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Abstract

Recent advances in video-text retrieval (VTR)
have largely relied on supervised learning and
fine-tuning. In this paper, we introduce ELIOT,
a novel zero-shot VTR framework that lever-
ages off-the-shelf video captioners, large lan-
guage models (LLMs), and text retrieval meth-
ods—entirely without additional training or
annotated data. Due to the limited power of
captioning methods, the captions often miss
important content in the video, resulting in un-
satisfactory retrieval performance. To trans-
late more information into video captions, we
first generates initial captions for videos, then
enhances them using a relevance-boosted cap-
tioning strategy powered by LLMs, enriching
video descriptions with salient details. To fur-
ther emphasize key content, we propose struc-
tural information extraction, organizing visual
elements such as objects, events, and attributes
into structured templates, further boosting the
retrieval performance. Benefiting from the en-
riched captions and structuralized information,
extensive experiments on several video-text re-
trieval benchmarks demonstrate the superior-
ity of ELIOT over existing fine-tuned and pre-
training methods without any data. They also
show that the enriched captions capture key de-
tails from the video with minimal noise. Code
and data will be released to facilitate future
research.

1 Introduction

Video-text retrieval (VTR) (Luo et al., 2022; Gao
et al., 2021; Ma et al., 2022; Liu et al., 2022a; Zhao
et al., 2022; Gorti et al., 2022; Fang et al., 2022)
aims to retrieve the corresponding video or text
given the query in another modality. Recent years
have witnessed the rapid development of VTR with
the support from powerful pretraining models (Luo
et al., 2022; Gao et al., 2021; Ma et al., 2022; Liu
et al., 2022a), improved retrieval methods (Berta-
sius et al., 2021; Dong et al., 2019; Jin et al., 2021),

and video-language datasets construction (Xu et al.,
2016). However, it remains challenging to pre-
cisely match video and language due to the raw
data being in heterogeneous spaces and the use of
modality-specific encoders.

The most popular paradigm in VTR (Luo et al.,
2022; Ma et al., 2022; Liu et al., 2022b) firstly
learns a joint feature space across modalities and
then compares representations in this space. How-
ever, with the discrepancy between different modal-
ities and the design of modality-independent en-
coders, it is challenging to directly match repre-
sentations of different modalities generated from
different encoders (Liang et al., 2022). On the other
side, pioneering works (Wang et al., 2021, 2022e)
convert images into captions for better presentation
learning on image-language tasks, demonstrating
that captioners can mitigate modality discrepancy.

In this work, we propose ELIOT, a zero-
shot generative video-to-text retrieval framework.
ELIOT transforms raw videos into enriched gen-
erative identifiers by employing a distillation-
enhanced generative approach. Drawing from re-
cent advancements in identifier generation (e.g.,
titles, substrings, multiview representations) and in-
spired by distillation-enhanced generative retrieval
(DGR), our method incorporates the structural ben-
efits of multiview generative identifiers while ad-
dressing the challenges of modality alignment. Key
to our approach is a novel relevance-boosted cap-
tioning mechanism that generates comprehensive
textual descriptions for videos. This process en-
sures that important details such as objects, events,
and attributes are captured. To refine these cap-
tions, we employ a distilled generative identifier
extraction method, replacing traditional structural
extraction with a generative paradigm that encodes
semantic and contextual cues from videos into iden-
tifier representations. By distilling fine-grained
ranking knowledge from a teacher model into the
generative process, ELIOT enhances the quality of
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identifiers without additional training.
Finally, to evaluate the effectiveness of our pro-

posed zero-shot ELIOT, we conducted experi-
ments on three representative video-text bench-
marks (Chen and Dolan, 2011; Fabian Caba Heil-
bron and Niebles, 2015; Xu et al., 2016). Results
show that ELIOT outperforms previous methods,
including fine-tuning methods and few-shot meth-
ods benefiting from relevance-boosted captioning
and structural information extraction.

In summary, our contributions are as follows:

• We propose a real zero-shot video-text re-
trieval method without requiring any training
procedure or human-annotated data, only us-
ing the off-the-shelf captioning method, large
language models, and text retrieval methods.

• Our proposed ELIOT achieves SOTA perfor-
mance on several metrics across three VTR
benchmarks.

• Detailed analysis reveals the importance of
relevance-boosted captioning and vision mem-
ory mechanisms. We will open-source the
code and data to facilitate future research.

2 Related Work

Video-text retrieval, which involves cross-modal
alignment and abstract understanding of temporal
images (videos), has been a popular and fundamen-
tal task of language-grounding problems (Wang
et al., 2020a,b, 2021; Yu et al., 2023). Most of
the existing video-text retrieval frameworks (Yu
et al., 2017; Dong et al., 2019; Zhu and Yang,
2020; Miech et al., 2020; Gabeur et al., 2020; Dz-
abraev et al., 2021; Croitoru et al., 2021) focus
on learning powerful representations for video and
text and extracting separated representations. For
example, in Dong et al. (2019), videos and texts
are encoded using convolutional neural networks
and a bi-GRU (Schuster and Paliwal, 1997) while
mean pooling is employed to obtain multi-level
representations. MMT (Gabeur et al., 2020) uses
a cross-modal encoder to aggregate features ex-
tracted by temporal images, audio, and speech for
encoding videos. Following that, MDMMT (Dz-
abraev et al., 2021) further utilizes knowledge
learned from multi-domain datasets to improve per-
formance empirically. Further, MIL-NCE (Miech
et al., 2020) adopts Multiple Instance Learning
and Noise Contrastive Estimation, addressing the

problem of visually misaligned narrations from un-
curated videos.

Recently, with the success of self-supervised
pretraining methods (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020), vision-language
pretraining (Li et al., 2020b; Gan et al., 2020;
Singh et al., 2022) on large-scale unlabeled cross-
modal data has shown promising performance in
various tasks, e.g., image retrieval (Radford et al.,
2021), image captioning (Chan et al., 2023), and
video retrieval (Luo et al., 2022; Wang and Shi,
2023a). Recent works (Lei et al., 2021; Cheng
et al., 2021; Gao et al., 2021; Ma et al., 2022;
Park et al., 2022a; Wang et al., 2022b,d; Zhao
et al., 2022; Gorti et al., 2022) have attempted to
pretrain or fine-tune video-text retrieval models
in an end-to-end manner. CLIPBERT (Lei et al.,
2021; Bain et al., 2021), as a pioneer, proposes to
sparsely sample video clips for end-to-end train-
ing to obtain clip-level predictions and then sum-
marize them. Frozen in time (Bain et al., 2021)
uses end-to-end training on both image-text and
video-text pairs data by uniformly sampling video
frames. CLIP4Clip (Luo et al., 2022) finetunes
models and investigates three similarity calculation
approaches for video-sentence contrastive learn-
ing on CLIP (Radford et al., 2021). Further, TS2-
Net (Liu et al., 2022b) proposes a novel token shift
and selection transformer architecture that adjusts
the token sequence and selects informative tokens
in both temporal and spatial dimensions from input
video samples. While the mainstream of VTR mod-
els (Xue et al., 2023; Wu et al., 2023) focuses on
fine-tuning powerful image-text pre-trained mod-
els, on the other side, as a pioneer, (Tiong et al.,
2022; Wang et al., 2022e) propose to use large lan-
guage models (LLMs) for zero-shot video question
answering.

Zero-shot cross-modal retrieval. With the huge
success of pretrained visual-language model (Rad-
ford et al., 2021; Luo et al., 2022), zero-shot cross-
modal retrieval has attracted more and more re-
search interest recently. Due to the powerful rep-
resentation learning ability in image and text do-
mains, CLIP (Radford et al., 2021) achieves sat-
isfying zero-shot retrieval performance on sev-
eral representative image-text retrieval bench-
marks (Huiskes and Lew, 2008; Lin et al., 2014).
Inspired by this achievement, Liu et al. (2023a,b);
Chen et al. (2023c); Liu et al. (2024); Guo et al.
(2024) boost the performance of zero-shot image-
text retrieval by better representation learning meth-
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Figure 1: The illustration of our proposed ELIOT. ELIOT includes four steps. First, we generate video captions
for video using off-the-shelf video captioning methods. Second, to enrich the captions, we propose the relevance-
boosted caption-generation method using LLMs. Third, to emphasize the important information in the captions, we
propose a novel structural information extraction. Finally, after obtaining structured video captions, we employ
off-the-shelf text retrieval methods to perform zero-shot video-text retrieval.

ods. On the other side, benefiting from large-scale
video-text benchmarks (Xu et al., 2016; Chen and
Dolan, 2011; Fabian Caba Heilbron and Niebles,
2015), video-language pre-trained models (Wang
et al., 2022c; Chen et al., 2023a; Xu et al., 2023;
Chen et al., 2023c; Li et al., 2023a; Liu et al.,
2023c; Zhu et al., 2024) also achieve satisfying
zero-shot video-text retrieval results.

In this paper, inspired by these pioneering works,
to explore zero-shot video-text retrieval, we step
forward and propose a simple but effective zero-
shot video-text retrieval method, ELIOT, by utiliz-
ing off-the-shelf captioning, large language models,
and text retrieval methods.

3 ELIOT - Zero-Shot Video Text
Retrieval

In this section, we present the details of our pro-
posed method, ELIOT. Specifically, we first gener-
ate captions for videos using video caption gener-
ation methods. Then, to cover most of the details
in videos, with our proposed relevance-boosted
caption generation, we obtain a detailed caption
containing almost all the details. Finally, we pro-
pose the structural information extraction to em-
phasize important information in the captions for
better video-text retrieval performance. The whole
procedure and figure are summarized in Fig-
ure 1.

3.1 Step 1 - Video Caption Generation
Video captioning with off-the-shelf captioners.
Specifically, we employ Tewel et al. (2021, 2022)
to generate video captions and then use GPT-
2 (Radford et al., 2019) to enrich sentences using

the prompts, i.e., “Video presents”.

3.2 Step 2 - Relevance-Boosted Caption
Generation

We notice that the generated captions always miss
some important information, leading to unsatisfy-
ing retrieval performance. A simple solution to
this problem is to fine-tune the captioning models,
which will improve their caption-generation abili-
ties. However, this approach needs a huge amount
of annotated video-caption data and expensive com-
putation resources, and the fine-tuned models are
always not able to be transferred to other bench-
marks(Tang et al., 2021). To this end, we propose
the relevance-boosted caption generation, which
is training-free and generates detailed captions that
contain almost every detail of the video.

Specifically, we use large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023)
to conduct the relevance-boosted generation using
the following prompt template.

The following is a caption from a
video: [" + <Video Caption> + "].
Based on this caption, generate two
paraphrased captions capturing the
key information and main themes,
each of which should be in one
sentence with up to twenty words.
Meanwhile, please be creative, you
can have some imagination and add
the necessary details. Generated
sentences should be in the number
list. Also please generate text
without any comment.
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Our proposed method generates multiple cap-
tions (e.g., 1, 2, and 3). However, some of these
captions might introduce noise or lack strong rele-
vance to the video’s content. To mitigate potential
negative impacts, we apply a filtering method to
assess the semantic similarity between relevance-
boosted captions and the original video caption
by leveraging a pre-trained text encoder (Reimers
and Gurevych, 2019). Specifically, each video in
our dataset has two generated captions associated
with it. For the retrieval process, we concatenate
these captions for each video and then perform the
ranking.

3.3 Step 3 - Structural Information Extraction
To understand which kind of information is essen-
tial to VTR, we analyze the contextual text of video
captions by breaking down the video captions into
four different visual tokens using NLTK (Bird et al.,
2009), i.e., phrase, object, event, and attribute. Fi-
nally, we structure the information into the follow-
ing structure,

<Caption> <Phrases> <Attributes> <
Events> <Objects>

3.4 Step 4 - Video (Video Caption)-Text
Retrieval

Finally, after obtaining structured video caption
data, we are ready to perform the retrieval step.
Specifically, we compute the similarity score at the
video level between text and video caption using
off-the-shelf retrieval methods, i.e., BM25 (Robert-
son and Walker, 1994) and Sentence transform-
ers (Reimers and Gurevych, 2019).

4 Experiments

4.1 Benchmarks
• MSR-VTT (Xu et al., 2016) contains 10,000

videos with length varying from 10 to 32
seconds, each paired with about 20 human-
labeled captions. Following the evaluation
protocol from previous works (Yu et al., 2018;
Miech et al., 2019), we use the training-9k /
test 1k-A splits for training and testing respec-
tively.

• MSVD (Chen and Dolan, 2011) contains
1,970 videos with a split of 1200, 100, and
670 as the train, validation, and test set, re-
spectively. The duration of videos varies from

1 to 62 seconds. Each video is paired with 40
English captions.

• ActivityNet (Fabian Caba Heilbron and
Niebles, 2015) is consisted of 20,000 Youtube
videos with 100,000 densely annotated de-
scriptions. For a fair comparison, following
the previous setting (Luo et al., 2022; Gabeur
et al., 2020), we concatenate all captions to-
gether as a paragraph to perform a video-
paragraph retrieval task by concatenating all
the descriptions of a video. Performances are
reported on the “val1” split of the ActivityNet.

4.2 Baselines
To show the empirical efficiency of our ELIOT, we
compare it with fine-tuned models (LiteVL (Chen
et al., 2022), NCL (Park et al., 2022b), TA-
BLE (Chen et al., 2023b), VOP (Huang et al.,
2023), X-CLIP (Ma et al., 2022), DiscreteCode-
book (Liu et al., 2022a), TS2-Net (Liu et al.,
2022b), VCM (Cao et al., 2022), HiSE (Wang
et al., 2022b), CenterCLIP (Zhao et al., 2022),
X-Pool (Gorti et al., 2022), S3MA (Wang and
Shi, 2023b)), and MV-Apapter (Jin et al., 2024),
pre-trained methods (VLM (Xu et al., 2021a),
HERO (Li et al., 2020a), VideoCLIP (Xu et al.,
2021b), EvO (Shvetsova et al., 2022), OA-
Trans (Wang et al., 2022a), RaP (Wu et al., 2022),
OmniVL (Wang et al., 2022c), mPLUG-2 (Xu
et al., 2023), InternVL (Chen et al., 2023c), Lan-
gaugeBind (Zhu et al., 2024), UCOFIA (Wang
et al., 2023b), ProST (Li et al., 2023b), and
UATVR (Fang et al., 2023), ), and a few-shot
method, i.e., VidIL (Wang et al., 2022e).

4.3 Evaluation metric.
To evaluate the retrieval performance of our pro-
posed model, we use recall at Rank K (R@K,
higher is better), median rank (MdR, lower is bet-
ter), and mean rank (MnR, lower is better) as re-
trieval metrics, which are widely used in previous
retrieval works (Radford et al., 2021; Luo et al.,
2022; Ma et al., 2022).
Implementation details and related model de-
tails are defferd to Appendix A.

4.4 Quantitative Results
In this part, we present the qualitative results of
ELIOT on three VTR benchmarks.
MSR-VTT. We found that the contextual video text
obtained directly through video captioning meth-
ods generally have mediocre performance (R@1:
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Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Training-based
LiteVL-S EMNLP’2022 46.7 71.8 81.7 2.0 -
X-Pool CVPR’2022 46.9 72.8 82.2 2.0 14.3
CenterCLIP SIGIR’2022 44.2 71.6 82.1 2.0 15.1
TS2-Net ECCV’2022 47.0 74.5 83.8 2.0 13.0
X-CLIP ACM MM’2022 46.1 74.3 83.1 2.0 13.2
NCL EMNLP’2022 43.9 71.2 81.5 2.0 15.5
TABLE AAAI’2023 47.1 74.3 82.9 2.0 13.4
VOP CVPR’2023 44.6 69.9 80.3 2.0 16.3
DiscreteCodebook ACL’2022 43.4 72.3 81.2 - 14.8
VCM AAAI’2022 43.8 71.0 - 2.0 14.3
CenterCLIP SIGIR’2022 48.4 73.8 82.0 2.0 13.8
HiSE ACM MM’2022 45.0 72.7 81.3 2.0 -
TS2-Net ECCV’2022 49.4 75.6 85.3 2.0 13.5
S3MA EMNLP’2023 53.1 78.2 86.2 1.0 10.5
UCOFIA ICCV’2023 49.4 72.1 - - 12.9
ProST ICCV’2023 49.5 75.0 84.0 2.0 11.7
UATVR ICCV’2023 49.8 76.1 85.5 2.0 12.9
MV-Adapter CVPR’2024 46.2 73.2 82.7 - -

Zero-Shot (Pretrained Models)
VLM ACL’2021 28.1 55.5 67.4 4.0 -
HERO EMNLP’2021 16.8 43.3 57.7 - -
VideoCLIP EMNLP’2021 30.9 55.4 66.8 - -
EvO CVPR’2022 23.7 52.1 63.7 4.0 -
OA-Trans CVPR’2022 35.8 63.4 76.5 3.0 -
RaP EMNLP’2022 40.9 67.2 76.9 2.0 -
OmniVL NeurIPS’2022 34.6 58.4 66.6 - -
mPLUG-2 ICML’2023 48.3 75.0 83.2 - -
InternVL arXiv’2023 42.4 65.9 75.4 - -
LanguageBind ICLR’2024 42.6 65.4 75.5 - -

Few-Shot
VidIL NeurIPS’2022 40.8 65.2 - - -
Zero-Shot
ELIOT w/o paraphrase and visual tokens 20.3 40.9 51.7 9.0 60.3
ELIOT w/o visual tokens 54.0 73.9 80.2 1.0 24.5
ELIOT 58.2 75.8 83.5 1.0 18.9

Table 1: Text-to-Video retrieval results on MSR-VTT.
The best results are marked in bold. The second best
results are underlined.

Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MnR↓
MSVD

RaP EMNLP’22 35.9 64.3 73.7 -
LanguageBind ICLR’24 52.2 79.4 87.3 -
ELIOT 57.2 80.0 88.2 15.6

ActivityNet

LanguageBind ICLR’24 35.1 63.4 76.6 -
ELIOT 59.0 71.4 77.0 387.4

Table 2: Text-to-Video retrieval results on MSVD and
ActivityNet. The best results are marked in bold.

20.3) compared to other baseline Text-Video Re-
trieval method. We boosted each sentence and ex-
panded it into two sentences. From the results
presented in Table 1, it can be seen that this ap-
proach outperforms the second-best method by 9.9.
This indicates the significant impact of relevance
boosting and expanding captions on enhancing
the performance of Text-Video Retrieval systems.
Compared to DiscreteCodebook (Liu et al., 2022a),
which aligns modalities in an unsupervised man-
ner, ELIOT outperforms DiscreteCodebook on ev-
ery metric. Meanwhile, ELIOT also outperforms
VidIL (Wang et al., 2022e), which uses few-shot
prompting, demonstrating the usability of integrat-

Caption Phrase Object Event Attribute
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
✓ 54.0 73.9 80.2 1.0 24.5
✓ ✓ 57.4 76.2 83.0 1.0 19.3
✓ ✓ 56.9 77.5 83.8 1.0 18.6
✓ ✓ 54.2 73.2 79.6 1.0 24.9
✓ ✓ 55.0 74.2 80.2 1.0 24.1

✓ ✓ ✓ 57.4 76.2 83.5 1.0 18.7
✓ ✓ ✓ 57.3 76.3 82.6 1.0 19.8
✓ ✓ ✓ 57.6 76.3 83.5 1.0 19.1
✓ ✓ ✓ 56.9 76.6 83.2 1.0 19.3
✓ ✓ ✓ 57.6 77.4 83.8 1.0 18.2
✓ ✓ ✓ 54.0 73.3 79.6 1.0 24.9

✓ ✓ ✓ ✓ 58.0 75.9 83.7 1.0 19.3
✓ ✓ ✓ ✓ 57.8 76.3 84.1 1.0 18.3
✓ ✓ ✓ ✓ 57.8 76.0 82.5 1.0 19.5
✓ ✓ ✓ ✓ 57.3 76.7 83.2 1.0 18.9

✓ ✓ ✓ ✓ ✓ 58.2 75.8 83.5 1.0 18.9

Table 3: Retrieval performance with different combi-
nations of four visual tokens (Phrase, Object, Event,
Attribute) on MSR-VTT using ELIOT. Best in Bold.

Order List
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Order List 1 58.2 75.8 83.5 1.0 18.9
Order List 2 57.9 75.9 83.4 1.0 18.7
Order List 3 58.0 75.7 83.2 1.0 19.1

Table 4: Retrieval performance with different order of
four visual tokens (Phrase, Object, Event, Attribute) on
MSR-VTT using ELIOT. Best in Bold.

ing zero-shot LLM on text-to-video retrieval. This
suggests that leveraging zero-shot on LLMs is a
promising approach to enhance text-to-video re-
trieval performance.

MSVD and ActivityNet. The results on MSVD
and ActicityNet are shown in Table 2. ELIOT
achieves the best R@1 on text-to-video retrieval on
two datasets compared to the previous methods.

4.5 Ablation Studies

In this part, we present a series of ablation experi-
ments on MSR-VTT to better understand the effec-
tiveness of different components of ELIOT, using
LLaMA2-7b-chat-hf and BM25.
Impact of combination of structural information
(visual tokens). To choose the best combination
method for the extracted visual tokens (phrases,
attributes, objects, and events), we conduct experi-
ments using different arrangements of these visual
tokens, as shown in Table 3. By reducing the inclu-
sion of visual tokens, the retrieval performance of
ELIOT decreases, thereby proving the usefulness
of integrating these four visual tokens together.
The order of different structural information.
Another important factor to consider is the order
of these visual tokens. To this end, we systemat-
ically evaluate which specific order of <phrase>,
<object>, <attribute>, and <event> maximizes the
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efficiency and accuracy of the retrieval process.
The results are shown in Table 4. We discover that
among various arrangements, the model performs
best when either phrases or objects are placed at
the end of the sequence. This superior performance
might be due to the detailed and specific informa-
tion that phrases and objects offer, enhancing the
model’s ability to accurately match and retrieve
relevant video content.

5 Conclusion

In this paper, we present an innovative zero-shot
framework, ELIOT, which revolutionizes video-
text retrieval by capitalizing on existing captioning
methods, large language models (LLMs), and text
retrieval techniques. By sidestepping the need for
model training or fine-tuning, our framework of-
fers a streamlined approach to retrieval. To over-
come the shortcomings of traditional captioning
methods, we propose a groundbreaking relevance-
boosted caption generation technique that incor-
porates LLMs’ generated information into video
captions. Moreover, our introduction of structural
information extraction further enhances retrieval
performance by highlighting key visual tokens.
Through extensive experimentation across diverse
benchmarks, we demonstrate the superior efficacy
of ELIOT compared to conventional fine-tuned
and pretraining methods, even in the absence of
training data.

Limitations

In the future, it would be interesting to explore
more detailed methods for zero-shot video-text re-
trieval, such as incorporating the audio modality
and corresponding off-the-shelf foundation models.
Moreover, as a pioneering work, our work mainly
focuses on establishing the paradigm. It would
be great if we could explore more text retrieval
methods, video captioning methods, and LLMs for
relevance-boosted caption generation.
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A Implementation Details

For video caption generation, we use Tewel et al.
(2021, 2022) to generate video captions and GPT-
2 (Radford et al., 2019) to enrich sentences. For
relevance-boosted caption generation, we employ
LLaMA2-7b-chat-hf (Touvron et al., 2023) and get
two boosted captions. For structural information
extraction, we use NLTK (Bird et al., 2009). For
text retrieval, we use BM25 (Robertson and Walker,
1994).

We use GPT2 (Radford et al., 2019) for sen-
tence enrichment during video caption generation.
GPT-2 (Radford et al., 2019), developed by Ope-
nAI, is a large-scale transformer-based language
model renowned for its ability to generate coher-
ent and contextually relevant text. With 1.5 billion
parameters, GPT-2 can be fine-tuned for a variety
of natural language processing tasks, such as text
generation, summarization, and captioning. In our
task, we enrich image captions with GPT-2 with
one NVIDIA A100 GPU using around 20 hours.

We use Llama (Touvron et al., 2023)(version:
Llama-2-7b-chat-hf) to conduct the relevance-
boosted caption generation task, inspired by (Liu
et al., 2021; Wang et al., 2023a, 2024). Llama
(Touvron et al., 2023) is an advanced language
model with approximately 65 billion parameters.
Its default backend is designed for efficiency and
scalability. The computational budget for LlaMA
in our task is approximately 23 hours with one
NVIDIA A100 GPU. Its ability to understand con-
text, generate coherent and contextually relevant
responses, and perform a wide range of language-
related tasks is significantly enhanced. LlaMA is
a powerful and accessible tool, widely used in var-
ious applications. Therefore, it is included as an
advanced baseline.
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