
Code Shaping: Iterative Code Editing with Free-form Sketching
Ryan Yen

University of Waterloo

Canada

r4yen@uwaterloo.ca

Jian Zhao

University of Waterloo

Canada

jianzhao@uwaterloo.ca

Daniel Vogel

University of Waterloo

Canada

dvogel@uwaterloo.ca

Figure 1: (a) A programmer sketches an arrow pointing from data attributes to a drawn bar chart and annotates the code with

def to generate edited code. Right: Data collected from the user study showing how users employ arrows (→) for different

purposes, including command (the intended action of operation), parameter (supplementing the command), and target (the area

where the edit should occur); (b) indicating procedural flow between commands; (c) referring to data attributes; (d) modifying a

function, with the function as the parameter to supplement the command; (e) applying changes to a target area.

ABSTRACT

We present an initial step towards building a system for program-

mers to edit code using free-form sketch annotations drawn directly

onto editor and output windows. Using a working prototype system

as a technical probe, an exploratory study (𝑁 = 6) examines how

programmers sketch to annotate Python code to communicate edits

for an AI model to perform. The results reveal personalized work-

flow strategies and how similar annotations vary in abstractness

and intention across different scenarios and users.

CCS CONCEPTS

• User interface programming; • Interaction techniques;

KEYWORDS

ink-based sketching, programming interface

ACM Reference Format:

Ryan Yen, Jian Zhao, and Daniel Vogel. 2024. Code Shaping: Iterative Code

Editing with Free-form Sketching. In The 37th Annual ACM Symposium
on User Interface Software and Technology (UIST Adjunct ’24), October 13–
16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 3 pages. https:

//doi.org/10.1145/3672539.3686324

1 INTRODUCTION

Many programmers use free-form sketching to externalize ideas to

plan high-level structure, workout algorithms, and annotate code.

Code annotations in particular serve various purposes, such as

UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in The 37th Annual
ACM Symposium on User Interface Software and Technology (UIST Adjunct ’24), October
13–16, 2024, Pittsburgh, PA, USA, https://doi.org/10.1145/3672539.3686324.

enhancing code comprehension [2, 12], communicating with col-

laborators [6], and planning future edits [10, 11]. However, past

practice and previous research mostly treat sketched annotations

on code as static externalizations of a programmer’s thoughts [8],

not as actionable commands to interactively edit code. We propose

a sketch-based editing approach where a programmer iteratively

draws free-form annotations on and around a code editor to iter-

atively modify structure, flow, and syntax: a concept we call code
shaping. For example, to insert a new function to draw charts, the

programmer could circle lines of code about data attributes, draw

an arrow to a sketch of a graph, then draw an arrow with the word

“def” leading back to an insertion point in the code (Figure 1a).

We differentiate the concept of code shaping from another line

of research that focuses on converting sketched drawings, such as

visualizations or user interfaces on a canvas, into code [5, 13]. Those

sketches directly represent the final output, without considering

the syntactic structure of the code. Instead, our study explored

sketches on code editors. These annotated sketches encapsulated

programmers’ expectations of how the program would run and

connected these sketches to the syntax code. While recent advances

in multi-modal large language models have made this concept

more feasible, this approach introduces challenges that need to

be understood and addressed. First, similar annotations could have

different meanings across various scenarios and tasks (Figure 1b-e),

stemming from the ambiguous nature of sketches [1, 3]. Second, the

obscure nature of AI models forces users to guess the reasons for

recognition failures and opportunistically change the instruction

to make them work [4, 14]. These challenges highlight the need

for a system where users can iteratively clarify and modify both

code and annotations. We conducted an exploratory study using a

prototype code-shaping system that transforms free-form sketches

on a code editor into actual code edits.

1

https://orcid.org/0000-0001-8212-4100
https://orcid.org/0000-0001-5008-4319
https://orcid.org/0000-0001-7620-0541
https://doi.org/10.1145/3672539.3686324
https://doi.org/10.1145/3672539.3686324
https://doi.org/10.1145/3672539.3686324

UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA Yen et al.

2 PROTOTYPE SYSTEM

Our system integrates a code editor within a canvas environment

to enable code shaping. The interface supports various free-form

sketching tools, including colour selectors, pens, erasers, and shapes.

A text tool is available for conventional editing. Two-finger pan-

ning and zooming navigate the code in the editor. A pointer tool

can select one or more annotations. Pressing a “Generate” button

uses all current annotations, or only those selected, as parameters

for generating edited code. GPT-4o is used to recognize free-form

annotations and generate code edits. To do this, syntax colour high-

lighting is removed from the code editor, the HTML is converted

to SVG, coordinates are added, and handwritten text is recognized.

The system then considers the annotations alongside previous it-

erations of sketch editing and the relevant codebase as part of the

input context for code generation. After the code is generated, a

diffing algorithm is employed to visualize which sections of code

changed [7]. The user can press a “Run” button to execute the code,

with text or image results shown in the console panel underneath.

Users also can annotate executed results as part of their sketches.

3 EXPLORATORY STUDY

We recruited six participants (1 left-handed), aged 23 to 28, with

4 identifying as women and 2 as men. Participants were recruited

through convenience sampling and received $30 for completing

the study. All participants had 2-8 years of programming experi-

ence and had used ChatGPT or Copilot 3-12 times per week. We

designed three coding scenarios, each with two tasks that required

specific edits to reach the goal for each scenario. These scenarios

covered basic Python with object-oriented programming, machine

learning with functional programming, and data engineering with

declarative programming. Starter code was provided for each task,

requiring edits in more than two areas. For example, a task was

to extend a class to handle data points with categorical features,

requiring changes to current methods to encode features and mod-

ify distance calculations accordingly. All tasks were pre-tested to

ensure that GPT-4o could not generate the correct code immedi-

ately. Participants were assigned 2 out of 3 scenarios that they were

more familiar with based on a pre-screening questionnaire. They

completed 2 scenarios × 2 tasks each in 50 minutes. Followed by a

post-study 7-point Likert scale questionnaire and a semi-structured

interview. System logs, screen recordings, and interview scripts

were collected for analysis.

4 RESULTS

All but two participants completed the four assigned tasks, the

two participants failed to complete one task within the assigned

time. The clarity of the effect of their sketches on generated code

(𝑀𝑑𝑛 = 3.5, 𝑆𝐷 = 1.83) and the ease of iterating on sketches

(𝑀𝑑𝑛 = 4, 𝑆𝐷 = 2.34) was rated low. This aligns with our interview

results, where participants noted an unclear mapping between

sketches and edited code, especially with multiple annotations.

Four participants expressed a desire to see their annotations “stick”

to the corresponding changed code segments.

Personalized Workflow. We observed participants gradually

develop a personalized workflow for editing code with sketches.

Figure 2: The classification of sketched annotations from

participants situated in a quadrant with two dimensions,

Abstract-Concrete and Procedural-Functional.

P2 found that breaking down tasks into very low-level details was

ineffective for AI interpretation, while P5 emphasized the need

for smaller task pieces for better system understanding. Partici-

pants sometimes wrote higher-level instructions first when unsure

about the solution, but had a rough idea of where the code edits

should happen and what the “shape of the code looks like” [P4]. After
evaluating the generated code, they then added annotations for

lower-level code editing based on their approaches in mind.

Types of Sketches. Participants used similar sketches for differ-

ent purposes, such as arrows pointing to context [P1] or targets of

changes [P4] (Figure 1b-e). Overall, the sketches could be situated

in a quadrant with two dimensions (Figure 2). Abstract-Concrete

describes whether the annotations are abstract symbols or graphs

versus concrete written text. Procedural-Functional classifies

the target of the annotations, ranging from procedural steps describ-

ing how the program should be structured and run to functional

descriptions specifying how the program should work. Participants

often combined these aspects, drawing graphs and adding arrows

to refer to certain data attributes, specifying both functional and

procedural terms.

Sketch as a Tool. All participants considered sketches more

than static digital ink drawings, also treating them as functional

“tools” that could be reused [9]. They expressed how they could

use different sketches to achieve the same effect, choosing which

sketch to use based on the environment, such as available white

spaces. They also reused their sketches to convey the same effect;

for instance, an arrow used to add a function to a target code section

was reused by P3 to add another function.

5 FUTUREWORK.

Currently, the user experience is hampered by both model-related

interpretation errors and interaction techniques, and we plan to

iterate on the design to understand the idea of code shaping further.

2

Code Shaping UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA

ACKNOWLEDGMENTS

This work was made possible by NSERC Discovery Grant 2018-

05187 and NSERC Discovery Grant 2020-03966.

REFERENCES

[1] Christine Alvarado and Randall Davis. 2007. Resolving ambiguities to create a

natural computer-based sketching environment. In ACM SIGGRAPH 2007 Courses
(San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery,

New York, NY, USA, 16–es. https://doi.org/10.1145/1281500.1281527

[2] Xiaofan Chen and Beryl Plimmer. 2007. CodeAnnotator: digital ink annotation

within Eclipse. In Proceedings of the 19th Australasian Conference on Computer-
Human Interaction: Entertaining User Interfaces (Adelaide, Australia) (OZCHI ’07).
Association for Computing Machinery, New York, NY, USA, 211–214. https:

//doi.org/10.1145/1324892.1324935

[3] Randall Davis. 2007. Magic Paper: Sketch-Understanding Research. Computer
40, 9 (2007), 34–41. https://doi.org/10.1109/MC.2007.324

[4] Li Feng, Ryan Yen, Yuzhe You, Mingming Fan, Jian Zhao, and Zhicong Lu. 2024.

CoPrompt: Supporting Prompt Sharing and Referring in Collaborative Natural

Language Programming. In Proceedings of the CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing

Machinery, New York, NY, USA, Article 934, 21 pages. https://doi.org/10.1145/

3613904.3642212

[5] James A Landay and Brad A Myers. 1995. Interactive sketching for the early

stages of user interface design. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 43–50.

[6] Leonhard Lichtschlag, Lukas Spychalski, and Jan Bochers. 2014. CodeGraffiti:

Using hand-drawn sketches connected to code bases in navigation tasks. In 2014
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

IEEE, 65–68.

[7] Eugene W Myers. 1986. An O (ND) difference algorithm and its variations.

Algorithmica 1, 1 (1986), 251–266.
[8] B. Plimmer, J. Grundy, J. Hosking, and R. Priest. 2006. Inking in the IDE: Experi-

ences with Pen-based Design and Annotatio. In Visual Languages and Human-
Centric Computing (VL/HCC’06). 111–115. https://doi.org/10.1109/VLHCC.2006.

28

[9] Miguel A Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2022. Ex-

ploring technical reasoning in digital tool use. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems. 1–17.

[10] Sigurdur Gauti Samuelsson and Matthias Book. 2020. Eliciting Sketched Expres-

sions of Command Intentions in an IDE. Proceedings of the ACM on Human-
Computer Interaction 4, ISS (2020), 1–25.

[11] Sigurdur Gauti Samuelsson and Matthias Book. 2023. Towards a Visual Language

for Sketched Expression of Software IDE Commands. In 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 115–123.

[12] Craig J Sutherland, Andrew Luxton-Reilly, and Beryl Plimmer. 2015. An ob-

servational study of how experienced programmers annotate program code. In

Human-Computer Interaction–INTERACT 2015: 15th IFIP TC 13 International Con-
ference, Bamberg, Germany, September 14-18, 2015, Proceedings, Part II 15. Springer,
177–194.

[13] Zhongwei Teng, Quchen Fu, Jules White, and Douglas C. Schmidt. 2021.

Sketch2Vis: Generating Data Visualizations from Hand-drawn Sketches with

Deep Learning. In 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA). 853–858. https://doi.org/10.1109/ICMLA52953.2021.

00141

[14] Ryan Yen, Jiawen Zhu, Sangho Suh, Haijun Xia, and Jian Zhao. 2023. Colad-

der: Supporting programmers with hierarchical code generation in multi-level

abstraction. arXiv preprint arXiv:2310.08699 (2023).

3

https://doi.org/10.1145/1281500.1281527
https://doi.org/10.1145/1324892.1324935
https://doi.org/10.1145/1324892.1324935
https://doi.org/10.1109/MC.2007.324
https://doi.org/10.1145/3613904.3642212
https://doi.org/10.1145/3613904.3642212
https://doi.org/10.1109/VLHCC.2006.28
https://doi.org/10.1109/VLHCC.2006.28
https://doi.org/10.1109/ICMLA52953.2021.00141
https://doi.org/10.1109/ICMLA52953.2021.00141

	Abstract
	1 Introduction
	2 Prototype System
	3 Exploratory Study
	4 Results
	5 Future Work.
	Acknowledgments
	References

