 to one
unioned table 𝑈𝑖 , the system detects if 𝑐 can be added to other
unioned tables either by joining with 𝑇1 or by other tables that
contain the column 𝑐 , as shown in Figure 5. We call this panel the
join plan panel.

5.1.3 Provenance Management and Exploration (G3). The main
visual cue provided by Governor to distinguish different tables that
have been integrated is color coding. When a table is added to
WT via a join or union, the system automatically assigns a color
to it and uses the color consistently throughout the entire user
interface. First, when the user clicks on “Toggle Color” from the
Actions panel (Figure 3b), the cells of WT are colored according to
colors of the integrated tables. Second, color coding is used in the
Working Table Structure (WTS) panel (Figure 3b). WTS is a color-
guided provenance summary of the integration that happened to
construct WT. The layout of WTS represents the structure of WT.
The unioned tables are shown as horizontal rectangles on the left.
To the right of these horizontal rectangles are the joined tables.
For each “joined column”, i.e., a column that does not exist in the
schemas of the unioned tables, there is a vertical stack of smaller
boxes. If the contents of a joined column come from the same table,
this will appear as a single vertical rectangle. Figure 6 shows an
example, with two joined columns where the first one comes from
different joined tables (except the yellow unioned table is not yet
joined with any table for this column), while the right one comes
from a single joined table.

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

Figure 6: Another WTS panel that shows 4 unioned tables
that are extended with two columns that come from joined
tables: (i) the first joined column comes from 3 joined tables.
The yellow unioned table is not yet joined with any table
to fill these values; and (ii) the second joined column comes
from a single joined table that joins with all 4 of the unioned
tables.

Finally, Governor provides several ways for users to go back
to the original table from the Working Table. First, when clicking
on a block/rectangle from WTS, the Working Table Component
Detail (Figure 3e) panel pops up, which shows the title of the table
and the columns under it. The users can click on the title to open
the original table. Second, when the users click on a cell in WT,
Governor opens and locates the cell from the original table.

5.2 Supporting Functionalities
Governor also provides some other basic functionalities to ease the
data tables exploration and integration process.Hiding/Unhiding
Columns: In the open.canada.ca’s tabular data corpus, 50% of the
tables contain more than 11 columns. The large number of columns
can be overwhelming. By default we show 5 columns, picking those
with the largest number of unique values. Optionally, the users can
pick the columns to show manually by clicking on the column title
from “Hide / Unhide Column” section of the action panel.

Basic Spreadsheet Features: Both the Original Table and the
Working Table views consist of a few basic spreadsheet featues, in-
cluding filtering, sorting, and basic column statistics. These features
can help users lookup for simple facts without having to download
the table and open it in a spreadsheet software

5.3 Extensibility of Governor
Although we have based our work on open.canada.ca, Governor
can work on any data portal that uses the CKAN system, which has
been one of the most popular software for hosting OGDPs. CKAN
is used by 148 OGDPs [39], such as data.gov [4], data.gov.uk [6],
and data.gov.sg [5]. These CKAN-powered portals use the same
data structure for storing metadata and can be accessed through
the same API. However, the attributes stored in the metadata can
be customized according to the requirement of each publisher. For
example, as a dual-language portal open.canada.ca stores a language
field for each file.

Governor can be configured with a single JSON configuration
file, which makes it easy for a system administrator to adapt Gover-
nor to different CKAN-based portals without writing any new code.
Instead, the system administrator only needs to modify the config-
uration file to specify the metadata fields that should be indexed
for search and displayed on the front end, as well as the URL of the
CKAN endpoint. Then, by running a single script, Governor can
fetch the metadata from the CKAN API automatically, crawl all the

data files in parallel, and create all the required indices, allowing
the server to be started immediately. To demonstrate this, in the
supplementary material, we provide the source code of Governor,
which includes the indexing script, and the JSON configuration file
to deploy Governor on data.gov.sg.

6 EVALUATION
We conducted a two-part user study with two groups of users to
assess the effectiveness and usefulness of Governor from different
perspectives. The general purpose of the study was to investigate
how people use the system to perform ad hoc search and create
integrated tables frommultiple original datasets to fulfill their goals,
and understand the strengths and weaknesses of the tool. Specifi-
cally, Part 1 employed amore controlled settingwith three definitive
tasks, which ensured that every novel feature of the tool could be
assessed. Part 2 adopted a more natural setting with an open-ended
task, which allowed us to investigate the flexibility and general-
izability of Governor. Also, compared to Part 1, Part 2 was more
exploratory and thus we aimed to obtain more qualitative user
feedback with in-depth interviews.

As discussed in Section 2, two classes of existing tools partially
provide Governor functions: (i) tools that aim to make it easier for
users to search and explore open data tables, and (ii) tools for inte-
grating open data tables. A combination of open data search tools
with standard spreadsheet software such as Excel would enable
our use cases and form a baseline, but switching between tools
would require tedious and frequent copy-pasting. Thus, this would
not be a fair comparison to Governor. Additionally, the tools that
require users to write code to perform data integration [20, 31, 50]
would not be comparable to Governor, because our target audience
is non-programmers. Detailed comparison has been summarized in
Table 1. The closest to our work would be Auctus [23] and Toronto
Open Data Search (TODS) [54]. However, the table integration fea-
ture of both tools is limited, as discussed in Section 2. Auctus only
allows the table to be joined or unioned with one other table, so in
our case, users have to frequently download and upload interme-
diate tables to achieve the same functionality in Governor. TODS,
on the other hand, does not support unions, which significantly
restricts possible integration tasks. In sum, there exists no single
comparable tool that can support all the core functionalities in our
scenario to allow users to complete our desired tasks reasonably.
A cumbersome combination of tools with much manual effort in-
volved would offer less valued insights into the user experience of
Governor. Thus, we decided not to include a baseline in our study
design and aimed to qualitatively compare the user experience of
Governor with other approaches that participants used before.

6.1 Participants and Apparatus
For study Part 1, we recruited twelve participants (P1-P12) via mail-
ing lists at a local university and by reaching out to people from the
open data community. Six participants are between age 18–34, five
between age 35–54, and one between 55–74. Six participants are
males and six are females. All of the participants have a bachelor’s
degree or higher (three Bachelors, seven Masters, and two PhDs)
whose backgrounds include information technology, electrical engi-
neering, law, public policy, and social services. On a 5-point Likert

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

scale (1: no familiarity; 5: advanced user of such software), their
self-reported familiarity with spreadsheet software (e.g., Excel, Li-
breOffice Calc, Numbers, Google Sheet) had a median of 4 and a
mode of 4; their self-reported familiarity with RDBMS (e.g., Oracle,
PostgreSQL, MySQL, SQLite, Db2) had a median of 3 and a mode
of 3. Six participants have prior experience working with OGDPs.

For Part 2, we recruited six additional participants (P13-P18)
using the same methods. All of the participants are between age
18-34. Four participants are males and two are females. All of the
participants have a bachelor’s degree or higher (two Bachelors,
two Masters, and two PhDs) whose backgrounds include informa-
tion technology, statistics, and health science. On the same 5-point
Likert scale above, their self-reported familiarity with spreadsheet
software had a median of 3 and a mode of 3; their self-reported
familiarity with RDBMS had a median of 4 and a mode of 4. Two
participants have prior experience working with OGDPs.

We conducted the study via remote video conferencing software.
Governor was deployed as a web application and participants ac-
cessed it from their personal computers. Each participant received
a $20 gift card for their time and effort.

6.2 Tasks and Design
To evaluate Governor, we designed the following tasks for our
study, where each task is designed to assess one or more design
goals introduced in Section 4. Particularly, Part 1 included T1-3 and
Part 2 consisted of T4.

T1: Finding Datasets (G1): Participants needed to find out how
much money has been granted by a province-level research fund to
a researcher. This task requires participants to employ the search
and table previewing feature of Governor, including finding and
opening the table, adding additional columns, and applying a filter.
T1 requires the participants to find an answer from an open data
table, which allows us to validate if participants could quickly find
the record they are looking for via search.

T2: Unioning Tables (G2): Participants needed to create an
integrated table about how the wait time for travelers at a border
office changed over the year 2015 and 2016 by unioning eight tables
which are published quarterly together and applying a filter based
on the name of the border office. This task requires the partici-
pants to create an integrated table, which allows us to evaluate if
participants could easily integrate multiple tables with Governor.

T3.1: Locating Provenance (G3): Participants were presented
with a pre-defined table with four columns via a shared link about
howmuch funding was spent by charitable organizations in Canada
on political activities in 2019 , which was created by joining three
tables. Then, we asked the participants the following questions:
• TQ1: Can you describe what operations were performed to con-
struct this table?

• TQ2: From how many different tables does this table contain
information from? What are these tables?

• TQ3: Can you open the original table that contains the “Descrip-
tion” column of charitable organizations?

• TQ4: Can you show the following cell in the original table?
– “Legal Name: SecondStreet.org” (from one of the joined tables)
– “5030:6000” (from unioned table)

This task tests whether the participants can understand a pre-
defined table by interacting with the provenance features of Gov-
ernor, such as color-coding and working table component detail
modal. To test if the participants can locate a cell manually, we
disable the “Locate in Original Table” feature in this task.

T3.2: Provenance + Integration (G2 and G3): Participants are
required to extend the table presented in T3.1 to contain the data
from year 2017 to 2019. This task requires participants to under-
stand the structure of the table from T3.1, and also interact with
both the joining and unioning features of Governor. T3.2 allows
us to evaluate both table integration and provenance information
features of Governor.

T4: Open-ended Data Integration (G1, G2 and G3): Partic-
ipants are asked to prepare a dataset by unioning or joining at
least three tables about research funding awarded to academics
or universities of their choice and explain the dataset they have
created. This task gives participants the opportunity to explore
tables of their interest, starting from many possible different ta-
bles published by different research funding agencies, e.g., NSERC,
CIHR, SSHERC, or provincial agencies, find these tables by different
search modes, perform both joins and unions, and apply different
filters. The participants also needed to imagine a usage scenario
themselves to explain their final tables. T4 allows us to evaluate
Governor comprehensively in an open-ended manner.

6.3 Procedure
The study Part 1 and Part 2, while having different tasks, followed
a similar procedure as described below. We began the user study
with an introduction session. The experimenter first demonstrated
the process of searching a keyword from the open.canada.ca portal
and showed the dataset consisted of data from many years which
are published periodically in different data tables. Then, the ex-
perimenter downloaded a specific table and opened it in Excel to
show the participants the columns and values stored in the table.
Next, the experimenter performed the same search in Governor and
opened the table directly to demonstrate the table previewing fea-
ture, along with hiding and unhiding columns. Then, the table was
added to the working table and the experimenter demonstrated the
table integration features by unioning and joining tables. Finally,
the provenance features of Governor were shown by introducing
the WTS, color toggling, etc.

Participants were then instructed to perform two practice tasks.
The first asked participants to search a dataset and identify an item
in a table. The second required them to create a table similar to that
in the introduction session (but with a different dataset). Detailed,
step-by-step instructions are provided on how to perform these
tasks, and the experimenter could answer any questions raised by
participants. However, the participants were encouraged to think
about how these tasks could be completed without first looking at
the instructions. The above procedure assured that the participants
got some familiarity with the system and had adequate skills and
knowledge to complete the actual tasks. We note that we ensured
that no datasets that would appear in the actual tasks for partici-
pants were used during the introduction of Governor and practice
tasks.

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

Next, participants were asked to perform all the actual tasks
described above. We did not give any direction or hint to complete
the task unless the participants got stuck for a long time. After fin-
ishing each task, participants filled in the NASA TLX questionnaire
based on their experience. Finally, we conducted a semi-structured
interview to collect their feedback. The studies lasted between 60
to 80 minutes for each participant. We screen-captured the task
sessions and audio-recorded the interviews.

7 RESULTS
In this section, we report our results from the user study, including
both quantitative measures and qualitative feedback. Recall that
P1-12 performed tasks T1-T3, while P13-18 performed T4.

7.1 Task Performance
We first discuss participants’ performance on our tasks and describe
our observations of their behaviors.

T1: Finding Datasets: On average, participants spent 3 min 3 s
(𝜎 = 1 min 19 s) for T1. Of all the participants, ten perfectly com-
pleted the task by meeting all the requirements, and two partially
met the requirements by incorrectly reporting the total cost of the
project as the government commitment. However, the mistakes
due to misinterpretation of the column name and descriptions were
mostly due to the ambiguity in the original open dataset and were
less of an indicator of the effectiveness of Governor.

An ideal solution to T1 would be: (1) use the researcher’s name as
a keyword to perform a tuple search, (2) open the summary table for
the research fund, and (3) unhide the column for the amount of fund-
ing. Of the ten participants who completed the task well, only three
followed a very similar approach, while the other seven searched
for the research fund’s name via tuple or description search. This
reveals the flexibility of Governor, supporting multiple ways to find
the record. Interestingly, three participants added the original table
to the Working Table before applying the filter or unhiding the
column. It is encouraging that the flexibility offered by Governor
allows most participants to be effective in completing the task, even
if they sometimes went off the “optimal” path. During the process,
one participant was confused about the difference between the tu-
ple and description search modes and required clarification. These
two search modes can potentially be merged into one universal
search in the future.

T2: Unioning Tables: On average, participants spent 5 min 1 s
(𝜎 = 1 min 50 s) for T2. All of the participants were able to complete
T2 successfully. However, five participants got stuck a bit trying
to figure out if they had the correct columns and two participants
were confused because the data table for 2015 Q1 also contains the
last few hours of data from December 31st of 2014. However, similar
to T1, this is largely due to the non-descriptive column names and
the data cleanness issue which existed in the original open dataset.

In this task, the participant can start by adding the data from one
of the eight quarterly-published tables to the Working Table. Then,
by expanding the panel “Add Rows from Other Tables (Union)”, the
system can suggest the seven remaining data tables. The participant
needs to click the “Union” button for each of the seven tables to
add them to the working table. All of the participants followed
this approach. However, three participants complained during the

process that the table integration requires too many clicks, or the
reloading after each click is annoying, and asked if we have an
alternative way to integrate all eight tables at once.

T3.1: Locating Provenance: On average, participants spent 8
min 48 s (𝜎 = 3 min 23 s) for the T3.1. All of the participants were
able to answer TQ1 and TQ2 with the information provided by
Governor and open the correct table for TQ3. Among the twelve
participants, six found the required answer with the “Working
Table Structure”, three of them also turned on the color-coding
of the table to determine the provenance of each column. Four
participants found the answer with the “Working Table Component
Detail”, while two participants got the required answer from the
history panel. This indicates that by providing the same provenance
information in different ways, the system makes it intuitive for the
participants to understand the provenance of data. Even without
memorizing all the features of the system, the participant can still
complete the tasks with the subset of features that they are familiar
with.

On the other hand, the locating subtask (TQ4) did not go smoothly
for most of the participants. An optimal way to locate the cell from
the original table is to open the original table and filter the data
in it with the unique identifier (“BN”) of the row that contains the
cell, and then unhide the required column. However, only three
participants followed this approach. Instead, the other nine partici-
pants tried to locate the cell by performing a filter based on the raw
value of the cell. This approach worked for the “SecondStreet.org”
case as there was only one row with this value in the original table.
However, for the “6000” case, due to a large number of table cells
containing the same value, after filtering, the table still contains
2683 rows. While in the end, out of the nine participants, eight were
able to locate the cell correctly by adding an additional filter, sorting
the column, or manually match the information in other columns,
the performance of the participants in this task indicated that it
was not intuitive to locate a cell based on the unique identifier for
most of the users. Being able to locate the cell from the original
table automatically is still an important feature of the system.

Additionally, this task also reveals Governor’s weakness in fil-
tering the data. Since Governor only features a global filter, the
participants cannot filter based on the column they are interested
in. If the participant were able to perform the filter based on the
“5030” column, they would be able to complete the locating much
quicker, as there would only be two rows remaining in the table
after the filtering.

T3.2: Provenance + Integration: On average, participants
spent 3 min 20 s (𝜎 = 1 min 39 s) for the T3.2. An optimal so-
lution for this task is to first add rows from the “Financial data"
table for year 2017 and 2018, then use the system’s suggestions
to automatically fill the unfilled blocks and complete the Working
Table. Out of twelve participants, ten followed this approach. P11
filled the columns manually but ended up with the correct table. P7
got stuck trying to add more columns due to misunderstanding the
instructions and required a hint.

T4: Open-ended Data Integration: On average, participants
spent 9 min 57 s (𝜎 = 5 min 58 s) for T4. All of the participants
were able to integrate at least three tables in the 20-minute time
limit. On average, the participants previewed 6.7 tables (𝜎 = 2.9) and
integrated 4.7 tables (𝜎 = 2.4) via joining and unioning operations

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 7: Participants’ ratings on the NASA TLX question-
naire for the Tasks (the lower the better)

during the task. Participants were able to create a variety of tables.
We give several examples. One participant constructed a table of
Ontario government research funding allocated to McMaster Uni-
versity until 2019. Another participant constructed a table of CIHR
grants awarded to researchers from the University of Waterloo
as main applicant, co-applicant, or partner from year 2001 - 2003.
Another participant created a table which summarized the research
funds granted to collaborative projects involving both York Univer-
sity and University of Toronto. Three participants, such as the latter
two examples, performed both union and join operations, while the
other three, such as the first example above, only performed union
operations. Participants also used a mix of tuple and description
search modes, and all of them previewed some of the original ta-
bles before integrating and used hiding/unhiding columns both in
previewed tables and in their Working Table. Overall, the variety
of tables participants created and how they created these tables
indicated that participants were able to understand and use the
core features of Governor in several different combinations with
relative ease.

Similar to T3.1, the weakness of the filtering feature of Governor
impacted the participants’ performance on the task as some of them
were not able to filter based on the specific pattern of interest. For
example, when typing in a keyword like “University of Toronto”,
the filter will match all the rows that contain “University”, “of”
and “Toronto”, which will cause other institutions in the same city
to be matched. Despite this drawback, two participants were able
to find a workaround by filtering on the unique identifier of the
institutions such as “OrgId”.

7.2 Questionnaire Ratings
Figure 7 shows participants’ ratings on the NASA TLX question-
naire for all the tasks, respectively. We can see that for T1, most
participants (at least 8 out of 12) rated 4 or below on each question,

Figure 8: Participants’ ratings on the exit-questionnaire (the
higher the better)

indicating that they were comfortable using Governor for search-
ing and felt successful in doing their tasks. All of the participants
indicated that they successfully accomplished the task, while the
mental demand and effort involved depended on the search strat-
egy they use. The results of T2 are similar to that of T1, with a
slightly higher rating for frustration. This is consistent with the
user’s complaints that Governor does not offer the bulk operating
feature for performing the union as discussed in Section 7.1. The
results of T3.1 shows a high effort level and mental demand as
most of the participants were not able to locate the cell of “6000”
at the first attempt. While most of them were able to successfully
locates the cell in the end, it is not a smooth experience. The results
of T3.2 is slightly better than T1 and T2, which might be because
participants got familiar with the table structure in T3.1, and also
became more proficient with the system after performing the first
three tasks. Finally, for T4, most participants (at least 5 out of 6)
rated 4 or below for each question. One participant (P18) rated 5
on the “Mental Demand” factor due to the difficulty of finding the
columns of interest based on the abbreviated column names. The
results of T4 indicates that most of participants felt Governor useful
in an open-ended, exploratory data gathering task.

Moreover, the results of the exit-questionnaire as shown in Fig-
ure 8. In general, indicate that participants had a good experience
of using Governor. A majority of them thought the system was
both easy to learn and use (Q1 and Q2). They thought all of the
core features of Governor, including searching (Q3), previewing
the original tables (Q4), adding rows via unioning (Q6), and adding
columns via joining (Q8) are useful. Furthermore, they thought
that it was generally easy to perform these operations in Governor
(Q7 and Q9). Participants especially appreciate Governor’s abilities
to summarize the provenance of the integrated table with color-
coding and Working Table Structure. They think that it is easy to
understand the origins of values with colored cells (Q10), and the
information provided in the Working Table Structure is both useful
and easy to understand (Q11 and Q12).

7.3 Qualitative Results
Here we report the qualitative feedback from our participants dur-
ing the semi-structured interviews of our study. We first discuss
their general comments and then specific ones grouped into the
themes according to our design goals. Finally, we also group the
comments where users compared Governor with existing tools they
would use for the tasks they performed.

General comments: Overall, participants appreciated the use-
fulness, functions, and design of the tool. P7 commented “It’s a

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

really nice platform and the coloring visualization is really nice. And
the displays are really clear. And those functions are easy to under-
stand and really simple.” P15 said “I think the UI is very good, and it’s
sort of simple and clean and I think it would be really useful. So I think
it’s great.” Similarly, P5 mentioned “I’m very impressed that you have
done such a great job as for a research thing. So it looks to be very
complex and very, like, complete, I would say.” This is summarized
by P1 in comparison to current OGDPs: “Even though we’re doing
open data, it’s not really providing a lot of power to people yet, we’re
just saying, here’s the 1000 boxes of paper files, good luck, hope you
find the one you’re looking for.” Moreover, the participants wanted
to use Governor in their daily jobs, as addressed by P9, “The app
is fantastic and I can’t wait to use it. Yes. 100%. I would love to have
this tool available to our department tomorrow. We desperately need
this tool.” P3 also thought the tool can be a good education tool for
democratizing the concept of open data: “I sure hope we will be able
to use this tool soon, it looks really useful. You could give this to high
school students, get them to look at things, even elementary students,
so they would start to be able to investigate things, and understand
that public data is very valuable.”

However, several participants complained about the complexity
and learnability of the tool. For example, P11 commented that “I
found is that the interface of the system is a little bit too cluttered.
[...] This system is hard to learn. But once you learn it, it is very easy
to use. So I think that the learning curve for this system is a little bit
steep.” P2 shared a similar opinion: “Overall, I liked it a lot. I think
it was very easy to use. Maybe just learning it was a little bit like, it
wasn’t that difficult, but it was a lot of features. So it took me a while
to get comfortable with it, but I like the ability to search for some
entries, and also preview the table, these were I think these are very
useful, and also the data integration part.”

Searching and previewing data (G1): Our participants val-
ued a lot for the data search capabilities provided by Governor.
The implemented Search Tuples and Search Descriptions in Gover-
nor provided participants with an easier way of identifying useful
datasets. P3 addressed this by “Unless you understand the categories
of how government data is organized, it’s so hard to find the infor-
mation you’re looking for. So by providing this additional layer into
the data it is very powerful.” Moreover, some participants thought
the search available in Governor could potentially benefit novices
and non-technical people. “It just starts to give to the basic person
who, you know, isn’t maybe that data savvy, a lot more power to do
the investigation and understand, like, what’s going on.”-P1.

However, the distinction between Tuple Search and Description
Search can be confusing to some participants. For example, P4
commented that “I still do not get the difference between the tuple
and description search.” Similarly, P10 said that “The term tuple can
be confusing to people from a non-technical background.” Finally, P3
suggested that we should merge the two search modes: “What if I
want to match both the description and the value? Can it do that?” P5
also demanded “searching specific cells within a specific description.”

Integrating data (G2): Governor supports the core relational
data processing operations, including the union and join interac-
tively via the front-end DuckDB to help users integrate datasets
(Section 5). In our study, five of the participants felt these termi-
nologies were easy to understand, while five other participants
thought that they can be confusing to the end-users and offered

us alternative suggestions. For example, P2 suggested us to “add a
description or small example for joining” to make it more understand-
able, which was echoed by P3. Additionally, P6 suggested using
different wording for “union”, such as “append” as “‘union’ is a
mathematical term.” Similarly, P7 suggested replacing the wording
of “join” with “combine”.

Despite the confusion, the participants were excited about data
integration capabilities in Governor and found these functions
useful. P3 commented that “I’m maybe not very skilled, but I often,
you know, copy-paste data, so I do those. And this is great, because you
know, you’re not making those copy-paste errors or mismatching the
columns or anything. So, I think it is really useful.” Moreover, some
participants appreciated the efficiency of Governor and its potential
in handling a large amount of data. For example, P10 said: “See how
fast it is, is pretty amazing!” Similarly, P18 noticed that when she
uses Governor to join 2 tables, “it just takes a few seconds.” P9 also
mentioned “With massive datasets, like a big collection of tables, I
think it’s (Governor) probably very handy.” Finally, P10 provided
a unique insight into integrating tables: “For adding tables with
union and being able to join that. Like, this is all very good. I’m very
excited. Just, it’s not going to be like a broadly popular thing,” where
he meant data cleaning is an essential step before integrating the
tables. While this is out of the scope of this paper, it points out an
important future direction to extend Governor with advanced data
cleaning features.

However, one concern raised by several participants was the
limitation of only integrating tables suggested by the tool. For
example, P16 suggested that “it might be better to provide the option
to actually play with SQL stuff ” directly in Governor to give users
more flexibility. P7 asked for the feature of joining an arbitrary
table: “Hmm... Do I have to pick up from the list (suggested by the
system)? Can I join the table based on my own choice?” Similar
questions were raised by P4 and P9. Participants also suggested
several other functions to enhance the data integration experience
of Governor. For example, P6, P7, and P12 requested “bulk operation”
of selecting tables to union and join, as commented: “There are lots
of clicks to do maybe if you use the union select or like group select.”
Specifically, P10 wanted to have the functions to combine data
from different agencies. P4, P10, and P12 demanded some Excel-like
features in data aggregation, such as computing the means, sums,
etc. Moreover, P8 would like to have “two separate working tables
on two separate panels” for side-by-side comparisons.

Data provenance (G3): The Working Table Structure (WTS) vi-
sualization is one major support offered by Governor to investigate
the provenance of the integrated datasets. Participants highly ap-
preciated this feature, as it provided a clear view and mental model
of the working table. For example, P12 commented “Oh, yeah. Like
the colors and stuff. That’s really cool. WTS is easy to understand. It’s
like a table structure.” This was echoed by P9: “I love this thing. It
is amazing. The visual piece really works out.” Also, P10 said, “The
idea of the squares as different tables was very well done. I like that.”
and also appreciated the history, “I do like the ability to see all the
things that have been applied.”

Another data provenance support of Governor to distinguish
different tables that have been integrated is the color coding. Each
integrated table is assigned a color automatically and the color is
used consistently across multiple user interface components. This

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

design is favoured by most of the participants. For example, P2 said:
“I really like how you use the colors,” which was agreed by P3, P7, P9,
and P12. However, P8 was confused by the colors: “There are like
ten colors. I cannot remember which color corresponds to which table.”
P10 also brought up an interesting point regarding the accessibility
of the system: “There are more color-blind people than you know. You
should think about them (when designing the system). Maybe you
can add some patterns to the blocks.”

Overall, the value of being able to trace down the data sources in
an integrated table in our tool was applauded by the participants,
which is encouraging. For example, P3 addressed: “I think it also
drives a lot more within organizations. So for example, where I work,
like proactive disclosure, it’s kind of a painful activity, and it should
just be almost automated, like we should have an internal process
that is very smooth and easy. And everyone who contributes to that
should understand how it’s accessible, how people will compare our
data to all kinds of other data that we have, to have that clean and
consistent data provided.” P12 added “There’s a lot of mistrust about
data out there for people who don’t work with data all the time. And
we often have to defend our datasets. And that’s probably another
way of saying, look, this is where we merge, right? We brought these
things together. It’s proof to someone that this works.”

Comparisons to existing tools: During the interview, partici-
pants also compared Governor with existing tools they would use
for similar open data exploration tasks, such as Google Dataset
Search, Kaggle, and the search engine of open data portals, as well
as tools they would use for similar table integration tasks, such
as spreadsheet software, database systems, and programming lan-
guages.

For open data exploration, participants preferred Governor for
its ability to search the contents of the tables over existing tools
that only support searching over metadata of datasets. For example,
P17 mentioned that “I would say the search feature is much better
than the one the government portal provides for sure, because it allows
you to search deeply within documents instead of just the surface level
information about the documents”, which was agreed by P13, P14,
and P18. Participants also liked the preview feature provided by
Governor. P12 commented that “That’s easy for me to compare from
searching the open data. The website (an open government portal)
which obviously doesn’t do much for you and urges you to download.”
Similarly, P14 mentioned “I don’t have to download anything, I can
just take a peek at the data and then decide what I want to do.”

Several participants commented that theywould prefer Governor
over the existing tools for data integration tasks. P1 mentioned that
“These are the things (integrating tables) we usually do in Excel. And in
Excel, it is tedious to combine them by copying, pasting, and all that.”
Similarly, P15 pointed out that spreadsheet tools such as “Excel and
Google sheets have very little when it comes to doing table joining
stuff. Also, you have to download all of the sheets, and often there’s
issues with merging the tables.” Several participants emphasized
Governor’s capability of suggesting joins and unions automatically
compared favorably with existing tools. For example, P14 pointed
out that “I have to kind of manually figure out what are the various
things I want to merge and then look for those datasets independently,
and then bring them all, download them all, look at their schema,
and then figure out which column do I join it on and then join it, and
finally create my dataset. So yeah, it could be a really long process. I

think the tool you have here is kind of cutting all that time out. It is
really easy to just have the joinable and unionable tables suggested
for me.” This is echoed by P17: “Obviously this solution makes it
much easier, because it suggests the columns based on which I can
do the joins or the unions, so I don’t need to go through the tables
manually”, and also agreed by P13 and P18.

When asked about comparing Governor with using program-
ming languages for table integration tasks, participants liked Gov-
ernor’s features of previewing the intermediate table during the
data integration process and keep track of the actions that the user
has performed. For example, P15 mentioned that “Sometimes I also
use the pandas library, and get data frames, and then I do a join or a
merge using the data frames. But the issue with it is really hard to
visualize anything. For instance, maybe you have to print your data
frames, but then there’s limited options on the UI because it’s just a
standard print.” Similarly, P18 also mentioned “The web app is visu-
alizing everything. It is easier to keep track of the action I performed.
With a good user interface, who would want to use pandas? ”

However, participants also pointed out that Governor is not
as featureful as the existing spreadsheet software and database
systems. For example, P14 pointed out that “The filter definitely
needs some improvement. There should be a way to filter by column
instead of just filtering for a value in all the columns.” This is echoed
by P16 and P18. P13 suggested to add aggregation feature as “it is
commonly used”. P18 requested a feature of “filtering out the null
values”.

8 DISCUSSION
While the results of the user study indicate the effectiveness of
Governor for providing our desired feature set, the system still has
drawbacks. Through the participant interviews we carried out, we
identified three broad usability challenges. We first discuss these
challenges and then other limitations of Governor and our study.

Searching: Two participants stated that having 2 separate search
modes is confusing and suggested to merge both search features
into a single hybrid search. We currently separated these because
we use a different back end software for each functionality and we
did not explore mechanisms to rank two sets of results within our
current scope.

Table Integration Process: Governor supports constructing
WT in a step-by-step fashion. After each operation, WT is reloaded
to reflect the change immediately. For example, for T2, users have
to click the “Union” button eight times, and wait for WT to be
reloaded each time. Three participants asked for support of bulk in-
tegration operations for table assembling or asserted that reloading
the working table after each operation is inefficient.

Data Analytics and Other Data Transformation Functions:
Aside from basic filtering and sorting of tables, Governor does not
support any data transformation or analytics functions, such as
data aggregation, range selection, chart plotting, etc, which were
mentioned by several participants. For example; three participants
requested a table filtering based on a particular column, three em-
phasized the importance of data aggregation capability that is not
offered by Governor, and two asked for the functionality of reorder-
ing the columns in the tables.

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

Although we designed Governor as a search and data integration
system, these functionalities are frequently used in data gathering
and analytics pipelines. For example, if the users would like to figure
out the total amount of NSERC funds granted to a specific institution
within a year using the current version of Governor, they have to
export the data from Governor into a spreadsheet software, in order
to perform a sum. In addition, the tables users create/integrate
from data lakes can contain results of basic analytics instead of raw
tuple values, e.g., results of aggregations instead of the individual
raw values. Currently Governor is limited to only integrating raw
values.

Other Limitations: Governor currently only indexes the csv
files from open.canada.ca. While it is easy to extend Governor to
support other CKAN-based data portals, it may require additional
works to extend Governor to other open data pulishing systems
such as Socrata [11] and magda [8]. Governor is currently designed
to support a single portal’s data. Users may frequently need to
gather data from multiple portals (e.g., both from a federal as well
as a state/province government’s portal). Furthermore, Governor’s
table integration features are also limited to the tables suggested
automatically by the system as discussed in Section 5. These did
not create problems in our user study. However, users may prefer
to have a manual mechanism to find and integrate tables.

Study Limitations: Our user study has few unavoidable lim-
itations. First, we did not compare our system with any baseline
systems as we discussed in Section 6 because no prior systemwe are
aware of provides the full functionality of Governor and baselines
that use mix of systems, e.g., an open data search engine along with
a spreadsheet software, would lead to unfair comparisons as they
could require a lot of copy pasting and downloading. Furthermore,
our study was conducted in a lab setting and we did not have a large
number of participants. Future evaluation of Governor within a re-
alistic setting would be necessary to reveal more potential usability
issues of the system.

9 CONCLUSIONS
We have presented Governor, a web application that aims to turn
OGDPs from raw publishing portals into interactive DBMSs tomake
them more accessible and useful to non-technical users. Our key
approach is to provide a set of DBMS features to end users to search
the records in the tables, integrate multiple datasets in OGDPs
through a few clicks, and facilitate fact-checking by providing color-
guided, visual provenance exploration. We hope further research
and development can build an ecosystem of user-friendly tools
and systems to make finding, integrating, and analyzing datasets
in OGDPs more accessible to general public. We think there is
opportunity for academic research to take the lead in this direction,
as there is very little available tools in this space and the sizes of the
OGDPs are currently relatively small, so it is possible to develop
systems that can index and process entire OGDPs with modest
resources as we have done in this work.

ACKNOWLEDGMENTS
This research is supported by an NSERC grant and a grant from
the Waterloo-Huawei Joint Innovation Laboratory.

REFERENCES
[1] 2022. Apache Arrow https://arrow.apache.org/.
[2] 2022. Apache Parquet https://parquet.apache.org/.
[3] 2022. CKAN https://ckan.org/.
[4] 2022. Data.gov https://data.gov/.
[5] 2022. Data.gov.sg https://data.gov.sg/.
[6] 2022. data.gov.uk https://data.gov/.
[7] 2022. Elasticsearch https://www.elastic.co/.
[8] 2022. Magda https://magda.io//.
[9] 2022. MongoDB https://mongodb.com/.
[10] 2022. Open Data Principles https://open.canada.ca/en/open-data-principles.
[11] 2022. Socrata https://socrata.com/.
[12] 2022. SQLite compiled to JavaScript https://github.com/sql-js/sql.js/.
[13] 2022. Tableau https://www.tableau.com/.
[14] 2022. tidb-wasm https://github.com/tidb-incubator/tidb-wasm.
[15] 2022. Vue.js https://vuejs.org/.
[16] 2022. WebAssembly https://webassembly.org/.
[17] 2023. Governor Web Application Source Code. https://github.com/mewim/

GovernorApp.
[18] Omar Benjelloun, Shiyu Chen, and Natasha Noy. 2020. Google dataset search by

the numbers. In International Semantic Web Conference. Springer, 667–682.
[19] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-

stantinou. 2020. Dataset Discovery in Data Lakes. In Proceedings of the 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE. https:
//doi.org/10.1109/icde48307.2020.00067

[20] Alex Bogatu, Norman W. Paton, Mark Douthwaite, and Andre Freitas. 2022.
Voyager: Data Discovery and Integration for Data Science. Journal of Data and
Information Quality (jul 2022). https://doi.org/10.48786/edbt.2022.47

[21] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset Search:
Building a Search Engine for Datasets in an Open Web Ecosystem. In The World
Wide Web Conference. https://doi.org/10.1145/3308558.3313685

[22] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláu-
dio T. Silva, and Huy T. Vo. 2006. VisTrails: VisualizationMeets DataManagement.
In Proceedings of the 2006 ACM SIGMOD international conference on Management
of data - SIGMOD '06. https://doi.org/10.1145/1142473.1142574

[23] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati, and
Juliana Freire. 2021. Auctus: A Dataset Search Engine for Data Discovery and
Augmentation. Proceedings of the VLDB Endowment 14, 12 (jul 2021), 2791–2794.
https://doi.org/10.14778/3476311.3476346

[24] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019. Lazo:
A Cardinality-Based Method for Coupled Estimation of Jaccard Similarity and
Containment. In Proceedings of the 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE. https://doi.org/10.1109/icde.2019.00109

[25] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.
The VLDB Journal 29, 1 (2020), 251–272.

[26] Ran Chen, Di Weng, Yanwei Huang, Xinhuan Shu, Jiayi Zhou, Guodao Sun, and
Yingcai Wu. 2022. Rigel: Transforming Tabular Data by Declarative Mapping.
IEEE Transactions on Visualization and Computer Graphics (2022), 1–11. https:
//doi.org/10.1109/TVCG.2022.3209385

[27] Michael Correll. 2019. Ethical Dimensions of Visualization Research. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3290605.3300418

[28] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12. https://doi.org/10.1145/3313831.3376442

[29] Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB
Journal 10, 4 (dec 2001), 270–294. https://doi.org/10.1007/s007780100054

[30] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. 2008. Graphi-
cal Histories for Visualization: Supporting Analysis, Communication, and Evalua-
tion. IEEE Transactions on Visualization and Computer Graphics (2008), 1189–1196.

[31] Ahmed Helal, Mossad Helali, Khaled Ammar, and Essam Mansour. 2021. A
Demonstration of KGLac: A Data Discovery and Enrichment Platform for Data
Science. Proceedings of the VLDB Endowment 14, 12 (jul 2021), 2675–2678. https:
//doi.org/10.14778/3476311.3476317

[32] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[33] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank van Ham,
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and
Paolo Buono. 2011. Research Directions in Data Wrangling: Visuatizations and
Transformations for Usable and Credible Data. Information Visualization 10, 4
(oct 2011), 271–288.

[34] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the sigchi conference on human factors in computing systems. 3363–3372.

https://arrow.apache.org/
https://parquet.apache.org/
https://ckan.org/
https://data.gov/
https://data.gov.sg/
https://data.gov/
https://www.elastic.co/
https://magda.io//
https://mongodb.com/
https://open.canada.ca/en/open-data-principles
https://socrata.com/
https://github.com/sql-js/sql.js/
https://www.tableau.com/
https://github.com/tidb-incubator/tidb-wasm
https://vuejs.org/
https://webassembly.org/
https://github.com/mewim/GovernorApp
https://github.com/mewim/GovernorApp
https://doi.org/10.1109/icde48307.2020.00067
https://doi.org/10.1109/icde48307.2020.00067
https://doi.org/10.48786/edbt.2022.47
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/1142473.1142574
https://doi.org/10.14778/3476311.3476346
https://doi.org/10.1109/icde.2019.00109
https://doi.org/10.1109/TVCG.2022.3209385
https://doi.org/10.1109/TVCG.2022.3209385
https://doi.org/10.1145/3290605.3300418
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1007/s007780100054
https://doi.org/10.14778/3476311.3476317
https://doi.org/10.14778/3476311.3476317

Governor: Turning Open Government Data Portals into Interactive Databases CHI ’23, April 23–28, 2023, Hamburg, Germany

[35] Laura M. Koesten, Emilia Kacprzak, Jenifer F. A. Tennison, and Elena Simperl.
2017. The Trials and Tribulations of Working with Structured Data: -A Study
on Information Seeking Behaviour. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
1277–1289. https://doi.org/10.1145/3025453.3025838

[36] André Kohn, Dominik Moritz, Mark Raasveldt, Hannes Mühleisen, and Thomas
Neumann. 2022. DuckDB-Wasm: Fast Analytical Processing for the Web. Pro-
ceedings of the VLDB Endowment 15, 12 (aug 2022), 3574–3577. https://doi.org/
10.14778/3554821.3554847

[37] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE. https://doi.org/10.1109/icde51399.2021.00047

[38] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proceedings of the VLDB Endowment 11, 7 (mar
2018), 813–825. https://doi.org/10.14778/3192965.3192973

[39] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. 2016. Automated Quality
Assessment ofMetadata across OpenData Portals. J. Data and Information Quality
8, 1, Article 2 (oct 2016), 29 pages. https://doi.org/10.1145/2964909

[40] Ouellette, Paul and Sciortino, Aidan and Nargesian, Fatemeh and Bashardoost,
Bahar Ghadiri and Zhu, Erkang and Pu, Ken Q. and Miller, Renée J. 2021. RONIN:
Data Lake Exploration. Proceedings of the VLDB Endowment 14, 12 (jul 2021),
2863–2866. https://doi.org/10.14778/3476311.3476364

[41] Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen. 2016. Char-
acterizing Provenance in Visualization and Data Analysis: An Organizational
Framework of Provenance Types and Purposes. IEEE Transactions on Visualiza-
tion and Computer Graphics 22, 1 (Jan. 2016), 31–40. https://doi.org/10.1109/
TVCG.2015.2467551

[42] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanter-
pool, Vijay Gadepally, and Michael Stonebraker. 2021. DICE: Data Discovery
by Example. Proceedings of the VLDB Endowment 14, 12 (jul 2021), 2819–2822.
https://doi.org/10.14778/3476311.3476353

[43] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent Code Ex-
plorer for Data Wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. https://doi.org/10.1145/3472749.3474744

[44] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Chapter 7: Relational
Database Design. In Database System Concepts, Seventh Edition. McGraw-Hill
Book Company, 303–360.

[45] Monica Swamiraj and Luanne Freund. 2015. Facilitating the discovery of open
government datasets through an exploratory data search interface.

[46] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr.
2018. RDF Data Storage and Query Processing Schemes: A Survey. Comput.
Surveys 51, 4, Article 84 (jul 2018), 36 pages. https://doi.org/10.1145/3177850

[47] Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao. 2021. KTabulator:
Interactive Ad hoc Table Creation using Knowledge Graphs. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 100:1–14. https:
//doi.org/10.1145/3411764.3445227

[48] Kai Xiong, Siwei Fu, Guoming Ding, Zhongsu Luo, Rong Yu, Wei Chen, Hujun
Bao, and Yingcai Wu. 2022. Visualizing the Scripts of Data Wrangling with
SOMNUS. IEEE Transactions on Visualization and Computer Graphics (2022).

[49] Kai Xu, Alvitta Ottley, Conny Walchshofer, Marc Streit, Remco Chang, and John
Wenskovitch. 2020. Survey on the Analysis of User Interactions and Visualization
Provenance. Computer Graphics Forum 39, 3 (2020), 757–783. https://doi.org/10.
1111/cgf.14035

[50] Zhang, Yi and Ives, Zachary G. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. https://doi.org/10.1145/3318464.3389726

[51] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
Proceedings of the 2019 International Conference on Management of Data. https:
//doi.org/10.1145/3299869.3300065

[52] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining Tables
by Leveraging Transformations. Proceedings of the VLDB Endowment 10, 10 (jun
2017), 1034–1045. https://doi.org/10.14778/3115404.3115409

[53] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proceedings of the VLDB Endowment 9,
12 (aug 2016), 1185–1196. https://doi.org/10.14778/2994509.2994534

[54] Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. 2017. Interactive
Navigation of Open Data Linkages. Proceedings of the VLDB Endowment 10, 12
(aug 2017), 1837–1840. https://doi.org/10.14778/3137765.3137788

A USING DUCKDB-WASM IN THE BROWSER
The data displayed in WT (as well as the Original Table View) is
stored in DuckDB-Wasm, which is theWebAssembly [16] version of
DuckDB [36]. DuckDB is a SQLOLAP databasemanagement system
that can run inside the web browser. Loading entire tables and
processing them at the front end is against today’s commonwisdom
of running the database at the back end and sending paginated
results to the front end. However, this architecture is suitable for our
system (and possibly for other applications) and has the following
benefits.
• WebAssembly: TheWebAssembly [16] technology finally enables
full-fledged databases [12, 14, 36] to be compiled for the web
browser and run at near-native performance.

• High compressibility of open datasets: Open dataset tables have
large number of repeated values, which makes them highly com-
pressible. For example, the size of the largest OGDP, data.gov is
2120 GB in uncompressed raw file size and 434 GB when com-
pressed. Similarly open.canada.ca is 346 GB vs 126GB compressed
size. By loading the entire table at once, the system can send the
data in a format with a high compression ratio such as Apache
Parquet and reduce the total traffic required to load the table.

• Eliminating unnecessary data transfers: Storing entire tables in
the browser gives Governor opportunities to avoid data transfers
in several cases. When users change the sorting of the WT or
filter it, the front end does not fetch any data from the back end.
These operations are directly performed by DuckDB’s highly
optimized parallel sorting and filtering capabilities.

• Simpler state maintenance: Using DuckDB at the front end en-
ables WT to be modeled as a database view, which is created by
a single SQL command compiled from all the joining, unioning
and filtering operations the user has performed. Upon a new
operation, the system first appends a log for the operation. Then,
the front end checks if all the required tables are loaded to the
local DuckDB and pulls any missing table from the server. After
that, the front end compiles all the logs into a single SQL com-
mand, drops the current WT view from DuckDB and recreates
it with the newly compiled SQL command, all in the browser.
This approach also enables the WT to be re-created easily, which
facilitates Governor’s “shareable link” feature. When a shareable
link is created, the front end sends all the logs to the back end,
which gets stored in the MongoDB. When the link is later used,
the front end simply retrieves the logs and loads all the required
data tables from the back end, then recreates the DuckDB view,
and finally renders the user interface.
One potential drawback of sending full tables to front end is

the slowdown of the initial loading. A system that loads data with
server-side pagination can usually output the first page quickly,
as only partial results are required by the front end. Despite load-
ing full tables from a remote server, we measured that Governor
can still load large tables at a speed comparable to native desktop
spreadsheet software such as Excel. Table 2 shows a comparison of
the loading time between Governor and Excel (version 16.63.1) for
a set of large tables sampled from open.canada.ca. The files loaded
by Governor are pre-compressed and cached by Cloudflare CDN 1,
1https://www.cloudflare.com/

https://doi.org/10.1145/3025453.3025838
https://doi.org/10.14778/3554821.3554847
https://doi.org/10.14778/3554821.3554847
https://doi.org/10.1109/icde51399.2021.00047
https://doi.org/10.14778/3192965.3192973
https://doi.org/10.1145/2964909
https://doi.org/10.14778/3476311.3476364
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.14778/3476311.3476353
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3177850
https://doi.org/10.1145/3411764.3445227
https://doi.org/10.1145/3411764.3445227
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/3115404.3115409
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/3137765.3137788

CHI ’23, April 23–28, 2023, Hamburg, Germany Chang Liu, Arif Usta, Jian Zhao, and Semih Salihoğlu

Table 2: Comparison of the loading times between Governor (using DuckDB-Wasm) and Excel.

File
Original

Size
Compressed

Size # Rows # Cols
Excel

Loading Time
Governor

Loading Time

1991
Awards 10 MB 2 MB 18458 34 2.00 sec 2.04 sec

Historical DriveBC
Events 91 MB 8 MB 201802 25 10.62 sec 7.55 sec

Complete file:
2009 to today 335 MB 31 MB 442690 46 29.72 sec 17.44 sec

Proactive Disclosure -
Grants and Contributions 850 MB 68 MB 590021 37 58.59 sec 39.21 sec

while the same original csv files are loaded by Excel directly from
the local file system. The comparisons are performed on a Mac Pro
computer with a 3.5 GHz 8-Core Intel Xeon W CPU and 32 GB of
RAM. The Internet connection is throttled down to 50 Mbps, and

the browser cache is disabled. As shown in Table 2, Governor can
load all of the listed tables at a speed similar to or faster than Excel
due to the high compression ratio and the near-native performance
of WebAssembly.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Open Data Search Tools
	2.2 Data Integration Systems
	2.3 Techniques for Finding Related Tables
	2.4 Data Visualization and Wrangling Tools

	3 Usage Scenario
	4 Design Goals
	5 Governor System
	5.1 Core Functionalities
	5.2 Supporting Functionalities
	5.3 Extensibility of Governor

	6 Evaluation
	6.1 Participants and Apparatus
	6.2 Tasks and Design
	6.3 Procedure

	7 Results
	7.1 Task Performance
	7.2 Questionnaire Ratings
	7.3 Qualitative Results

	8 Discussion
	9 Conclusions
	Acknowledgments
	References
	A Using DuckDB-Wasm in the Browser

