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Fig. 1. Exploring the ego-network evolutionary histories of several prestigious researchers in the fields of computer graphics, computer
vision, and visualization based on the DBLP collaboration network data. General patterns of all researchers’ ego-networks (such as
clusters and outliers) are revealed in a) the overview. Overall variations of one’s ego-network characteristics (such as alter numbers
and densities) can be learned by viewing the snapshot glyph and transition glyphs in b) the timeline-based visualization. Detailed
structures of alters in the ego-networks (such as different connected components) and their temporal relationship information with the
ego are further visualized in c) the expanded timeline view. For example, we can see that Harry Shum’s ego-network grew significantly
from 2001 to 2005 (from the circle sizes), and meanwhile his collaborators converged from multiple connected components into one
after 2004 (when he became a Managing Director at MSRA). Three of his long-term collaborators can also be identified.

Abstract—Ego-network, which represents relationships between a specific individual, i.e., the ego, and people connected to it, i.e.,
alters, is a critical target to study in social network analysis. Evolutionary patterns of ego-networks along time provide huge insights to
many domains such as sociology, anthropology, and psychology. However, the analysis of dynamic ego-networks remains challenging
due to its complicated time-varying graph structures, for example: alters come and leave, ties grow stronger and fade away, and alter
communities merge and split. Most of the existing dynamic graph visualization techniques mainly focus on topological changes of the
entire network, which is not adequate for egocentric analytical tasks. In this paper, we present egoSlider, a visual analysis system
for exploring and comparing dynamic ego-networks. egoSlider provides a holistic picture of the data through multiple interactively
coordinated views, revealing ego-network evolutionary patterns at three different layers: a macroscopic level for summarizing the
entire ego-network data, a mesoscopic level for overviewing specific individuals’ ego-network evolutions, and a microscopic level
for displaying detailed temporal information of egos and their alters. We demonstrate the effectiveness of egoSlider with a usage
scenario with the DBLP publication records. Also, a controlled user study indicates that in general egoSlider outperforms a baseline
visualization of dynamic networks for completing egocentric analytical tasks.

Index Terms—Egocentric network, dynamic graph, network visualization, glyph-based design, visual analytics.

1 INTRODUCTION

Nowadays, social network analysis has become an important approach
for investigating information flows and people relationships in our
societies [7]. Sociologists, psychologists, and anthropologists have
mainly focused on two aspects of social networks: sociocentric analy-
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sis that quantifies relations of a large group of people, and egocentric
analysis that studies dynamics between a specific individual, called
ego, and people connected to the ego, called alters. The latter type of
networks, often named personal networks or ego-networks, indicates
how an individual is tied to an outside social world. Understanding
how such networks evolve over time can provide huge insights to mis-
cellaneous domains. For example, researchers can better comprehend
different communication behaviors in various online social spaces by
analyzing ego-networks [30]; medical experts find that one’s health
condition is strongly associated with many ego-network related factors
(e.g., friend degrees) [44]; analysts in management, business intelli-
gence, and information security can make more informed decisions by
identifying the most influencing people in social networks and how
they affect others along time [2, 18, 39].
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Social network researchers have developed extensive analytical
methods to measure and model various aspects of ego-networks, such
as statistical analysis, predicting ties, and detecting alter communities
[7, 11, 37, 42, 43]. However, few are able to capture the evolutionary
patterns of ego-networks due to the highly dynamic and complex
nature, which requires human supervision in the process of exploration
and analysis. Along an individual’s life, relational ties to alters inter-
twine: some relationships emerge and some fade away, some become
stronger and some turn distant [17]. Not only do the connections
between the ego and alters vary in time, but also the dynamics among
different alters. There exists a series of questions need to be addressed,
for example, when and how new relations come into being, how the
strengths of relations change over time and affect each other, and how
the alter community structures evolve during a timespan.

Although many dynamic graph visualizations have been proposed
(e.g., [8, 9, 53]), they mainly focus on tracking changes of the entire
graph rather than the characteristics of ego-networks. Some methods
that attempt from the egocentric point of view (e.g., [28, 46, 50])
merely visualize the ego-alter relationships, but omit the connection
strengths and inter-alter relationships, making it impossible to answer
some alter-related questions, such as insights about alter communities.

To address the above concerns, we propose an interactive visual-
ization system, called egoSlider, for exploring, comparing, and ana-
lyzing ego-network evolution. egoSlider provides a holistic picture
of the dataset through three major views, allowing users to browse
ego-networks at various levels of scale. 1) An overview shows overall
temporal patterns, such as clusters, of all individuals’ ego-networks
in the database (Fig. 1-a), where users can further dive into different
regions of interests. 2) A glyph-based timeline visualization sum-
marizes one’s ego-network evolution with critical statistical features
such as alter numbers, densities, and overall changes of ego-alter rela-
tion strengths (Fig. 1-b). Comparative analysis of different people’s
dynamic ego-networks can be easily achieved by viewing multiple
timelines. 3) A detailed view of a person’s ego-network timeline
can be further revealed for browsing dynamic structures of alters
in the ego-networks, such as tracing the relationship with a specific
alter along time, and discovering alter communities (Fig. 1-c). These
three views are seamlessly coordinated with a rich set of interactions,
supporting a smooth navigation of the dataset and multi-scope insight
discovery in ego-network analysis. egoSlider also incorporates several
analytical abilities to filter the data, extract ego-network features, and
conduct similarity measurement of different ego-networks.

Our main contributions in this paper include:
• An interactive visualization system, named egoSlider, that en-

ables users to explore, compare, and analyze dynamic ego-
network evolutionary trends and patterns;

• Novel glyph designs for summarizing critical characteristics of
one’s ego-networks, and a new timeline visualization for tracking
the variations of ego-alter connection strengths and alter-alter
relationship structures;

• A usage scenario with real dataset and a controlled user study
that demonstrate the effectiveness and usefulness of egoSlider.

2 RELATED WORK

2.1 Egocentric Network Analysis
Ego-network has been extensively studied in the field of anthropology
and sociology for a long time. When studying ego-networks, most
of the works focus on the 1-level ego-network formed by the ego
and its 1-degree alters, i.e., the ego’s directly connected friends (e.g.,
[2, 4, 24, 45]); and few study ego-networks containing the ego’s
more distant connections (e.g., [33] discusses 2-level ego-networks
including 1- and 2-degree alters). Major literature in those fields falls
into two categories: microscopic level and macroscopic level analysis.

Microscopic level analysis studies how structures and attributes
of ego-networks affect the ego’s behaviors. One major focus is to
investigate correlations between the topology of ego-networks and
the ego’s characteristics. For example, the structural hole theory
indicates that an individual may gain strategic advantages over others
when his or her alters are highly separated and have a relatively low

connection density [2, 4, 24]. Romantic relationships between two
people can be recognized based on what extent that their mutual
friends are well-connected [11]. Another approach focuses on the
relation type and strength between the ego and alters as well as their
impacts to the ego. Studies show that the existence of stable ego-alter
relationships plays a fundamental role in an individual’s life cycle
[25]. There are also some work targeting at the dynamic process of
relationship building, which attempts to answer questions related to
where, when, and how relations come into an ego-network [33, 36].
Prell described three major properties that are typically studied in
ego-network analysis: the number of alters (degree), the strengths
of ties connecting the ego and alters (closeness), and the number of
interconnections between alters (transitivity) [45].

Macroscopic level analysis looks at the overall patterns in a sub-
group of egos or the entire network. Many researchers have attempted
to analyze structural properties of ego-networks. Arnaboldi et al.
confirmed that certain attributes of online ego-networks appear to be
similar to those found ”offline”, including the number of alters and
the relation strength distribution [7]. Network size was found having
a large impact on compositional properties of the network and ego
characteristics [48]. Lubbers et al. suggested that the persistence
of ties was related to tie strength, network density, and other alter
attributes [41]. Moreover, there is some work that characterizes
ego-networks into various categories, revealing different social com-
munication patterns [14, 30]. Dynamic evolution of ego-networks has
also been of great interests by researchers. For example, Arnaboldi
et al. found that people in Twitter have highly dynamic ego-networks
with a large percentage of weak ties and high turnover [6].

Quantitative measurements of graphs are also related to our work.
Most proposed metrics focus on static graphs (such as node degrees,
betweenness, etc.). A few of them have been extended for measuring
dynamic graphs, although they are not specialized for dynamic ego-
networks. For example, time-scale degree centrality considers both
presence and duration of links [52]; and change centrality compares
two graphs based on change events such as added, removed, and
remained links [29].

The design and development of our egoSlider system stem from
the observations and analysis of the above literature. Based on these
studies, we derive metrics that characterize ego-network evolution,
and distill our research questions and design goals in Sec. 3.

2.2 Dynamic Network Visualization
Many visualization techniques have been proposed to address the dy-
namic evolving nature of network data. Major methods include using
animated transitions, showing network variations along timelines, and
a hybrid of the two. A comprehensive survey can be found in [12].

Animation-based approaches were first used by Eades and Huang to
show changes between time steps of dynamic networks [27]. Staged
transitions have been widely used to reduce users’ visual effort for
identifying and understanding the temporal changes [8, 21, 31]. Some
change highlighting techniques are also applied in those staged an-
imations [8]. Although animation is an effective way to decrease
the complexity of dynamic network evolution, it may lead to a high
cognitive load [5]. It is also difficult for users to track the transitions
when comparing multiple networks at the same time.

One type of timeline-based techniques leverages a series of node-
link diagrams to represent networks at different time steps, such
as small multiples of network snapshots juxtaposed to each other
[51]. Itoh et al. extended this idea into 3D spaces so that users can
observe global differences between graphs more easily [38]. Some
other methods put nodes on a vertical axis, which can better utilize
the screen real estate and highlight the changes of links over time
[23, 32, 53]. We adopted a similar design to visualize the evolutions
of alter connections in ego-networks. Another approach is based
on a matrix-based representation of networks, where the temporal
information is encoded as an intra-cell glyph-based timeline, such
as simple bar charts or Gestaltlines [20, 22]. However, since the
minimum matrix cell size is restricted by the intra-cell visualization,
such methods are not scaled for large networks. Besides, some works



visualize the adjacency list over time which is suitable for analyzing
certain tasks in dynamic graphs such as exploring the overall link
change patterns [34, 47].

There exist a few visualization systems using a hybrid approach,
i.e., combining the animation-based and timeline-based techniques
together to achieve better performance for certain tasks. DiffAni
supports flexible interactions that allow users to divide the whole graph
sequence into several aggregation views including diff tiles, animation
tiles, and small multiple tiles [49]. Beck et al. used a rapid serial
visual presentation approach to animate a timeline of graphs at a high
frequency in order to address the scalability problem [13].

However, all the above dynamic graph visualization techniques aim
to show variations of the entire graph. Egocentric analysis focuses on
specific sub-networks, where particular connections, such as ego-alter
and alter-alter relationships, are more concerned rather than the overall
topology. Also, it is difficult to use the above techniques to achieve
visual comparisons of different ego-networks, since they all focus on
one dynamic graph.

There have been several attempts to help users understand network
data from the egocentric perspective. Many approaches adopt a radial
layout where alters are positioned around the ego and the temporal
relation information is encoded by the radius length [19, 28, 46]. On
the other hand, Shi et al. proposed a 1.5D visual design to reveal the
dynamic pattern of an ego-network [50]. However, many essential
aspects of ego-networks are missing in those visualizations, such as
relation strength changes between an ego and its alters, and inter-alter
connection variations over time. Compared with these approaches,
egoSlider covers a much wider range of important properties for
analyzing ego-network evolution.

3 ANALYTICAL QUESTIONS

Experts with different backgrounds may have various interests on
certain ego-network features. For example, anthropologists could pay
more attention to kinship relations which is related to a set of alters
who hold strong ties with the ego; health experts could focus on an
ego’s pro-social behaviors that can be defined as a quantitative ego
attribute. We aim to design egoSlider as a general-purpose visual
analysis tool that benefits users from different domains with deeper un-
derstandings of ego-network evolution. Although Ahn et al. presented
a comprehensive task taxonomy for network evolution analysis [3],
it is not specialized for ego-network analysis which demands specific
attributes such as tie strength to be explicitly described in the tasks.

We choose the approach of first deriving analytical tasks from the
literature and then validating them with experts. We selected 38
dominant ego-network related publications across different domains
(Sec. 2.1), then classified them into two categories: macroscopic level
and microscopic level. Next we derived a series of key analytical
questions that users often need to answer when studying dynamic
ego-networks. We then conducted in-depth interviews with two ex-
perts in graph mining. They helped us refine the questions, and
suggested adding an additional mesoscopic level to capture the overall
comparison of ego-network evolution of different individuals, because
it is a common scenario in their daily research.

In this paper, we focus on the visualization of at most 2-level
ego-networks (i.e., containing the ego, and its 1- and 2-degree alters),
which is related to a vast majority of studies in the literature. Unless
specifically stated, when mentioning the ego’s alters, we refer to its
1-degree alters; when mentioning one’s ego-network, we refer to the
1-level ego-network. The analytical questions are described below.

The macroscopic level questions aim to obtain a whole picture of
all ego-networks from a large group of people [6, 14, 30, 48]:
Q1 What are the overall patterns of a large group of people’s ego-

networks at each time step? Are there any clusters of people
with similar ego-networks? Are there any outliers?

Q2 What are the evolutionary trends of a large group of people’s
ego-networks? Do they share a common evolutionary path?
Does a number of people’s ego-network evolution always keep
structurally similar along time, or become different sometimes?
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Fig. 2. The overview of the egoSlider visualization pipeline. a) The
ego-network structures are extracted from the raw data and stored into
MongoDB. b) The data analysis module incorporates several analytical
methods to process the dynamic ego-network sequences. c) Users
can interactively navigate through three major views to perform visual
analysis of the data. d) Each view in egoSlider is aimed to address a
different level of ego-centric analytical tasks.

The mesoscopic level questions focus on the overall comparison
among a set of individuals’ ego-networks [11, 25, 33]:
Q3 What are the general similarities between multiple people’s ego-

networks along time? Do their ego-network sizes increase or
decrease simultaneously? Do they all tend to meet more new
alters in a specific time period? Are there any different trends in
terms of alter numbers?

Q4 What are the differences between multiple people’s ego-networks
at a specific time step? Do they hold the same alter density? Do
they have a similar number of 1-degree alters? Do the alters share
common attributes? How about 2-degree alters?

The microscopic level questions mainly study the detailed behav-
iors of a particular person’s ego-networks [2, 4, 24, 36]:
Q5 How does the number of an ego’s 1- or 2-degree alters change

over time? Is it increasing or decreasing? Is there a periodical
pattern? Are there any alter number spikes? Are the 1- and 2-
degree alter volumes correlated?

Q6 How do the tie strengths between the ego and its alters evolve
along time? Do the alters who share stronger ties with the ego
also preserve longer relations? Does the tie strength become
weaker and weaker before an alter leaves the connection? Do
the majority of alters follow the same tie strength evolutionary
pattern?

Q7 How are the alters of an ego connected over time? How many
connected components can be divided at different time steps?
What is the alter flowing trend among the connected components
in a specific time span? Do the alters tend to diverge into
different small subgroups or to merge into a highly connected
community?

Q8 How do new relations come into being? Is a new alter also a
2-degree neighbor of the ego previously? If so, who are the
bridges between the new alter and the ego? Is a new alter the
ego’s previous alter long time ago? If so, where did this alter
go? Staying relatively close to the ego as a 2-degree neighbor, or
much farther away?

4 SYSTEM OVERVIEW

Motivated by the above analytical questions, we designed egoSlider
allowing users to explore and analyze dynamic ego-network data at
three different scales: the overall patterns of all people’s ego-networks
with a Data Overview, the similarities and differences of ego-networks
among individuals of interest with a Summary Timeline View, and the
detailed information of a person’s ego-network history from multiple
perspectives with an Alter Timeline View.

The whole egoSlider system consists of three major components:
data storage and preprocessing module, data analysis module, and
visual analysis module, as shown in Fig. 2. The data storage and
processing module extracts ego-network structures from raw datasets
such as citation networks, communication networks, and online social
networks. We used MongoDB as our data storage software since it
can provide a highly flexible and customizable data schema. The data
analysis module performs data filtering of the extracted ego-networks,
and further characterizes them with essential numerical features for



measuring graph similarities. It thus allows typical computational and
visual methods, such as multidimensional scaling (MDS) [40], to be
used to reveal the distributions of the entire dataset and detect common
patterns of ego-network evolutionary trends. Both the above two
modules were developed in Python by leveraging Flask, a Python web
framework, to build the backend. Three major views are integrated
in the visual analysis module, i.e., the front-end visualization, to
support different levels of analytical tasks with smooth interactions.
We implemented the visual analysis module using AngularJS and D3.

5 DATA ANALYSIS

In this section, we introduce our analytical approaches used in the data
analysis module (Fig. 2-b). We first describe a formal data model for
dynamic ego-network datasets, and then a set of numerical metrics for
measuring the similarity between two ego-networks.

5.1 Data Model
In egoSlider, we consider dynamic egocentric network data as a se-
quence of local friendship networks with time steps. Particularly, an
ego-network at time step t is modeled as an undirected weighted graph
Gt

u = (V t
u ,E

t
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of the ego u and nt
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where Gk
u,1≤ k ≤ T shares the same ego u.

5.2 Graph Similarity
Based on the studies about ego-network and general graph analysis
(e.g., [11, 14, 15, 24]), we derive the following essential metrics to
characterize an ego-network. We describe those metrics using the data
model introduced above:

• Number of alters of the ego u: nt
u = |V t

u−{u}|;
• Density (or clustering coefficient) of the ego u’s ego-network:

den(Gt
u) =

L
nt

u(nt
u−1)/2 ,L = |Et

u|− nt
u, where L denotes the num-

ber of edges between the alters;
• Average tie strength (or weight) between the ego u and its alters:

avg(wei),ei ∈ Ft
u ;

• Number of edges between the alters of the ego u: |Et
u−Ft

u |;
• Number of 2-degree alters of the ego u: |N(Gt

u)| = |{w|w ∈
V t

v ,v ∈V t
u ,w /∈V t

u}|;
• Average alter number of the alters’ themselves ego-networks:

avg(nt
v),v ∈V t

u−{u};
• Number of outgoing edges from the ego u’s ego-network:
|E(Gt

u)|= |{ev,w|ev,w ∈ Ft
v ,v,w ∈V t

u ,w /∈V t
u}|.

Leveraging the above metrics, we form a feature signature vector
for each ego-network and adopted the Canberra Distance proposed in
[15] to compute pairwise similarity or distance between ego-networks:
dCan(P,Q) = ∑n

i=1 |Pi−Qi|/(Pi +Qi), where P and Q represent the
feature signatures of two ego-networks.

We choose this signature similarity based approach because it is
less expensive to compute while providing a customizable graph com-
parison criteria [15]. Also, the Canberra Distance measurement is
sensitive to small changes and normalizes the absolute difference of
individual comparisons, which benefits users with the detection of
clusters and outliers of ego-networks at different time steps.

6 VISUAL DESIGN

The main goal of egoSlider visualization design is to provide intuitive
visual metaphors supporting the analysis of dynamic ego-network
datasets according to the previously introduced questions at three
different scopes (Sec. 3). We aim to offer effective visual summaries
of important ego-network characteristics to allow temporal pattern dis-
covery at different scales, for example, clusters and outliers detection
at the macroscopic level, overall ego-network topology comparison at
the mesoscopic level, and detailed alter information browsing at the

microscopic level. In addition, a rich set of user interactions is needed
in egoSlider to support a holistic analysis of dynamic ego-networks
across all levels of tasks.

In this section, we first provide an overview of the egoSlider inter-
face, then introduce the visual encodings of individual views as well
as the design alternatives we considered, and finally present the user
interactions equipped in egoSlider.

6.1 egoSlider Interface
As shown in Fig. 3, the interface of egoSlider consists of four major UI
components: a) a Data Overview panel showing the overall patterns of
the entire dataset of many people’s ego-network evolutionary histories,
b) a detailed view canvas displaying the Summary Timeline Views
of selected individuals’ ego-networks and their fully expanded Alter
Timeline Views on demand, c) a control panel displaying all the egos
from the dataset in a table with interactive searching, and d) a toolbar
on the top where users can select the dataset to visualize and toggle
the overview panel and the control panel.

6.2 Data Overview
We designed the Data Overview to illustrate the overall ego-network
patterns (Q1 and Q2). By using the ego-network similarity measure-
ment in Sec. 5.2, for each time step, we used MDS layout [40] to
generate the distribution of ego-networks. Different from traditional
MDS-based graph layout where closer nodes share more common
neighbors, closer ego-networks here express more similarity based on
the metrics. As shown in Fig. 1-a, each ego-network is represented as
a dot and MDS plots of all time steps are sorted and stacked along a
vertical axis in the chronological order. All data points related to the
currently focused egos are highlighted in red. And ego-networks of
the same individual are connected with lines across time steps.

6.3 Summary Timeline View
We designed glyphs on a timeline to visually summarize the evolution-
ary process of an individual’s ego-network. This design consists of two
parts: a snapshot glyph indicating the network structure and properties
at one time step, and a transition glyph representing the changes
between two consecutive time steps. Based on the analytical questions
(Q3 and Q4) in the mesoscopic level, we encoded several key variables
about 1- and 2-degree alters in those glyphs. Thus, users can easily
capture the main characteristics of a person’s ego-network evolution.
It also enables the comparison of multiple people’s ego-networks using
relatively small screen real estate.

Snapshot glyph. As shown in Fig. 4-a, the inner circle color
represents the ego density which measures to what extent the alters
connect to each other, where the darker purple means the higher
density. The outer parts of the glyph indicate some information about
the ego’s 1-degree alters and 2-degree alters. First, a ring filled with
four different colors shows the distribution of four types of 1-degree
alters: 1) new alters who have no connection with the ego at the
previous time step (green), 2) alters whose tie strength with the ego
increases compared to that at the previous time step (red), 3) alters
whose tie strength with the ego decreases (blue), and 4) alters who
hold the same tie strength with the ego (light gray). The width of this
circle is mapped to the number of 1-degree alters of the ego. Second,
a gray ring is drawn to indicate the number of 2-degree alters with
its width. However, it may be difficult to compare quantities of four
types of alters in two glyphs. egoSlider also supports a bar chart based
design as shown in Fig. 4-b. Similarly, the background square size is
constant and its color represents the ego density. Four bars illustrate
the numbers of different 1-degree alters. The top black bar indicates
the 1-degree alter number and the bottom one shows the 2-degree alter
number. Since it is easy to compare the total alter numbers in the pie
chart design, and it is also visually attractive with a metaphor of an ego
surrounded by alters, egoSlider uses this design as the default display.
But users can switch to the bar chart based design on demand.

Snapshot glyph design alternatives. We considered several al-
ternative solutions during our glyph design process. Line chart can
also be used in the glyph but it has several drawbacks. First, the data



Fig. 3. The egoSlider interface consists of the following components: a) a Data Overview showing patterns of the entire dynamic ego-network
data, b) a main canvas displaying detailed ego-network evolutionary history of selected individuals, c) a control panel with a search bar and a data
table, and d) a toolbar for selecting datasets. Currently, the main canvas shows the Summary Timeline Views of the top 10 researchers in a DBLP
collaboration network dataset based on their publication numbers, where Kwan-Liu Ma’s timeline is expanded and shown in the Alter Timeline View.

presented in snapshot glyph has different natures and value ranges
(e.g., ego density and alter numbers), so using a unified y-axis is
confusing. Second, it might be difficult to track changes since the
vertical space is limited. Third, line chart introduces occlusion for
the transition glyph introduced later. Pie chart and bar chart do not
have this visual clutter problem. Moreover, a number of alternatives
pie chart designs have been experimented (Fig. 5-a). The first design
choice uses the radius of a pie chart for the 1-degree alter number
and the opacity of colors for the ego density. However, users can
hardly see the alter type distribution when the 1-degree alter number is
small. In addition, it is difficult to get an accurate value estimation on
the opacity channel on many colors. The second design employs the
inner and outer circle radii to encode the 1-degree and 2-degree alter
numbers, and the diverging purple-yellow color of the inner circle to
indicate which alter number is greater. Users may feel confused about
this color-coding since the outer circle also employs a categorical color
scheme. In the third design, the 1-degree and 2-degree alter numbers
are encoded by the lengths of two vertical bars respectively. The colors
of those bars represent the ego density. This design is limited when the
vertical bars are short. Besides, the transition glyph may also affect
users perceiving the length of the bars. For the bar chart based design,
we also considered to use the size or height of the background square
to indicate 1-degree alter number, but both designs make users difficult
to perceive the ego density when the alter number is small.

Transition glyph. As Fig. 4 illustrates, we use the line thickness
to represent the volume of consistent 1-degree alters between two
consecutive time steps, i.e., those who remain directly connected to
the ego. A diverging blue-red color scheme is used for the transition
glyph to summarize the tie strength changes of those alters, which is
in consistency with the color-coding of the snapshot glyph, i.e., red
for a stronger change, blue for a weaker change, and light gray for no
change. A dashed line is shown when there are no consistent 1-degree
alters between the ego-networks at the two consecutive time steps.

Transition glyph design alternatives. Fig. 5 shows three design
alternatives of the transition glyph that we experimented with, where
different types of overall constant alters’ tie strength changes are listed
from top to bottom. In the first design, the line thickness encodes the
1-degree alter number and the tilting angle encodes the tie strength
change. In this design, the tilt angle is somewhat restricted by the line
thickness, so users may feel more difficult to discern different levels
of tie strength when the line becomes thicker. We also explored the
possibility to embed the gestaltline [20] in the second design choice.
However, the gestaltline is not a common visualization encoding that
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Fig. 4. The visual encodings of glyphs in the Summary Timeline View.
The snapshot glyph represents an individual’s ego-network structure
and properties at each time step. Two design choices are shown: a) pie
chart based, and b) bar chart based. The transition glyph summarizes
the temporal changes between those time steps.

users are familiar with. Also, the tilt angle may also impact users
perceiving the gestaltline thickness. In addition, we attempted to
encode the tie strength changes of all three types of 1-degree alters,
i.e., alters whose tie strengths are stronger, weaker, and the same
across two time steps, by drawing three parallel lines. But we found
that the transition glyph became too complicated and overwhelming,
and those lower-level information can be accessed alternatively from
the Alter Timeline View introduced below.

6.4 Alter Timeline View
The Alter Timeline View aims to support the microscopic level anal-
ysis (Q5-Q8) by providing detailed information of alters rather than
overall statistics. The Summary Timeline View can only partially
address Q5, whereas here users can track the temporal variations
of tie strength between the ego and any individual alters as well as
inter-alter connection structures. We considered node-link based and
matrix based design choices before we adopted the current design,
but they have the scalability problem as indicated in the literature
(see Sec. 2 and [12]), whereas the line chart based design is more
compact. As the direct-connected alters are more important, we use
different visual aggregation methods to encode 1-degree and 2-degree
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Fig. 5. Design alternatives of a) the default snapshot glyph and b) the
transition glyph. For the transition glyphs, three different types of tie
strength changes are indicated: increasing, constant, and decreasing
(from top to bottom).
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Fig. 6. The visual encodings of the Alter Timeline View: a) the 1-degree
alter collections at one time step; b) the 2-degree alter volume flow, c)
a new 1-degree alter who was the ego’s 2-degree alter in the previous
time step; and d) an alter transits to the ego’s 2-degree neighbor and
returns to the 1-degree neighbor after several time steps.

alters at different levels of scales (Fig. 6). In addition, two Alter
Timeline Views can be displayed in one window together which makes
comparison possible at this level.

Timeline encodings. As shown in Fig. 6, each 1-degree alter is rep-
resented by a small horizontal bar which uses the same color-coding
schema as the snapshot glyph. Alter bars are organized vertically
into groups based on their tie strength with the ego at each time
step. From top to bottom, the tie strength between the ego and its
alters decreases. We also support an interaction to group alters into
connected components. In that case, the alters within a group belong to
the same connected component rather than share the same tie strength.
Note that the colors and positions of those alters are flexible in this
visualization design. For example, we can use the color to encode
alters’ influence to the whole network, and group the alters into graph
connected components vertically to help verify the “structural hole”
theory [24]. As for 2-degree alters, which are less important, we
aggregate them as a light blue flow chart shown at the bottom of this
view to illustrate their temporal volume changes.

Same alters between consecutive time steps are linked by lines.
Thus, each curve depicts an alter’s tie strength evolutionary history
along time. If an alter remains as the ego’s 1-degree neighbor, we can
simply draw a curve connecting them. To avoid edge crossing, we
adopted an alter sorting algorithm. At each time step, all the alters are
first sorted by the types of their tie strengh changes. Then, the constant
alters are positioned in the same order as those in the previous time
step. Finally, the positions of alters who become 2-degree alters in the
next time step are lowered. In addition to the tie strength, the degree
of an alter may change over time. For example, if an alter becomes the
ego’s 1-degree neighbor from its 2-degree neighbor in the network, a
curve is drawn starting at the boundary of the 2-degree alter flow and
ending at the alter bar at the next step (Fig. 6-c); similarly, if an alter
changes from a 1-degree neighbor of the ego to a 2-degree neighbor, a

curve is shown starting at the alter bar and connecting to the boundary
of the flow chart at the next time step. In some situations, an alter
may become 2-degree from 1-degree, stay as 2-degree for a while, and
reappear as 1-degree, which is important to be captured in ego-network
analysis. Thus, we encoded this alter behavior with a lurking curve in
interior of the 2-degree alter flow to indicate such future reconnection.
The position of the lurking curve is determined by the timespan while
remaining as a 2-degree alter, where the longer the time interval, the
closer the lurking curve to the bottom.

Design alternatives. We discussed several candidate designs of
the Alter Timeline View before we made the final decision. One
design choice is to position the lurking curves below the 2-degree alter
flow separately (rather than on top of the flow and overlapped). This
approach reduces the visual clutter when multiple lurking curves share
a similar timespan, especially when the 2-degree alter number is small
(making the flow tiny). However, it is not space efficient and much
screen real estate is actually allocated to less important information.
Another design choice is to encode 2-degree alters who changed to and
from the ego’s 1-degree neighbors with similar glyphs to Fig. 4 on top
of the alter flow chart. However, we found those glyphs significantly
occlude the lurking curves which represent alters constantly remaining
as 2-degree neighbors. Therefore, we chose to draw curves connected
to the flow boundaries to convey the same message, which is also
consistent with the line-based visual encodings in this view.

6.5 User Interactions
To allow users to smoothly perform ego-network analysis from the
three levels of scales and gain deeper insights, egoSlider incorporates
a set of intuitive interactions to help users browse data through the
multiple visualization views introduced above.

Navigating through multiple views. Users can glance at the
entire dynamic ego-network dataset with the Data Overview to identify
clusters and outliers. Alternatively, users can browse those egos
through a table on the Control Panel showing the egos’ names and
some attributes. Once individuals of interest are identified, users can
select them to compare their ego-network evolutional history with
Summary Timeline Views on the main canvas. Further details-on-
demand explorations can be achieved by clicking a button to expand
the Summary Timeline View with the Alter Timeline View.

Filtering and searching. Users can interactively select an area
of interest in the Data Overview, thus filtering out other egos and
revealing how the similarities among those ego-networks evolve along
time. In the Alter Timeline View, further filtering of alters based on
their degrees is supported. Moreover, a search bar is provided for
looking up a particular ego’s name on the Control Panel.

Synchronizing and desynchronizing timeline. By default, all the
timeline visualizations are synchronized globally along one time axis.
Users can navigate through time using a global slider on the top. To
compare two pieces of timelines from different time ranges, users can
detach a timeline and shift it individually using a local slider.

Modifying alters’ color-coding and/or positioning. Users can
switch between different glyph designs (Fig. 4) in the Summary Time-
line View. Users can also dynamically order the 1-degree alters in the
Alter Timeline View based on different criteria, such as by tie strength,
connected graph components, and other alter attributes. Similarly, the
color-coding of alter bars is flexible to be changed to represent alter
types, alter’s overall influence, and so on.

Highlighting and brushing. Most of the visual elements in
egoSlider are associated with informative tooltips, allowing users to
have more information and learn about the visual encodings. Certain
highlighting of visuals, such as alter evolutionary curves in the Alter
Timeline View, can be fixed when selected. In addition, brushing &
linking techniques are applied between different visualization objects.
For example, hovering over an ego-network in the Data Overview
reveals all other ego-networks sharing the same ego; hovering over
an ego snapshot glyph or transition glyph in the Summary Timeline
View indicates the corresponding alters in the Alter Timeline View;
and hovering over an alter in the Alter Timeline View highlights its
directly connected alters in the same ego-network.
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Fig. 7. Partial visualization of the DBLP collaboration network dataset in the Data Overview: a) earlier years (1993–1999), and b) more recent years
(2008–2014). c) Summary Timeline Views of the top 10 researchers based on their publication numbers; compared with Fig. 3-b which shows the
recent years, it shows the early years of those authors.

7 EVALUATION

Here we describe a usage scenario to demonstrate the effectiveness
and usefulness of egoSlider using the DBLP collaboration network,
and present a controlled user study to quantitatively compare the user
performance of egoSlider with a baseline dynamic graph visualization.

7.1 Usage Scenario: DBLP Collaboration Network
Academic collaboration network, which is a specific kind of social
networks, is a common dataset interested in many applications, be-
cause it is typical and has the challenges of being huge and dense. The
ego-networks extracted from a large collaboration network indicate re-
searchers’ collaboration circles. The temporal evolution of a person’s
collaboration network can also reflect his or her career development.
Do top researchers start to collaborate extensively in their early career
time? Do they tend to keep any long-term collaborators? Many
interesting questions can be asked. Our experts from the graph mining
domain are particularly interested in this kind of data. Thus, we asked
them to try egoSlider and conducted interviews with them. We derived
the following usage scenario based on their observations.

From the DBLP dataset [1], we select 52038 papers from 31 confer-
ences and journals in the fields of information visualization, computer
graphics, computer vision, and human-computer interaction. We then
identify 64892 authors and extract their ego-network evolutionary
histories from 1975 to 2014. The tie strength between two authors are
defined as the number of their collaborations in a year. We also define
one’s publication performance based on the publication number.

We first toggle the Data Overview to gain a big picture about the
entire dataset. From the MDS plots which summarize all authors’
ego-networks, we observe different clustering patterns along time. In
recent years (2008–2014), there appears one giant cluster, a much
smaller cluster, and several outliers (Fig. 7-b). As we move earlier, the
sizes of different clusters tend to be more equalized, showing three or
four groups where one is slightly larger (Fig. 7-a). This might indicate
that nowadays most of the authors collaborate in a similar pattern (Q1).
We then select the top 10 authors from the data table on the Control
Panel based on their publication number. In recent years (2004–2014),
we observe that their ego-networks (highlighted in red) are similar and
distributed within a big cluster, but they are more spread out in earlier
time (Q2). Another interesting fact we find is that Edwin Hancock’s
ego-networks are a slightly different (or far) from others in general.

To dive into more details, we leverage the Summary Timeline Views
of those top 10 authors, as shown in Fig. 3-b and Fig. 7-c. We imme-
diately identify that Hancock keeps a smaller group of collaborators
compared with others, based on the sizes of snapshot glyphs and
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Fig. 8. Comparison of the Alter Timeline Views of a) Kwan-Liu Ma and
b) Daniel Cohen-Or after filtering out their alters who collaborate with
them less than 5 times. Alters are ordered by tie strength and colored
by their publication performance (the darker the higher).

transition glyphs. Fig. 7-c indicates the early years of those authors’
careers, where Xiaoou Tang’s timeline is detached and shifted from
the global time axis since his publication history starts from 2002.
Most researchers’ collaborator numbers are small except Xiaoou Tang
in their early academic years. We can also see that many dashed
transition glyphs exist, which may indicate some stage transitions.
For example, Harry Shum received his PhD in 1996, Kwan-Liu Ma
in 1993, and Daniel Cohen-Or changed his job between 1994 and
1996. As we further compare Ma and Cohen-Or’s ego-networks along
time, their 1-level ego-network sizes are similar but the 2-degree alter
numbers are different, e.g., 2005–2010 in Fig. 3-b (Q4). Ma’s 2-degree
alter volume presents a periodic fluctuation pattern while Cohen-Or’s
is more stable, which can be better revealed after expanding their
timelines into the Alter Timeline Views in Fig. 8 (Q3).

By using the colors of the alter bars to represent the publication per-
formance, we notice that Ma’s 2-degree alter volume increases as the
number of his highly-performed 1-degree alters (Fig. 3-b where purple
means higher performance). This may suggest that his 2-degree alters
are strongly connected to those 1-degree alters, and other 1-degree
alters have much fewer collaborators in general (Q5). Thus, we filter
out all the 1-degree alters who collaborate with him less than 5 times,
and find that their publication performance is not very high (Fig. 8-a).
On the contrast, there still exist many highly-performed 1-degree alters
in Cohen-Or’s ego-networks after the same filtering (Fig. 8-b). This
might be because that Cohen-Or works with many other professors
whereas Ma usually collaborates with his own students (Q3 and Q4).

Further, in Fig. 3-b, by comparing the alter types over years, we find
that more than 50% percent of Harry Shum’s collaborators are constant
alters in a consecutive sequence of years. His more stable collabora-
tion relations may either be because he worked at an industry research
lab where the employee turnover is less frequent than the student
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Fig. 9. Alter Timeline View of Harry Shum’s ego-networks (2001–
2010). Alters are ordered by tie strength and colored with publication
performance (the darker the higher). Three long-term coauthors are
highlighted: a) Baining Guo, b) Jian Sun, and c) Kun Zhou.

enrollment at universities, or because he worked at a leading position
where he may have more stable colleagues (Q3). Moreover, Shum’s
egocentric network sizes expand significantly after 2004, which might
be related to that the Managing Director position gave him a wider
impact. After 4 years, his ego-network size has a big shrink, which
could be because he was promoted as a Corporate Vice President
and started to focus on Bing after 2007. He took the Executive Vice
President position at Microsoft in 2013; and the visualization indicates
that he has no further publications after 2012 (Q5).

To further explore Harry Shum’s collaborators, we open his Alter
Timeline View and group the alters into different connected compo-
nents. As illustrated in Fig. 1-bc, his ego-network size increases and
the alters tend to connect as a whole (Q7). We then want to identify
who are the most constant collaborators of Shum, so we sort his alters
based on the tie strength. Three long-term collaborators are revealed
in Fig. 9 (Baining Guo, Jian Sun, and Kun Zhou). After mapping the
color of the alter bars to publication performance, we observe that all
the three collaborators did not publish many papers at the beginning
and they become productive after leaving the collaborative relation.
This suggests that they grew together in this process with Shum (Q6).

By hovering over those authors, which reveals their connected
alters, we find that after 2008, Guo and Zhou continued for their
collaboration while Sun had no connections with the other two authors
(Q8). Does Sun have any constant collaboration with other established
researchers? To answer this question, we thus display Sun’s Alter
Timeline View and filter out the authors who publish papers with
Sun less than 10 times. The only other alter with good publication
performance is Xiaoou Tang as shown in Fig. 10-a with the bar chart
based design (Q6).

On the other hand, is Sun himself also Tang’s most constant col-
laborator? We further display Tang’s Alter Timeline View and apply
the same filter. As shown in Fig. 10-b, apart from Jian Sun, there
are actually other researchers who keep a more constant collaborative
relation with Tang (Q8). For example, one of his students, Xiaogang
Wang, re-collaborated with Tang in 2010 after leaving in 2006. This
might be explained by that Wang went back to CUHK after his PhD
study at MIT and worked as a colleague of Tang. Moreover, Tang’s
most constant 1-degree alters appear in 2005–2008, indicating more
persistent collaborations (Q5). This might be because during that time,
he worked as the director of the computer vision group at MSRA.

7.2 User Study
To quantitatively evaluate egoSlider’s effectiveness, we conducted a
controlled user study for comparing egoSlider with a baseline visual-
ization. We focused on only evaluating the Summary Timeline View
and Alter Timeline View in this comparative user study, because they
are the main visual designs of egoSlider. We recruited 15 students
(12 males) from a university with diverse majors, all with normal or
corrected-to-normal vision and no color-blindness. Four of them had
some knowledge of graph visualization. An online interactive system
was built on a webserver (3.40GHz Intel Core i7 CPU and 32GB mem-
ory) for presenting tasks with different visualizations. Participants
completed tasks on a client desktop machine (Intel Core i5 CPU, 8GB
memory, and 1920×1080 pixel resolution) with the Chrome browser.
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Xiaogang Wang

Xiaoou Tang

Fig. 10. Alter Timeline Views of a) Jian Sun and b) Xiaoou Tang, where
alters are ordered by tie strength and colored with alter types. The
highlighted alters are Xiaoou Tang and Xiaogang Wang respectively.

Comparison system. We chose the timeline-based approach with
small multiples (Sec. 2.2) as our baseline for visualizing dynamic ego-
networks, where the network at each time step was presented using
the most widely-used node-link layout. The ego was shown in the
center and the alters were placed around it. To adapt this baseline
with ego-network analysis, we incorporated several interactions like
brushing & linking. The node-link graph was also tailored to meet the
requirements of various tasks by emphasizing the focused features.
For example, we enlarged and highlighted the new alter nodes in all
charts for new alter number comparison tasks, and encoded tie strength
as the link width when appropriate. Visualizations of both egoSlider
and the baseline in the experiment were interactive as described earlier.

Tasks and procedure. In light of the aforementioned analytical
questions (Sec. 3), we developed 2 concrete user tasks for each meso-
scopic level or microscopic level question, 12 in total (Table 1). We
expected egoSlider to have better performance for all the tasks. We
chose not to design tasks for macroscopic questions because they are
related to the Data Overview (not focused in the study) and the base-
line system is not scalable for such tasks (which results in enormous
node-link diagrams). We also excluded the 2-degree related tasks
because the baseline visualizations could become overwhelming due
to the network sizes. A within-subject experimental design was used.
Each participant performed 2 blocks × 12 tasks × 2 techniques = 48
tasks in total. Within each block, the tasks were presented in the same
order, and every task was shown in the two techniques (egoSlider and
small multiples) one after another with different datasets. 4 predefined
ego-network datasets were used and shuffled for each study. The order
of techniques was counter-balanced in the whole experiment. A brief
tutorial was given to help participants get familiar with our visual
design and the experimental system before the study. In the end of
the tutorial, a set of tests are used to confirm the users can understand
and recognize our visual encodings including glyph size and color
accurately. During the study, task description was presented first, and
participants needed to click a start button to reveal the visualization
and selected the answer from 5 choices. We recorded the response
time and accuracy in the study.

Results. Table 2 summarizes the results from our experiment,
where the better performance from the two techniques is highlighted
(task time is highlighted if the difference is greater than 1s). On
average, egoSlider outperforms the baseline in both accuracy
(egoSlider: 92.5%, baseline: 83.6%) and time (egoSlider: 16.76s,
baseline: 19.55s). The results indicate that egoSlider is more accurate
in almost all tasks. The reason why egoSlider is less accurate in
T9 could possibly be that users were confused about the alter bar
position representing connected components just after performing
the tie strength related tasks (T7 and T8). For task time, we first
conducted overall analysis based on the level of tasks. Pairwise t-tests
indicate that there were significant differences in task time for both



T1 How many egos whose 1-degree alter number keeps increasing?
T2 Which ego has the largest number of constant 1-degree alters at a time step?
T3 Which ego has the largest number of 1-degree alters at a time step?
T4 Which ego has the smallest percentage of new 1-degree alters at a time step?

T5 Which year does the ego has the largest number of 1-degree alters?
T6 How many years does the ego’s 1-degree alter number increase?
T7 Which year does a specific alter have the strongest tie strength with the ego?
T8 How many years does a specific alter’s tie strength with the ego increase?
T9 Which year does the ego-network have the largest connected component number?

T10 How many years does the ego-network’s connected component number increase?
T11 Which year does the ego has the smallest percentage of new neighbors?
T12 How many years are the percentage of new neighbors of the ego less than 50%?

Table 1. Experimental tasks: T1-4 are mesoscopic level tasks, and T5-
12 are microscopic level tasks.

Task Task Accuracy Task Time (s) Task Time T-test
egoSlider Baseline egoSlider Baseline d f = 29

T1 80% 53.3% 20.07 (6.74) 25.43 (10.15) −4.175, p < .001
T2 100% 90.0% 16.47 (8.69) 26.46 (15.38) −4.321, p < .001
T3 100% 93.3% 17.58 (7.47) 15.92 (6.04)
T4 90% 63.3% 17.77 (5.61) 25.18 (10.85) −3.571, p < .05

T5 100% 90.0% 16.60 (4.75) 15.19 (7.50)
T6 86.7% 73.3% 15.83 (4.33) 20.76 (9.59) −2.403, p < .05
T7 100% 100% 12.55 (4.08) 14.45 (4.12) −2.328, p < .05
T8 86.7% 70.0% 16.75 (6.73) 16.48 (4.89)
T9 86.7% 96.7% 17.64 (5.48) 17.15 (5.59)

T10 96.7% 93.3% 17.86 (6.15) 19.84 (7.20)
T11 91.7% 86.7% 16.76 (7.28) 17.12 (7.49)
T12 96.7% 93.3% 15.29 (4.29) 19.63 (6.37) −3.139, p < .05

Table 2. Experimental results and task time t-test results. Task time is
shown in avg. (std.). T-values of significant differences are reported.

mesoscopic level tasks (t119 = −5.5501, p < .05) and microscopic
level tasks (t239 =−2.607, p < .05). We then perform pairwise t-tests
for each task, and significant differences were found in T1, T2, T4,
T6, T7, and T12 (6 out of 12). The baseline was faster than egoSlider
in T3 and T5, however, the differences were not significant. These
tasks were both related to identifying the largest 1-degree alters, so it
may be because the snapshot glyphs of egoSlider are too small. For
T10, egoSlider was faster but not significant, however, the variance
of the baseline was relatively high, indicating that the node-link
visualization is not stable. Users need to manually change the alter
bar position encoding in T9 and T10. This operation takes time and
can cause confusion, which might be the reason that egoSlider had
worse performance. As for participants’ feedback, all of them thought
egoSlider was more visually attractive, useful, and efficient than the
baseline. Some mentioned that it took time to remember all the visual
encodings while the tooltips helped a bit. One participant felt that it
was not easy to scroll the timeline and suggested to widen the slider.

8 DISCUSSION

The usage scenario and the quantitative user study demonstrate the
effectiveness and usefulness of egoSlider. However, there still exist
some limitations. First, there is a learning curve for using egoSlider.
Although we intuitively encode important ego-network features in the
Summary Timeline View and Alter Timeline View, users need to get
familiar with the visual encodings before starting the exploration. Sec-
ond, egoSlider encodes the alter bar position based on the tie strength
of alters by default and the alter bars can be reordered in groups based
on their connected components by clicking a button. Although this
interaction enriches the system’s functionality, users may be confused
when switching between the two options, as indicated from the results
of the user study. More distinct visual cues about those two view
statuses are needed for improving the usability of egoSlider. Third,
due to the limitation of MDS layout, two similar egos might be
located at very different positions at two time steps, because the layout
optimizes the similarities locally in each MDS plot. This introduces
inconsistency in the Data Overview.

In addition, there are also many interesting perspectives that can
be extended from the current egoSlider system. First, currently we

only analyze the similarities of ego-networks within one time step.
We can explore the temporal similarities by comparing the dynamic
ego-network sequences of different egos across time. For example,
users may want to analyze if two individuals share a similar evolu-
tionary path. We can adopt time-series analyzing techniques such
as dynamic time-warping [16] to identify such patterns. Second,
other potential analytical methods can be incorporated to enhance
egoSlider’s abilities to explore larger dataset. For example, ranking
of egos or other data mining algorithms can be used to help users
start with exploring the most important people or anormalies in the
data. Third, when users select too many individuals from the Data
Overview, the connecting lines between the same ego across different
time steps may become cluttered. This problem can be solved partially
by applying edge bundling techniques [35]. Fourth, eye tracking
devices can be exploited to further understand detailed user behaviors
when exploring data with egoSlider.

A major consideration when designing egoSlider is scalability.
From the algorithm perspective, egoSlider’s data processing module
takes several minutes to extract the ego-network structures from the
raw DBLP records, compute the similarity metrics, and store them
into MongoDB, which is acceptable as a one-off job. To minimize the
initial page loading time, data is progressively sent from the server and
rendered in the visualization client. From visualization perspective, in
order to minimize user’s memory burden, we only used 5 color hues
in the visual encodings. Also, the snapshot glyph and transition glyph
share the same color for alters of stronger/weaker ties (red and blue).
Although users can scroll the visualization, approximately a maximum
of 15 time-steps can be shown in one screen. Thus, visual aggregation
of many time steps are needed to display really long timelines. In the
current design, the number of alter bars we can support approximates
the Dunbar’s number (150) [26], i.e., the suggested cognitive limit
number of people with whom one can maintain stable social relation-
ships. Most of the top 10 researchers described in Sec. 7.1 have more
than 100 alters in total, which is suitable in our current visualization.
Though the alter numbers in online social networks might be much
larger than the ones in traditional social networks [10], the scalability
of the Alter Timeline View can be improved by aggregating the alter
bars as rectangles and alter curves as flows. Finally, the current Alter
Timeline View design may be cluttered in some extreme cases such
as there are a lot of transitions between 1-degree alters and 2-degree
alters while it can be solved by interactively filtering these edges.

9 CONCLUSION AND FUTURE WORK

We have presented egoSlider, a visualization system for analyzing
dynamic ego-network data, which incorporates a number of new vi-
sual encodings with three interactive visualization views to address
ego-network analytical questions across different levels. A rich set
of interactions is supported, allowing for flexible visual exploration
through the three views. We have also described a comprehensive
usage scenario with real dataset and a controlled study. The results
indicate that egoSlider is effective in dynamic ego-network analysis
and outperforms the baseline visualization in many analytical tasks.

In the future, we plan to embed some analytical methods to inspect
the similarities between people’s ego-network sequences along time
and to detect trends and anomalies in ego-network evolution. We
also want to incorporate multivariate visualization techniques to show
more ego and alter attributes, as well as several extensions of the
current system discussed in Sec. 8. Moreover, we aim to conduct more
realistic case studies and user studies with a variety of ego-network
datasets to further examine the effectiveness of egoSlider.
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characterization of egocentric networks in online social networks. In On
the Move to Meaningful Internet Systems: OTM 2011 Workshops, pages
524–533, 2011.

[8] B. Bach, E. Pietriga, and J.-D. Fekete. Graphdiaries: Animated
transitions and temporal navigation for dynamic networks. IEEE Trans.
on Visualization and Computer Graphics, 20(5):740–754, 2014.

[9] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks
with matrix cubes. In Proc. of the 32nd Annual ACM Conf. on Human
Factors in Computing systems, pages 877–886, 2014.

[10] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees
of separation. In Proc. of the 4th Annual ACM Web Science Conference,
pages 33–42, 2012.

[11] L. Backstrom and J. Kleinberg. Romantic partnerships and the dispersion
of social ties: A network analysis of relationship status on facebook. In
Proc. of the 17th ACM Conf. on Computer Supported Cooperative Work
& Social Computing, pages 831–841, 2014.

[12] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in
visualizing dynamic graphs. In EuroVis - STARs, 2014.

[13] F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf. Rapid serial
visual presentation in dynamic graph visualization. In IEEE Symp. on
Visual Languages and Human-Centric Computing, pages 185–192, 2012.

[14] E. Bellotti. What are friends for? elective communities of single people.
Social Networks, 30(4):318–329, 2008.

[15] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos. Netsimile:
A scalable approach to size-independent network similarity. ACM
Computing Research Repository, abs/1209.2684, 2012.

[16] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns
in time series. In KDD workshop, volume 10, pages 359–370, 1994.

[17] C. Bidart and D. Lavenu. Evolutions of personal networks and life events.
Social Networks, 27(4):359–376, 2005.

[18] S. P. Borgatti and D. S. Halgin. An introduction to personal network
analysis and tie churn statistics using e-net. Connections, 32(1):37–48,
2012.

[19] U. Brandes, M. Hoefer, and C. Pich. Affiliation dynamics with an
application to movie-actor biographies. In EuroVis, pages 179–186, 2006.

[20] U. Brandes and B. Nick. Asymmetric relations in longitudinal social
networks. IEEE Trans. on Visualization and Computer Graphics,
17(12):2283–2290, 2011.

[21] U. Brandes and D. Wagner. Analysis and visualization of social networks.
In Graph Drawing Software, pages 321–340. Springer, 2004.

[22] M. Burch, B. Schmidt, and D. Weiskopf. A matrix-based visualization
for exploring dynamic compound digraphs. In Proc. of the International
Conf. on Information Visualisation, pages 66–73, 2013.

[23] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel
edge splatting for scalable dynamic graph visualization. IEEE Trans. on
Visualization and Computer Graphics, 17(12):2344–2353, 2011.

[24] R. S. Burt. Structural holes versus network closure as social capital.
Social Capital: Theory and Research, pages 31–56, 2001.

[25] A. Degenne and M.-O. Lebeaux. The dynamics of personal networks at
the time of entry into adult life. Social Networks, 27(4):337–358, 2005.

[26] R. I. Dunbar. Neocortex size as a constraint on group size in primates.
Journal of Human Evolution, 22(6):469–493, 1992.

[27] P. Eades and M. L. Huang. Navigating clustered graphs using
force-directed methods. Journal of Graph Algorithms and Applications,
4(3):157–181, 2000.

[28] M. Farrugia, N. Hurley, and A. Quigley. Exploring temporal ego networks
using small multiples and tree-ring layouts. In Proc. of the SIGCHI Conf.
on Human Factors in Computing Systems, pages 79–88, 2011.

[29] P. Federico, J. Pfeffer, W. Aigner, S. Miksch, and L. Zenk. Visual analysis
of dynamic networks using change centrality. In Proc. of the International
Conf. Advances in Social Networks Analysis and Mining (ASONAM),
pages 179–183, 2012.

[30] D. Fisher. Using egocentric networks to understand communication.
IEEE Internet Computing, 9(5):20–28, 2005.

[31] C. Friedrich and P. Eades. Graph drawing in motion. Journal of Graph
Algorithms and Applications, 6(3):353–370, 2002.

[32] M. Greilich, M. Burch, and S. Diehl. Visualizing the evolution of
compound digraphs with timearctrees. In Computer Graphics Forum,
volume 28, pages 975–982, 2009.

[33] M. Grossetti. Where do social relations come from? Social Networks,
27(4):289–300, 2005.

[34] M. Hlawatsch, M. Burch, and D. Weiskopf. Visual adjacency lists for
dynamic graphs. IEEE Trans. on Visualization and Computer Graphics,
20(11):1590–1603, 2014.

[35] D. Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE Trans. on Visualization and Computer
Graphics, 12(5):741–748, Sept 2006.

[36] D. J. Hruschka. Friendship: Development, ecology, and evolution of a
relationship, volume 5. University of California Press, 2010.

[37] D. Hunter, P. Smyth, D. Q. Vu, and A. U. Asuncion. Dynamic egocentric
models for citation networks. In Proc. of the 28th International Conf. on
Machine Learning, pages 857–864, 2011.

[38] M. Itoh, M. Toyoda, and M. Kitsuregawa. An interactive visualization
framework for time-series of web graphs in a 3d environment. In
International Conf. on Information Visualisation, pages 54–60, 2010.

[39] S. L. Jarvenpaa and A. Majchrzak. Knowledge collaboration among
professionals protecting national security: Role of transactive memories
in ego-centered knowledge networks. Organization Science, 19(2):260–
276, 2008.

[40] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[41] M. J. Lubbers, J. L. Molina, J. Lerner, U. Brandes, J. Ávila, and
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