
Brickify: Enabling Expressive Design Intent Specification
through Direct Manipulation on Design Tokens

Xinyu Shi
School of Computer Science

University of Waterloo
Waterloo, ON, Canada
xinyu.shi@uwaterloo.ca

Yinghou Wang
Graduate School of Design

Harvard University
Cambridge, MA, United States
yinghouwang@gsd.harvard.edu

Ryan Rossi
Adobe Research

San Jose, CA, United States
ryrossi@adobe.com

Jian Zhao
School of Computer Science

University of Waterloo
Waterloo, ON, Canada
jianzhao@uwaterloo.ca

Reifying elements into design tokens Direct manipulation on tokens Alternative token constructionsba c

sunset

color / style / textual tokens 

subject tokens

Global

Local

beautiful park

standing, 

facing left

colorful

Figure 1: Brickify introduces a visual-centric interaction paradigm to specify design intent for controllable image generation:

(a) users start with reference images and identify design elements (subjects, styles, colors, and concepts) which can be reified

into interactive, reusable design tokens; (b) then directly manipulate on these tokens to build a visual lexicon to express how to

construct these elements as a whole; (c) explore alternative compositions by reusing tokens and refining the visual lexicon.

ABSTRACT

Expressing design intent using natural language prompts requires
designers to verbalize the ambiguous visual details concisely, which
can be challenging or even impossible. To address this, we introduce
Brickify, a visual-centric interaction paradigm — expressing de-
sign intent through direct manipulation on design tokens. Brickify
extracts visual elements (e.g., subject, style, and color) from refer-
ence images and converts them into interactive and reusable design
tokens that can be directly manipulated (e.g., resize, group, link,
etc.) to form the visual lexicon. The lexicon reflects users’ intent for
both what visual elements are desired and how to construct them
into a whole. We developed Brickify to demonstrate how AI models
can interpret and execute the visual lexicon through an end-to-end
pipeline. In a user study, experienced designers found Brickify
more efficient and intuitive than text-based prompts, allowing them
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to describe visual details, explore alternatives, and refine complex
designs with greater ease and control.
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1 INTRODUCTION

Design is about the choices of visual elements (e.g., subject, style,
color) and the construction of them towards an intended effect [25];
the decisions involved in this process are the art of design, embraced
with a designer’s creativity [36]. However, current text-to-image
generation tools (e.g., DALL-E, Midjourney) shift design decision-
making from designers to models, which are designed to create

for users rather than work with designers [75, 83, 98]. Despite their
ability to produce aesthetically appealing images for casual use,
without designer’s thoughtful planning, they lack the capability to
create meaningful and professional design solutions that effectively
convey intended visual messages [13, 17, 78]. One key barrier to
keeping designers in-the-loop is communication [83, 98] — genera-
tive AI tools are designed to receive instructions textually, while
designers often prefer to think and communicate visually [87, 96].

Consider the design case of crafting a Halloween poster: the
designer collects some reference images (Figure 2a-2f), thinks about
what visual elements to use, and after a while, forms a rough idea
(Figure 2g) about how to compose them into a whole, and wants to
work with generative AI tools for quick prototyping. However, the
following three challenges arise.

First, clearly describing what visual elements to use in natural
language is challenging due to inconsistent naming standards [39,
64]. For example, colors in Figure 2a might be described as “light
red, greenish teal, navy blue, with greyish black” by some designers,
and simply as “orange, green, blue, and black” by others. These
subtle differences can lead to significant variations in hues and
shades. Uploading reference images for model to “see” [17, 68]
can help when the desired element dominates the image as in
Figure 2d. However, in complex images as Figure 2c, specifying an
exact element is harder. Designers might describe it as “the abstract
shape with curves in the middle right”, but models often struggle
with such ambiguous descriptions regarding the shape and position.

Further, precisely verbalizing how to construct those visual ele-
ments into a whole is hard. Deciding on relative scale and proximity
is to relate the isolated elements with each other as interacting
parts [25, 96]. However, both scale and proximity are continuous
values, while language is often too discrete for fine-grained instruc-
tions. For example, describing Figure 2h as “five pumpkins in front of

a large building, with a moon above” lacks precise size and position
details, making it hard for the model to interpret their nuanced
spatial relationship. The designer might finally obtain a reason-
able version after multiple rounds of conversations with the tool,
e.g., “make the building a little bit larger”, but this process is often
time-consuming and tedious without guaranteed outcomes.

Lastly, the choices of elemental construction are infinite; how-
ever, prompting with texts limits the flexibility to reuse those visual
elements to explore alternative constructions. Designers need to
copy-and-paste an entire paragraph from previous prompts, then
modify certain parts to change relationships or replace visual el-
ements. Each iteration of exploration requires users to manually
track where to change and where to keep among lengthy texts,
which is tedious and error-prone. It is because existing generative
AI tools treat each prompt as an independent request, without a

Figure 2: Design example of a Halloween party poster, show-

ing (a) the color palette, (b-f) reference images with high-

lighted elements, and (g) the envisioned poster in designer’s

mind. (h) illustrates the spatial relationships between pump-

kins, building, and moon. We have obtained the designer’s

consent to include this design in the paper.

mechanism to selectively separate persistent information (e.g., vi-
sual characteristics) from single-use prompts, making it inefficient
to share information across multi-turn interactions.

To better align generative AI tools with designers’ visual think-
ing process, we need a visual-centric interaction paradigm with
versatile expressive power to facilitate graphic design that builds
upon visual assets. We propose Brickify— specifying design intent
via interactive design tokens that clearly carry the information of
what primitive design elements to use (e.g., subject, color, style). De-
sign tokens can be directly manipulated (e.g., drag-and-drop, resize,
move, group, and link) to allow designers to precisely plan how the
visual elements are constructed. The resultant construction — visual

lexicon — can be translated into control signals for AI to faithfully
generate the desired outcome, e.g., spatial layouts, relative scales,
and the effect radius (e.g., applying a color to a specific subject or
the entire image). Since design tokens can be persistent throughout
the design process, users can efficiently reuse and recombine ele-
ments, avoiding the need to start from scratch for each iteration. We
implemented and iteratively refined this interaction paradigm of
Brickify in an interactive system named Brickify (Brickify refers
to the paradigm while Brickify denotes the system).

We evaluated the interaction paradigm Brickify and its imple-
mentation in Brickify through an in-lab user study with 12 ex-
perienced designers. In a replication task simulating a scenario
where designers have a clear intent, we compared Brickify with
textual-centric prompting, finding that participants expressed de-
sign intent more precisely with less cognitive effort using Brickify
and performed refinements faster, especially in complex designs.
In an open-ended task with a simulated exploratory design sce-
nario, designers found Brickify provided a controllable, expressive,
and engaging design experience. Our findings offer insights for
future research on designing interaction mediums for human-AI
co-creation in broader visual design contexts.
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2 RELATEDWORK

AI-assisted graphic design involves forming, specifying, and real-

izing design intentions. We review how mood boards help form
intentions, explore interactive techniques for specifying them, and
summarize personalized image generation approaches to translate
intentions into design outcomes.

2.1 Forming Intent from Reference Imagery

A common approach to develop design ideas is using references. De-
signers often start with exploring and organizing inspirations, then
identify key design elements and strategically compose them [30].

Mood board usage. To support divergent thinking, designers
often start with creating the mood board [26], a collection of im-
ages, shapes, colors, and other visual stimuli, as an aid to conduct
visual research — framing, aligning, paradoxing, abstracting, and
directing the design [58]. Mood boards are intentionally ambigu-
ous, allowing different interpretations and serving as a tool for
exploring creative possibilities [30]. How designers organize mood
boards reflects their intended use, with studies exploring image
arrangement in digital drawing and other fields [28, 43, 59]. Recent
works [51–53] enhance mood boards with AI for semantic cluster-
ing, image recommendations, and material arrangement. Designers
often decompose images into sub-elements [25] and then integrate
them into cohesive designs [34]. Tools like MoodCubes [45] and
MetaMap [47] help break down elements and enhance mood boards.
Current generative AI tools allow users to upload reference images
but lack flexibility in arranging or specifying sub-elements like on
a mood board. Users cannot easily select which parts to use. Our
approach integrates mood boards, enabling users to specify what

sub-elements to use by converting them into design tokens.
Recombination of recognized elements. After identifying

the elements of interest on the mood board, researchers have cre-
ated a variety of tools to support the elements recombination. Visi-
Blends [16] and VisiFit [15] enable the blending of two semantic
objects. Building on this, PopBlends [93] explores strategies for
merging two conceptual keywords into pop culture images using
large language models. Tools like 3DALL-E [57] and CreativeCon-
nect [17] propose workflows for generating 3D designs and graphic
sketches by suggesting keywords from design references and then
refining them into detailed text prompts. Beyond keywords, Artin-
ter [18] and GANCollage [92] enhance designer-client communica-
tion and style mixing by combining keywords and example imagery.
Existing tools typically emphasize recombination outcomes under
predefined rules for task-specific usage, such as blending by shape
contours or mixing by styles. However, users have limited control
over how to combine. This paper addresses this issue by enabling
users to expressively construct the relationships among elements
through direct manipulation of reified interactive tokens.

2.2 Specifying Intent by Interactive Strategies

The challenge of specifying design intent solely with natural lan-
guage is well recognized [13, 80, 85, 98]. Subramonyam et al. [83]
theorize how users translate their goals into clear intentions, high-
lighting the instruction gap where generative models are highly
sensitive to language precision but human language tolerates vari-
ants in expression to communicate similar meaning. This challenge

is evident across studies in various design domains, where casual
users [60], graphic designers [55], manufacturing designers [35],
and game professionals [90] struggle to articulate visual intent
through the tedious process of prompt engineering. This friction
of translating visual design into a verbal medium can be under-
stood through the lens of design methodology literature [23, 86, 95].
Recent efforts to facilitate the intent expression fall into three cate-
gories: 1) decomposing the lengthy prompt into modular ones; 2)
augmenting the text prompt with other modalities; and 3) resolving
ambiguities in text prompts through direct manipulation [79].

Modular prompting.Managing lengthy prompts is challeng-
ing, and many research has explored to modularize them into man-
ageable pieces. For instance, AI-chains [100] enables chaining in-
dividual prompts for end-to-end execution. In the similar spirit,
ChainForge [4] supports comparing prompt variations between
models. In visual design, Keyframer [88] uses “decomposed prompt-
ing” for step-by-step animation design. Similarly, Spellburst [3] and
ComfyUI [22] employ node-based interfaces to modularize creative
coding and image generation, integrating diverse control signals.
Although these tools aid in flexibly writing and modifying prompts
and allow viewing intermediate results, they still require users to
specify their visual intentions in text, which does not fully address
the precision of intent specification.

Multimodal prompting. Most recent commercialized tools
(e.g., DALL·E3 [24], Adobe Firefly [31], MidJourney [62], Flux AI
[2]) allow users upload images as global content and/or style refer-
ences; however, users cannot add local annotations on the image to
further illustrate their fine-grained intentions. Kaiber Superstudio
[84] supports character-consistent generation by allowing users to
specify a single local subject but does not support multiple subjects.
Krea.ai [54] enables users to train on their own assets but requires
multiple instances for each subject. Research efforts have also
investigated different strategies for multimodal prompting. For ex-
ample, DesignPrompt [68] allows users to input texts, images, and
colors, then help translate them into a final textual prompt. How-
ever, translating visuals into text often leads to information loss,
making it difficult to capture precise visual identities. PromptCharm
[94] enables users to examine which part of the generated image
corresponds to which part of the text prompt. Sarukkai et al. [74]
introduce the coarse-to-fine sketch guided image generation. Al-
though these tools are helpful in clarifying what visual elements
to use to some degree, they fail to help users express how multiple
visual elements relate with each other because they typically treat
each input modality in isolation.

Prompting through direct manipulation. Some tools employ
visual metaphors to help users specify their intentions through
directly manipulating on visual objects rather than text prompts.
For instance, TaleBrush [20] uses sketch lines to indicate narra-
tive transitions, and PromptPaint [19] offers a paint-like interface
for semantic prompt interpolations. Gestures are utilized to repre-
sent editing intentions, for example, drawing masks to inpaint [6],
adding colored strokes to recolorize [103], and dragging points to
edit pose or facial expressions [67]. While intuitive, these methods
are task-specific, requiring users to re-learn interactions for each
use case. Recent work extends this direction by aiming to integrate
graphical user interfaces (GUI) with natural language interfaces
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(NLI). DirectGPT [61] allows users to drag and drop graphical el-
ements onto prompts, but these elements act as isolated symbols,
losing their spatial relationships. DynaVis [89] combines NLIs with
dynamically generated GUI widgets for visualization authoring,
but requires users to specify the edit intention in text. Both Direct-
GPT and DynaVis address the ambiguity of continuous numerical
expressions in textual prompts, yet they still force users to think
textually and work primarily on texts.

2.3 Translating Intent into Design Outcomes

through Computer Vision Techniques

Text-to-image generation is an active research topic since diffusion
models emerging [42, 82], there are many amazing work has made
the performance of text-to-image generation has reached a height
that never been reached, such as DALL-E [11, 69, 70], GLIDE [65],
Stable Diffusion [71], Imagen [73], etc. Research has also focused
on improving controllability in image generation and editing.

Subject-driven and style-specific personalized generation.

The task of personalization, introduced by Cohen et al. [21], aims to
incorporate user-provided concepts absent from the training data
into generated results. Early methods like Textual-Inversion [32]
and DreamBooth [72] learn a single subject from several user images,
while Custom Diffusion [56] and SVDiff [38] extend this tomultiple

subjects for recombination. Later, ELITE [97] and E4T-diffusion [33]
make it possible to learn a single subject from one image but re-
quire the subject to be visually dominant. Break-A-Scene [5] allows
learning multiple subjects from a single image with loose segmenta-
tion masks. Personalization also applies to styles: StyleDrop [81]
fine-tunes models for style customization, while Style-Align [41]
ensures style consistency without fine-tuning.

Spatial-aware controllable image generation and editing.

To guide the large-scale pre-trained diffusion models to generate
images following the spatially-localized conditions (e.g., depth map,
segmentation, pose, etc.), Controlnet [102] embeds task-specific
networks, while T2I-Adapter [63] offers a lighter adapter-based
solution, and Composer [44] provides more flexible control with a
larger model. For local image editing, initial methods [7, 8, 40] rely
on precise text descriptions. Imagic [48] allows description-free
editing but requires time-intensive fine-tuning, whereas Blended
Latent Diffusion [6] enables faster editing without fine-tuning.

The advancements in the computer vision field are powerful
and hold great potential. However, without intuitive interactions
that allow users to precisely express their underlying intent, users
cannot fully benefit from these capabilities. Our work focuses on
innovating the user interaction, using these off-the-shelf methods
as the technical foundation to realize our proposed visual-centric

interaction paradigm.

3 ITERATIVE USER-CENTERED DESIGN

In collaboration with designers for about nine months, we em-
ployed an iterative design approach to define the visual-centric

interaction paradigm, Brickify, and develop the Brickify system.
The design process consists of four stages (noted as S1-4), with
different participants involved in each stage. In this section, we
introduce the participants and procedures for S1, S2, and S3, and
discuss the findings and derived design goals from S1 (Section 3.1).

To provide a holistic view, we briefly highlight the key design deci-
sions made from S2 (Section 3.2) and S3 (Section 3.3), with further
details provided in Section 4.

S1: Problem understanding (2 months) — interviews with six
designers to identify challenges in using generative AI tools.
S2: Early Prototyping (4 months) —weekly co-design sessions
with an expert designer to design the interaction paradigm
and develop the early working prototype;
S3: Prototype Iteration (2 months) — informal testing involved
six designers to collect feedback and iteratively refine the
design;
S4: System Evaluation (1 month) — a user study with two
tasks compares the visual-centric interaction paradigm of
Brickify with the textual-centric one and examines how
users interact with Brickify, which will be described in Sec-
tion 7 and Section 8.

3.1 Problem Understanding: Interview Study

We conducted semi-structured interviews with six design experts
(E1-6), with the aim to understand: (1) how designers approach
prompting the generative AI models to craft graphic designs; and
(2) what challenges they have encountered.

3.1.1 Participants and Procedure. Participants were recruited via
email lists and social media, screened through a pre-test survey on
design experience and familiarity with text-to-image generation
tools. All had over two years of experience in graphic design, famil-
iar with and regularly used the text-to-image generation tools in
their work. Participants provided consent and were compensated
with $20 for a 45-minute study session. We asked each participant
to share at least one recent design project involving using text-to-
image AI tools to reflect on how they use them.

3.1.2 Identified Challenges. We summarize the following chal-
lenges designers encountered when using generative AI tools.

C1: Failure to convey designers’ attended elements to AI.

Participants consistently began their design projects with visual
research, using mood boards to collect inspirational images on a
canvas in Figma (5/6) or Photoshop (1/6). They emphasized “it’s

for understanding how pieces can fit together in my head.” -E3, align-
ing with prior studies [43, 52, 58]. Some participants (E1, E2, E4)
grouped references spatially by element type, while others (E3,
E5, E6) used annotations to mark elements. E5 explained, “I’m not

looking at the whole image, just the parts that matter to my design.”

This selective focus, known as active vision [29, 37], is central to
visual thinking [96]. While designers use active vision to pinpoint
specific details such as a particular texture, a color theme, or the
composition of shapes, AI models often lack the ability to recognize
or prioritize these details in the same way. As E4 explained, “The
AI seems to understand the image globally, but I need it to work with

specific parts.” Designers have to communicate the visual elements
they are focusing on with AI through natural language, a medium
that “super hard for describing fine visual nuances.” -E1

C2: Difficulty in verbalizing element relationships. Partici-
pants emphasized the complexity of composing visual elements in
a design, as E2 described, “like constructing a house, you must place

each brick properly.” E3 explained, “It’s not just about having the
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pieces; how to balance their weight is also important — some are more

important, while others just for decorating.” Designers must create
focal points, balance hierarchy, and manage spatial placements,
but articulating these relationships in words is difficult, especially
when elements are intertwined. As E6 noted, “planning that (how
to compose them) in my head is hard enough, translating (the en-

tire mental image) into a sentence feels much more difficult, I often

sketch them down then describe.” This challenge often forces de-
signers to simplify their ideas. As E2 mentioned, “I tend to only

ask for simple structures like centering a certain one (element)”, but
such compromise often results in outputs that “lack the balance and
spatial nuance we have been taught and always pursue in design.”

C3: Inefficiencies in iterative refinements. Designers face
significant challenges in refining visuals through current text-to-
image tools, as the conversations with AI is linear and lacks the
mechanism to share key visual information in multi-turn dialogues.
E4 pointed out, “each change feels like starting over. I need a way to

go back to tweak some [elements], but I don’t want to touch certain

ones I already feel good about.” As E2 explained, “I have to copy and

paste descriptions into every prompt, just to keep that part, but even so,

it often get changed.” Without a way to selectively preserve certain
visual information and design decisions, designers are forced to
manage these iterations manually, making the design refinements
inefficient and the creative flow disrupted.

3.1.3 Design Goals. To tackle the identified challenges, we articu-
late the following key design goals to drive the design of Brickify.

DG1: Support externalization of selective focus on primi-

tive elements. Designers often focus on specific elements in refer-
ence images, but current systems require uploading entire images
and verbally explaining their focus (C1). This creates a gap between
what designers attend to and what the system processes. To bridge
this gap, designers should be allowed to externalize their selective
focus of elements into visual representations. This might involve
allowing easy annotation, grouping, and flexible organization of
these elements. By making these elements tangible, we aim to en-
able designers to interact with them directly, facilitating both their
cognitive process and communication with AI at the element level.

DG2: Enable spatial management and visual communi-

cation of element relationships. Designers view elements as
interdependent in a design, but articulating relationships such as
scale, hierarchy, and spatial proximity is challenging (C2). As such,
the user interaction should provide a flexible 2D workspace where
designers can visually arrange and manipulate elements, defining
relationships intuitively, and reducing reliance on verbal descrip-
tions. The goal is to establish a shared visual structure that allows
designers to clearly define the composition while enabling AI to
accurately interpret and understand it, improving communication
of complex elemental compositions.

DG3: Facilitate element reuse and iterative refinement. De-
signers struggle with the linear nature of current conversational
text-to-image tools, which lack mechanisms for selectively pre-
serving or refining elements across iterations (C3). To address this,
designers should be able to easily reuse individual elements and
partial configurations from previous versions to reduce repetitive
manual work. With such a reusing mechanism, designers could
explore different design variations more efficiently.

3.2 Early Prototyping: Co-designing with a

Designer

3.2.1 Procedure. In the early stages of our project, we engaged in a
four-month co-design process with an expert designer, who has over
eight years of graphic design experience. We held weekly 30-minute
design meetings. During this phase, we collaboratively created
early low-fidelity mock-ups using sketches and iteratively built
non-functional prototypes in Figma. This collaboration focused
on defining core components of Brickify and basic features in
Brickify. Given her commitment, we include her as a coauthor.

3.2.2 Design Outcomes. We defined two key aspects of the Brick-
ify interaction paradigm: 1) reifying [10] design elements into
design tokens; and 2) enabling direct manipulation [79] on tokens,
constructing the visual lexicon, to specify relationships. We iden-
tified two types of design tokens: visual and textual. Among the
visual tokens, we included three core elements: subject, style, and
color. We also defined five essential manipulation capabilities: drag-
and-drop, move, resize, group, and link tokens. The interface oper-
ationalizing this paradigm was structured into three panels: 1) a
mood board panel for organizing reference images and creating
tokens, 2) a token manipulation panel for building relationships,
and 3) a history panel to track versions. These design decisions led
to the development of an initial working prototype. Details will be
described in Section 4.

3.3 Prototype Iteration: Involving Another Six

Designers

3.3.1 Participants and Procedure. To refine the initial design of
Brickify and the early prototype, we recruited six additional de-
signers with over one year of graphic design experience, each hav-
ing used at least one text-to-image generation tool more than five
times in the past three months. We began by walking them through
the initial prototype and explaining how to interact with the system.
Using our prepared reference images, we asked them to explore
the system and generate multiple designs. Designers used a think-
aloud method to inform us when they encountered difficulties or
desired alternative functionality. At the end of the session, partic-
ipants provided feedback and discussed their overall experience
and suggestions for improvement. The entire study lasted about 45
minutes, and participants were compensated with the equivalent
of $20 CAD.

3.3.2 Feedback and Design Refinements. Designers identified sev-
eral inadequacies in the current Brickify design and suggested im-
mediate feedback. Based on their suggestions, we strengthened the
visual association between design tokens and their original imagery
to improve clarity. Additionally, we introduced a cross-referencing
feature to allow for more effective descriptions of relationships
between subject tokens. Designers also expressed the need to ac-
commodate both concrete instructions and abstract imagination, so
we added an imaginative token to the interaction vocabulary. These
refinements helped make the Brickify more expressive. Details
will be described in Section 4.
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4 BRICKIFY: A VISUAL-CENTRIC

INTERACTION PARADIGM

In this section, we explain the design decisions and rationale behind
Brickify, a visual-centric interaction paradigm that enables users to
express design intent through direct manipulation on design tokens.

4.1 Design Tokens: Specifying What Elements

to Use

We introduce design tokens as the externalizations of designers’
attended design elements (DG1), reifying [10] the abstract visual
information into concrete first-class graphical objects that can be
directly manipulated and reused.

4.1.1 Token types: Being polymorphic to ensure expressiveness and

extensibility. A key design insight in Brickify is that all types of
design elements and intentions should be regarded as tokens. The goal
is not to support a complete set of all possible design elements but
to build an extensible paradigmwith the affordance to accommodate
different types. Such polymorphism [10] is essential for maintaining
a simple interface with consistent interaction logic. During the
early prototyping (S2), the designer expressed the desire for precise
control over style, colors, and subject identity. Later in the prototype
iteration stage (S3), participants added that they also appreciated
the model’s hallucinations for certain details. For instance, one
participant noted, “I will leave it to the model to decide how an

exact ‘joyful’ facial expression looks like.” Thus, we categorize design
tokens into three types: visual, textual, and imaginative (Fig. 3).

Visual token carries the visual information such as the
subject, style, and color, reified from reference images.
Textual token complements visual tokens by conveying
information that is easier to express through language, such
as adjectives for emotions or verbs for gestures.
Imaginative tokenmediates the initiative between design-
ers and models, indicating where the model should intervene
and how much imagination is needed.

4.1.2 Token appearances: Balancing fidelity with re-envisioning po-

tential. The design tokens can be regarded as a visual abstraction
depicting the elements graphically. When designing their appear-
ance, we balanced between fidelity and re-envisioning potential.
Tokens need to be visually distinct, allowing users to easily identify
what element they represent while retaining enough abstraction
for designers to re-imagine them in new contexts.

In early co-design sessions (S2), we used geometric shapes to
represent different elements, e.g., rectangles for subjects, circles for
colors, and filled rectangles with different colors to distinguish be-
tween subjects. Hovering over a token would highlight the original
source in the reference image. However, in the later prototype iter-
ation stage (S3), we found that as the number of subjects grew and
design complexity increased, participants struggled to track which
token represented which subject, frequently switching between the
mood board and token manipulation panels to confirm identities.
To address this, we refined the subject tokens by attaching a small
cropped image of the subject to the token’s corner. For style tokens,
we represented them by transferring the style to a standard image.

sunset facing left with a happy smile.playfulness adventure

Subject Token (persistent)
Visual Token 

Style Token (persistent)Color Token (persistent)

Reified from reference images (persistent) Created by users (temporary)

(temporary)(discrete size: small | medium | large)

(continuous size)

(no size)Textual Token 

Imaginative Token

Figure 3: The definition of design tokens in Brickify: visual,

textual, and imaginative tokens. Each type of tokens has

their own appearances and life-cycles.

4.1.3 Token life-cycles: Offering both persistent ones for reuse and

temporary ones to avoid overwhelm. Towards facilitating element
reuse and iterative refinement (DG3), we make a distinction be-
tween persistent and temporary tokens. Persistent tokens are used
for core content elements that are repeatedly referenced throughout
the design process, while temporary tokens represent contextual
details or single-use modifications.

Designers typically plan a design by considering content, con-
struction, and context. For instance, “two girls (content) next to each
other in the center of the image (construction) are dancing surrounded
by flowers (context)”. Designers often explore alternative design
possibilities by altering the construction or context while keeping
the same visual elements. To support this process, content-related
tokens are persistent for reuse across different design variations,
while context-related tokens remain temporary to avoid clutter. We
implemented this distinction by separating token creation into two
panels: tokens created in the mood board panel are persistent, with
each use being a copy of the original, ensuring the flexibility of
reuse. In contrast, tokens in the manipulation panel are temporary
and deleted when the panel is cleared to prevent interface clutter.

4.2 Direct Manipulation on Tokens: Expressing

How to Construct Elements

Direct manipulation [79] has long been integral to designers’ work-
flows, especially for rapid prototyping and visual planning. In
Brickify, users express how theywant to construct elements through
direct manipulations on design tokens (DG2).

4.2.1 Intuitive actions to reflect intentions. The mapping between
intention and action should be intuitive, allowing users to engage
through technical reasoning [66] rather than procedural learning. In
collaboration with designers, we defined the following actions to
reflect design intent, constructing the visual lexicon bymanipulating
on tokens, as shown in Fig. 4.

Drag-and-drop. Users create persistent tokens (subject,
style, color, concept) from reference images in the mood
board panel. To use these tokens, they can drag their copies
and drop them onto the token manipulation panel, where
each token can be reused multiple times without limits.
Move. Users can freely move subject tokens to define the
spatial relationships between subjects. While other tokens
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Figure 4: Demonstration of exploring different compositions through direct manipulation on design tokens. (a)–(d) show how

adjusting sizes and positions of the owl and car tokens changes their relationships in the outcomes.

(e.g., color, style, textual) can also be moved, the movement
of these tokens is purely for organizational purposes without
encoding spatial relationships, as their function is to modify
or describe attributes of the subject.
Resize. Resizing tokens adjust their scale. Color tokens
indicate proportional weights (e.g., primary vs. secondary
colors), while style tokens work similarly. Resizing subject
tokens specifies their sizes in the output, and resizing imag-
inative tokens controls the extent of AI-imagined details.
Textual tokens cannot be resized.
Group. Grouping tokens helps manage multiple elements
easily. For example, users can group 3-5 colors into a color
theme or apply several colors to a single subject.
Link. Design elements are often interconnected. For exam-
ple, a color token can be linked to a specific subject, applying
only to that subject, or left unlinked to apply globally. Links
specify the relationships between tokens, such as binding
colors or textual descriptions to subjects.
Cross-reference. Subject tokens often reference one an-
other to specify certain relationships. For example, in the
phrase “an owl is driving the car”, describing the owl’s be-
havior using a textual token requires referencing the car’s
token. To cross-reference, users can assign a name to a token
to refer and tag the name in a textual token.

4.2.2 Flexible action reuse. In addition to reusing tokens, designers
should be able to reuse their previous actions to explore alternative
design paths (DG3). Since actions are reflected in the construction
of design tokens, the visual lexicon, we support action reuse by
recording each lexicon created. Designers can refine their work
based on this visual lexicon rather than redoing previous actions,
enabling more efficient iteration and exploration.

4.2.3 Intermediate action outcomes. During prototype refinement
(S3), designers expressed the need for immediate feedback on their
actions to assess how design tokens respond and evaluate the results.
However, the current generative models have noticeable inference
times and high computational costs, making instant feedback for
every action impractical. To address this, we introduced feedback at
a higher granularity. Since the execution process follows a sequence
— first composing the layout, then aligning the style, and finally
applying colors — we provide intermediate results at each step.
As model inference times improve, we envision the possibility of
real-time feedback for more responsive interaction.

5 USAGE SCENARIO

Before diving into the design process and the implementation in
detail, we walk readers through an example usage scenario to ex-
press design intent through Brickify. Imagine Stella, a designer,

working on a children’s storybook about the adventures of an owl.
The story follows the owl as he travels in different landscapes with
his trusty car and friend.

Creating design tokens. Stella begins by gathering inspirational
images to define the look of the characters and the feel of the
scenes and importing them to the Mood Board Panel (Fig. 5A). She
draws bounding boxes around the owl, car, and tree to create their
subject tokens. She then creates color and style tokens with the
corresponding tools shown in (Fig. 5a). To set the thematic tone,
she adds a textual token for “playfulness”.

Manipulating design tokens. She drags and drops (Fig. 5(b1)) the
created tokens to the Token Manipulation Panel (Fig. 5B) to build
her story (Fig. 5(b2–b6)). She imagines the owl parking under a tree,
waiting for his friend. She resizes and positions the owl, car, and
tree tokens to define their spatial relationships, then links textual
tokens to specify the owl standing behind the car and facing left.
For the tree, which she imagines as “colorful” but undefined, she
links an imaginative token to let the AI decide it. Stella then groups
the color tokens for a cohesive theme and adds a style token. For
the background, she creates a textual token of “beautiful park”.

Reusing design tokens. In the next scene, where the owl’s friend
joins, Stella reuses parts of the previous visual lexicon, making slight
adjustments and dragging and dropping another subject token of
owl from the Mood Board Panel as his friend. By reusing design
tokens, she streamlines her workflow and avoids redundant work.
All generated results and their visual lexicons are organized in the
History Panel (Fig. 5C).

6 BRICKIFY SYSTEM IMPLEMENTATION

In this section, we explain how Brickify extracts primitive design
elements from reference images to create design tokens (Section 6.1)
and transforms the tokens together with users’ actions on tokens
into control signals for models to process (Section 6.2).

6.1 Design Token Creation

6.1.1 Subject token. Users create a subject token by drawing a
bounding box around the desired subject using the subject tool.
To ensure that generative models accurately capture the visual
details specified by users, we employ the SAM [49] model to extract
segmentation maps and then use the Break-A-Scene [5] approach
to fine-tune the Stable Diffusion (v2.1) model. This process
learns the subject’s visual identity and binds each subject to a
specific token within the model for later use. To accommodate
multiple reference images, we concatenate them into one image
before fine-tuning because Break-A-Scene can only learn subjects
within one single image.
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Figure 5: User interface of Brickify, consisting of three panels: (A)Mood Board Panel for arranging reference images and creating

persistent design tokens (subject, color, style, concept), which can be drag-and-dropped (b1) into (B) Token Manipulation Panel
for direct manipulation (b2 – b6). Clicking the Generate button (c), generated results are organized in (C) History Panel.

6.1.2 Color token. Users can extract color tokens both automati-
cally and manually. Using the color tool and clicking on an image
automatically extracts five dominant colors as color tokens based
on K-Means clustering. If the extracted colors do not meet the user’s
needs, they can click on them to manually change their colors with
the color picker. If they want to create more color tokens based on
one image, they can click again on the image to create a circle with
a random color, allowing users to manually select a color with an
eyedropper tool to create a color token.

6.1.3 Style token. Users indicate their desire to use an image’s style
by clicking on it with the style tool. We leverage Style-Align [41]
to transfer the image’s style to a standard balloon image, which is
then cropped to the marker shape, creating a style token.

6.1.4 Concept token. Concept tokens capture the high-level spirit
or emotional feeling of an image in textual format. When users click
on an image with the concept tool, GPT-4o describes the feeling
and atmosphere of an image, summarizing it into five keywords.

6.2 Visual Lexicon Execution

To ensure a smooth iterative design experience, we selected the
approaches for the visual lexicon execution that do not require
training or fine-tuning on diffusion models. It should be noted that
the field of computer vision evolves rapidly and methods could be
replaced as better solutions emerge, our goal is to provide a feasible

technical pipeline for executing the visual lexicon users create. The
execution consists of four primary steps: handling layout, style,
global colors, and local colors (Fig.6). This order is deliberately de-
signed to prevent visual effects from being overridden. For example,
handling the style inevitably changes the colors to some degree, so
color adjustments must come afterward. Similarly, global colors are
handled before local colors.

6.2.1 Extend keywords description. Users often use only keywords
in textual tokens, but diffusionmodels perform better with complete
sentences as prompts. We thus extend textual tokens into sentences
using GPT-4o. The size of the imagination token determines the
level of detail added, with three levels: small, medium, and large. If
no imagination tokens are used, only factual information is stated
without any added imagination.

6.2.2 Compose the layout. To compose subjects into the desired
layout, we use BoxDiff [101], which constrains image genera-
tion with spatial control guidance. For the foreground, it takes
the subject token placements as bounding boxes and related tex-
tual keywords describing each bounding box as input, triggering
the special tokens in the pre-trained diffusion model fine-tuned
by Break-A-Scene to generate subjects according to the specified
layout. It also handles the background generation with the given
text description.
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Figure 6: The technical pipeline of Brickify interprets and executes the visual lexicon step-by-step, using off-the-shelf methods.

6.2.3 Align the global style. By default, the image composed in the
layout at the previous step is in a realistic, natural style. To align it
with the user-specified style token, we use the Style-Align [41]
method. Style-Align performs shared self-attention with the ref-
erence style image at each diffusion denoising step to achieve style
alignment during the image reconstruction process.

6.2.4 Apply global colors. To apply the global color palette to the
image, we employ the HistoGan [1] to recolorize images based on
the given palette. Specifically, we use the pre-trained checkpoint of
Universal model-0. This method is based on generative adversar-
ial networks (GANs) and optimizes the recolored image to match
the color proportion distribution by projecting color histogram
features into the model’s latent space.

6.2.5 Calibrate local colors. Lastly, we handle the color tokens
attached to local subjects. Blended Latent Diffusion [6] is lever-
aged to perform local color modifications on the image. This method
targets the local editing of generic images, where the desired edits
are confined to a user-provided mask without touching the rest.

7 USER STUDY DESIGN

We conducted an in-lab user study to evaluate the effectiveness of
Brickify in intent expression and users’ experience when interact-
ing with the system of Brickify. The study involved two tasks with
the same set of participants.

7.1 Participants

We recruited 12 experienced designers via social media and mailing
lists. All participants hold a formal design degree and have more
than 3 years of experience in graphic design. Participants rated their
frequency of using generative AI tools for text-to-image generation
on a 5-point Likert scale (1 = “never” to 5 = “very often”), with an
average rating of 3.33. Their detailed demographic information is
listed in Appendix 1. Participants took part in the study remotely.
All study sessions were audio and video recorded. The entire study
lasted about 75 - 100 minutes, and participants were compensated
with the equivalent of $30 CAD. The study was approved by the
university’s ethics review board.

7.2 Study 1: Interaction Paradigm Comparison

Study 1 uses a replication task to simulate a scenario where design-
ers have a well-developed idea in mind. The goal is to answer the
research question (RQ1): How does the visual-centric interaction
paradigm of Brickify compare to the textual-centric paradigm in
terms of clarity, mental effort, and time investment for expressing
design intent?

Easy-v1 Easy-v2

Hard-v1 Hard-v2

Reference ImagesSTUDY 1 Target Images

Figure 7: Reference and target images for Study 1. For each

condition (Easy and Hard), users work with two versions:

one created from scratch and a second tweaked versionwhere

users adjust their original description to match the modified

target image.

7.2.1 Experimental Design. We use a 2 × 2 within-subject design
with two primary factors: Techniqe (Brickify or Baseline) ×
Difficulty (Easy or Hard). The Brickify condition, as described
in Section 4, is our proposed interaction paradigm, accessed through
the Brickify interface shown in Figure 5, with the Generate button
disabled. In the Baseline condition, participants describe their de-
sign intentions by typing textual prompts in a Google Doc, with
the ability to refer to reference images by their provided names.
We avoided using existing commercial text-to-image interfaces like
Dall-E or MidJourney as baselines due to their differing interaction
designs — Dall-E allows uploading an unlimited number of images
but lacks a clear mechanism to reference them while MidJourney
uses command-style prompts and requires images to be in URL for-
mat. To ensure fairness for participants familiar with different tools,
we thus provided this general textual-centric prompting method
reflecting common generative model interactions as a baseline.

The Difficulty levels (Easy and Hard) are determined based
on the number of visual elements and the complexity of their com-
positions. To establish these conditions, an expert designer selected
elements from a set of reference images and created initial versions
for both difficulty levels. For the Easy condition, the design involved
fewer elements and simpler compositions, while the Hard condi-
tion included more elements with more intricate arrangements. The
designer then further refined the compositions to create a second
version for each condition, as shown in Fig. 7.

Participants were asked to express their design intent for the
target images across the two Difficulty levels (Easy and Hard)
using two interaction paradigms: Brickify (visual-centric) and
Baseline (textual-centric). For each Difficulty level, participants
first described the design of a target image (Easy-v1 or Hard-v1),
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then refined their expression to produce a modified version (Easy-
v2 or Hard-v2), simulating a real-world design refinement process.

7.2.2 Measurements. To assess whether user expressions suffi-
ciently described the target image, we adopted a human-evaluation
approach by recruiting three external raters to assess all partici-
pants’ expressions under both Techniqes. Raters self-reported
frequent use of text-to-image generation tools (𝑀 = 4.33, 𝑆𝐷 = 0.58;
scale: 1 = “never” to 5 = “very often”) and demonstrated being knowl-
edgeable in prompt engineering (𝑀 = 3.67, 𝑆𝐷 = 0.58; scale: 1 =
“no experience” to 5 = “expert”). The three raters performed the
evaluation independently on five 7-point Likert Items (i.e., element
coverage, size clarity, position clarity, style clarity, and color clarity)
followed the predefined rubric (see Appendix A.3). The expres-
sions were order-randomized for each rater. The rating process
took around 2 hours and the raters received $50 CAD for their time.

We chose not to use AI models to directly execute expressions
and generate final outcomes to compare due to the following rea-
sons. First, there is no off-the-shelf techniques built on top of Stable
Diffusion 2.1 (the same base model in our technique) that resemble
Baseline— taking multiple references as input and leveraging their
subjects and styles — to make it comparable. Second, as in this study
we focus on the expressivity aspect, uncertainty and complexity in
the process of execution for AI models may introduce compound-
ing factors unrelated to the quality of user expressions. Therefore,
we instead rely on human raters, whose evaluations could more
effectively reflect the quality of the expressions from the message
receiver perspective.

To this end, the measurements for Study 1 included 1) partici-
pants’ responses to five questions evaluating intent expression, 2)
external ratings for participants’ expression in different conditions,
3) task completion times for both the initial and refined design
versions, 4) participants’ preferences between the two Techniqes,
and 5) self-reported cognitive load during the tasks.

7.3 Study 2: Brickify Exploration

Study 2 is an open-ended task, without comparison with other
systems, designed to explore the research question (RQ2): How
does Brickify influence users’ creative exploration when they start
without a clear intent?

Figure 8: Reference images used in Study 2.

7.3.1 Task design. In this task, participants assumed the role of
junior graphic designers tasked with creating a graphic series for a
children’s storybook about the adventures of an owl. The senior
designer provided four reference images (Figure 8) to define the
visual characteristics. Participants were asked to create three im-
ages depicting scenes where the owl, with or without his friend
and car, embarks on an adventure. The task required maintaining
visual consistency across all images. There was no time limit, and
participants worked until they felt their designs were complete.

7.4 Procedure

After signing the consent form, participants were given an overview
of the study procedure, duration, and data collection details. The
studies were conducted remotely via Zoom, with participants ac-
cessing Brickify through the web browser. A brief training session,
including a toy example, was provided to demonstrate the use of
Brickify and explain the text-based prompting in the Baseline
condition. Participants could familiarize themselves with the tools
before starting the tasks.

Participants beganwith Study 1, completing both Easy andHard
tasks using Brickify and the Baseline, with no time limits. The
sequence of the four trials (Baseline-Easy, Baseline-Hard, Brick-
ify-Easy, Brickify-Hard) was randomly assigned across partici-
pants, as a full counter-balancing was not feasible. After each trial,
participants filled out questionnaires to rate their intent expression
experience. Upon completing Study 1, they filled out the question-
naire on their preference and cognitive load on a 7-point Likert
Scale. Next, participants proceeded to Study 2. After completing
this task, they rated their experience with Brickify using a post-
study questionnaire for Creativity Support Index (CSI) [14]. A
semi-structured interview was conducted to gather feedback on
participants’ experiences with Brickify. Participants were encour-
aged to share general comments on any aspect of the study and
then prompted on specific aspects, including interface usability
frustrations, challenging intention expression cases, prior difficul-
ties with text-centric GenAI tools, and whether similar issues arose
with Brickify. They were also asked about the system’s impact on
their approach to solve design problems, exploration of design op-
tions, and suggestions for improvement. Observations noted by the
experimenter during the session were also discussed.

7.5 Data Analysis

To analyze the qualitative feedback, we analyzed interviews us-
ing thematic analysis, employing both inductive and deductive
approaches. Two researchers collaboratively analyzed and open-
coded the transcribed interviewees’ responses, employing affinity
diagramming to sort the initial codes onto cards. Then, they dis-
cussed and reconciled any discrepancies in the coding process to
ensure a consistent and accurate representation of participants’
perspectives. Through iterative discussions and the organization
of these codes, we identified a number of recurring patterns and
themes within the interview data.

8 USER STUDY RESULTS

8.1 Self-Rated Design Intent Expression

We conducted the non-parametric Aligned Rank Transform (ART)

ANOVA [99] statistical analysis on the ordinal Likert-Scale subjec-
tive ratings for Study 1 to understand the influence of Techniqe
and Difficulty on users’ self-reported design intent expression
experience (Q1-Q5). Results show that there is a significant main
effect of Techniqe on users’ self-reported design intent expres-
sion experience across all five questions, while Difficulty had
significant effects for Q2, Q3, Q4, and Q5 but not for Q1. The in-
teraction effect between Techniqe × Difficulty was significant
for Q3 only. The post-hoc multi-factor contrast tests following the
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Figure 9: Participants’ response for Study 1 when rating the 7-point statements for Baseline and Brickify interaction paradigm

under Easy and Hard conditions. Dots are the mean differences of Brickify compared to Baseline.
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Figure 10: External rating for the quality of expressions that participants produced in Baseline and Brickify regarding the

element coverage, the clarity of size, position, style, and color.

ART-C [27] procedure were conducted to identify the exact differ-
ences. The results show that participants’ ratings on Q2, Q4, Q5
were significantly higher for Brickify than the Baseline in the Easy
task. For Hard task, participants’ ratings for Brickify on all five
questions (Q1-Q5) were significantly higher than the Baseline.

The analysis, along with the detailed scores in Fig. 9, demon-
strates that Brickify is more effective than the text-centric in-
teraction paradigm in supporting users’ design intent expression,
particularly in higher difficulty tasks. Brickify simplifies describing
visual identity, specifying relationships, reusing prompts for alter-
natives, reduces cognitive load, increases expression confidence,
and enhances the overall design expression experience.

8.2 External-Rated Expression Quality

Figure 10 shows the external ratings for participants’ expressions
across five items — element coverage, clarity of size, position, color,
and style (the rubric is shown in Appendix A.3). The reliability
of the ratings was measured using a two-way random Intraclass
Correlation Coefficient (ICC). The ICC values for each item ranged
from 0.688 to 0.930, with an average of 0.817, indicating accept-
able reliability. We use the average score from the three raters for

each expression for further statistical analysis. Across different
Difficulty levels, participants in both the Baseline and Brick-
ify conditions successfully covered most elements in the target
images. While Brickify received slightly higher scores for element
coverage, the difference was not statistically significant. For the
perceived clarity, the two-way ANOVAs indicated that the choice
of Techniqe (i.e., Baseline vs. Brickify) is the primary factor
significantly influencing the clarity of size (𝐹1,92 = 892.15, 𝑝 < .001),
position (𝐹1,92 = 501.02, 𝑝 < .001), color (𝐹1,92 = 58.14, 𝑝 < .001),
and style (𝐹1,92 = 51.80, 𝑝 < .001) regardless of task difficulty. These
results suggest Brickify provides a more effective approach for
reducing the ambiguity in intent expression.

8.3 Task Completion Time

In Study 1, on average, participants took longer to complete the
initial version in the Brickify condition compared to the Base-
line condition (𝑡Baseline_Easy = 324𝑠 vs. 𝑡Brickify_Easy = 474𝑠 ,
𝑡Baseline_Hard = 444𝑠 vs. 𝑡Brickify_Hard = 465𝑠), detailed data is
shown in Figure 11. However, the differences were not statistically
significant. An ANOVA analysis of the model Initial Comple-
tion Time ∼ Techniqe × Difficulty revealed no significant
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Figure 11: Users’ Initial Completion Time (left) and the Refinement Time (right) with Baseline and Brickify interaction

paradigm under Easy and Hard conditions in Study 1. Black dots are means, bars are 95%CIs.
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Figure 12: Participants self-reported preference and cognitive load that directly compare Baseline and Brickify.

main effects of Techniqe (𝐹1,44 = 2.93, 𝑝 > .05) or Difficulty
(𝐹1,44 = 1.44, 𝑝 > .05), and no significant interaction between Tech-
niqe andDifficulty (𝐹1,44 = 1.32, 𝑝 > .05). This result aligns with
our expectations, as Brickify inherently involves many operations
(e.g., creating, dragging, and constructing tokens) that participants
have to perform to express their intent from scratch. The break-
down of Initial Completion Time shows that participants spent
approximately one-third (𝑡Easy = 139𝑠 , 𝑡Hard = 165𝑠) of the total
time in creating tokens and dragging them to the manipulation
panel. The remaining time was dedicated to manipulating these
tokens to construct the lexicon.

When entering the refinement stage, participants, on average,
took less time in Brickify condition to refine their initial expres-
sion to achieve the modified version than Baseline condition
(𝑡Baseline_Easy = 121𝑠 vs. 𝑡Brickify_Easy = 99𝑠 , 𝑡Baseline_Hard =

309𝑠 vs. 𝑡Brickify_Hard = 181𝑠). The ANOVA in the model Refine-
ment Time ∼ Techniqe × Difficulty shows significant main
effects of Techniqe (𝐹1,44 = 5.81, 𝑝 < .05) and Difficulty
(𝐹1,44 = 18.03, 𝑝 < .001), but no significant Techniqe × Dif-
ficulty interaction (𝐹1,44 = 2.97, 𝑝 > .05) on Refinement Time.
Post-hoc Tukey HSD tests further show that users spent signifi-
cantly less Refinement Time in Brickify on average by 128 sec-
onds (𝑝 = .027) in Hard condition, while no significant difference
found for Easy condition. This result can be attributed to the fact
that participants did not create new tokens in Brickify during
the refinement stage; instead, they focused solely on manipulating
existing tokens. The faster Refinement Time highlights Brickify’s
strength in enabling quicker and more efficient modifications once
the initial design intent is established.

8.4 User Preference and Cognitive Load

After completing Study 1, participants were asked to rate their
preference between Brickify and the Baseline condition, as well as
their cognitive load for each condition (Fig. 12). Participants (11/12)
showed a clear preference for Brickify over the Baseline. On a
7-point Likert scale (1 = strongly prefer Baseline, 7 = strongly prefer
Brickify), the mean preference rating of 6.0 was significantly above
the neutral midpoint of 4. This indicates a strong preference for
Brickify when participants had a clear design intent to express.

Regarding cognitive load, most participants (11/12) felt they
were more successful using Brickify. Additionally, 7 out of 12
participants reported making less effort, and 8 out of 12 felt less
frustrated, suggesting that Brickify simplifies the design intention
expression and reduces users’ frustration. However, only half of the
participants felt reduced mental demand and hurry compared to the
Baseline. As users engage more deeply in articulating their design
intent, they may invest more time and mental effort in decisions
such as token placements. Overall, Brickify enhances the design
intent expression clarity and reduces frustration but still requires a
certain level of mental effort and time commitment to fully engage
with design token manipulations.

8.5 User Behavior

8.5.1 Token Usage. Figure 13 illustrates the number of participants
using each token type across studies. Subject tokens were consis-
tently adopted by all participants across all conditions, while color,
style, and textual tokens were used by most participants (more than
8). There was a slightly reduced usage (but still more than half of
the participants) in Study 2 for these tokens, because they focused
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Figure 13: Token usage in Brickify across studies, indicating

the number of participants have used each token type.

more on shaping the narrative by manipulating subject tokens. No-
tably, no participants used imaginative tokens in Study 1, which
may be because of its well-defined scenario with clear targets relied
entirely on reference images. During Study 2, where the design
scenario was more exploratory, five participants employed imag-
inative tokens for (1) enriching background descriptions (P2, P4,
P10), (2) modifying subject tokens to adjust visual identity and/or
actions, e.g., differentiating the owl’s friend from the owl (P11), and
(3) expanding text descriptions for global styles (P4, P9).

8.5.2 User Strategy. Across both studies, we observed several strate-
gies shared across participants when interacting with Brickify to
construct the visual lexicon. All participants adopted an on-demand
approach for token creation, using tokens as needed rather than
creating all tokens upfront. This led to frequent navigation between
the mood board panel and the token manipulation panel. When
constructing the visual lexicon, 9 out of 12 participants prioritized
creating and positioning subjects first, followed by adding local
colors (if any), and then applying global styles and/or colors. The
remaining participants began by considering global styles and col-
ors before adding subjects and their local colors. We also observed
that most participants (N = 10) started with the background or
underlying layers and worked progressively toward the foreground.
As P2 explained in the interview, this approach likely stems from
their unconscious habit of working with layer-based logic in tools
like Adobe Photoshop and Illustrator: “I always build layer by layer,

back to front in Illustrator and it feels natural to follow that order.”

8.6 Self-reported Creativity Support Index

We utilize the Creativity Support Index (CSI) to measure the de-
gree of creativity support for Brickify in the Study 2. Since Study
2 does not include a baseline for comparison, we present this self-
reported rating as a reference point to better understand users’
experiences, rather than drawing definitive conclusions. Partici-
pants rated six creativity support factors on a scale from 1 (strongly
disagree) to 7 (strongly agree) shown in Fig. 14: expressiveness,
results-worth-effort, exploration, enjoyment, immersion, and col-
laboration. Overall, Brickify shows strong support for creativity,
effectively supports idea exploration, and is generally enjoyable
to use. Although most participants rated positively, one partici-
pant strongly disagreed with the immersion factor, which may
reflect interface limitations, as noted in an interview where the user

Figure 14: Self-reported Creativity Support Index for Brickify

after Study 2.

suggested frequently used tools to create visual tokens should be
directly available in the toolbar rather than in a list.

The factor of results worth effort reflects how effectively the
model executes users’ intent. Half of the participants rated it pos-
itively, while the rest were less satisfied. This disparity arised be-
cause, while our pipeline for executing visual lexicons (Section 6.2)
is feasible for simpler cases, its limitations become apparent in
complex scenarios, such as handling multiple subjects or intricate
relationships, leaving significant room for improvement. We show-
case some participant-created story using Brickify, including plant-
ing a tree (Figure 15), sharing an apple (Figure 16), and hosting a
music party (Figure 17), where they crafted three-scene narratives
effectively. However, failure cases (Figure 18) reveal that the model
often omits subjects when there are more than three and/or when
subjects overlap significantly (e.g., being “inside”). Additionally, the
model sometimes fails to match specified sizes and occasionally
produces patchy images. In response, participants typically regener-
ated outputs with different seeds, which sometimes worked. If not,
they reduced the complexity, such as removing some subjects or
tweaking the layout, to gradually adapt themselves to the model’s
capacity limits. We anticipate that as the base model (currently
Stable Diffusion 2.1) continues to grow in size and evolve in ar-
chitecture, its performance in executing the visual lexicon would
improve, thus mitigating this problem.

8.7 Observations and Participants’ Feedback

8.7.1 Decomposing a reference image into elements is more effective

than using it as a whole. Participants consistently valued decom-
posing reference images into individual elements rather than using
them as a whole, aligning with their design process. P3 noted, “Be-
ing able to break down an image into parts lets me mix and match

elements in a way that fits my vision, rather than being constrained by

the original composition”. Compared to their previous experiences
with tools that only allow for remixing entire images, participants
found the ability to recombine multiple decomposed elements and
specify their relationships particularly valuable. P7 expressed, “With

other tools, I’d have to try different images multiple times to get some-

thing close to what I want. Here, I can just pull out the pieces I need

and arrange them how I like”.

8.7.2 Brickify enhances the sense of control but requires a tar-

get in mind. Participants unanimously agreed that Brickify offers



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Xinyu Shi, Yinghou Wang, Ryan Rossi, and Jian Zhao

1 2 3

Figure 15: P3 generated results with Brickify, illustrating a story where (1) two owls plant a tree together, (2) nurture it with

care, and (3) later, one owl drives by and happily witnesses the tree’s growth into tall and strong.

1 2 3

Figure 16: P6 generated results with Brickify. The user intends to describe (1) an owl discovers some apples in a park, picks one,

and (2) brings it home to share with a friend, and (3) his friend puts the apple on the head, sharing a happy moment together.

1 2 3

Figure 17: P10 generated results with Brickify, depicting a story where (1) the owl and his friend discover and move a guitar

from a warehouse, (2) joyfully sing and play the guitar on a car, and (3) invite another friend to join them for a lively music

party.

a
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c

Figure 18: Failure cases: (a) when there are multiple subjects, the model often omits some of them (from P1); (b) when two

subjects overlap significantly, the model struggles and incorrectly interprets the interaction as being “inside” (from P5); (c) the

size of generated subjects sometimes may not align with the user-specified one; and (d) the model occasionally fails to produce

a cohesive image, instead generating patchy outputs with visible edges (from P11).

a greater sense of control compared to using natural language
prompts. They found it particularly useful for defining and manip-
ulating the relationships between elements. P4 noted, “it (Brickify)
makes it so much easier to specify how different parts of my design

interact. I feel like I have more direct control over the outcome”. How-
ever, participants also highlighted that this increased control comes
with a prerequisite: having a clear idea or target in mind. When
they were unsure of what they wanted to create, they found that
natural language prompts offered a quicker and more flexible start-
ing point. As P9 explained, “If I don’t have a clear idea, it’s easier

to just throw in some random words and see what the AI generates,

it’s a good way to get inspired”. These feedback implies a trade-off
between control and exploration. Natural language allows for broad
exploration and can spark new ideas even from vague or random

inputs, while Brickify excels in depth and precision when users
have a rough direction or specific visual properties in mind. As P1
put it, “Once I know the general look I’m going for, it (Brickify) lets

me really arrive there”.

8.7.3 Direct manipulation on design tokens helps reduce the efforts

of refinements. Brickify allows for more precise and enjoyable
fine-tuning. Participants felt useful to directly manipulate elements
without losing the core identity of their design. “[With Brickify,] I

can make the adjustments I want without compromising the overall

look, I actually very enjoy this refinement process”, shared by P5.
The persistence of design tokens throughout the creative process
was particularly valued. Participants liked that once a design token
was created, it could be reused throughout a session, streamlining
the workflow and ensuring consistency across different iterations.
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“I love that I can just drag and drop a copy of a token for reuse,”

P8 shared, “It keeps my design consistent without having to start

from scratch every time”. In contrast, participants mentioned the
challenges they faced with other tools when trying to make minor
refinements. In many cases, they found that the visual identity of
their work would start to drift with each new text-based prompt,
leading to frustration. “I’ve tried making refinements in other tools,

but often the visuals change too much, even when I just want minor

tweaks. It’s so frustrating that I usually just switch to Photoshop to

fix it myself”, P12 explained.

8.7.4 Brickify do not require a rigid structure thus enable a flexible

thinking flow. Several (P1, P2, P4, P7, P8, P9, P11) participants men-
tioned they benefited from freely constructing their visual lexicon
without worrying about ordering and format constraints. They felt
Brickify can enable them to think non-linearly and creatively. P7
noted, “with text prompts, I was advised to follow a template for

effective prompting, though I don’t know if it really matters: start

with the overall context, list subjects, describe the view with terms

like headshots or close-ups, and then add magic words for styling. It

feels like I’m being forced to think in a certain way, which is not how

design should work, it is supposed to be messy. You think about this,

then that, then come back to adjust one accordingly, the elements are

influencing each other”. P11 expressed frustrations that “different
tools often require different prompt formats, making it (prompting

with texts) more complicated”. In contrast, Brickify does not assume
a procedural process to construct the visual lexicon, users are free
to start from any design aspects and seamlessly navigate between
them. Overall, the flexibility offered by Brickify was seen as a
significant advantage, enabling users to engage in a more dynamic
and less restrictive creative thinking process.

8.7.5 Clarity in intent expression help users appropriately under-

stand AI accountability. Users often face challenges in correctly
attributing AI failures due to the lack of transparency in how AI
interprets their inputs. This can lead to confusion, where users
mistakenly believe that failures are due to unclear intent rather
than AI’s limitations. As P5 mentioned, “Sometimes, I’m not sure

if the problem is with how I’m phrasing things”. This uncertainty
often results in users repeatedly refining their inputs, leading to
unnecessary back-and-forth. However, with Brickify, users felt
more confident in the clarity of their intent expression, such confi-
dence making users can appropriately attribute failures to AI. P12
commented that “[With Brickify,] I know if something goes wrong,

it’s probably the AI, not me”.

9 DISCUSSION

We reflect on the design of Brickify and discuss the lessons we
learned and the implications for future research.

9.1 Design Implications

9.1.1 Integrating texts into visual-centric paradigm versus embed-

ding visuals into texutal-centric paradigm. Brickify addresses two
key ambiguities in textual prompts: what elements to use and how

to construct them for an intended effect. Prior work, like Direct-
GPT [61], also augments textual prompts by embedding visual
symbols to clarify object references, focusing on the what aspect.

However, these two approaches differ fundamentally in their ex-
pressiveness of the how aspect due to their structural nature. Visual-
centric paradigms like Brickify operate in a two-dimensional (2D)
space, enabling spatial manipulation and richer exploration of re-
lationships between elements, with text serving as a complement.
In contrast, text-centric paradigms with embedded visuals, such as
DirectGPT, function within a linear, one-dimensional (1D) space,
where the narrative sequence is preserved, and visuals enhance
object references or enrich textual information. We argue that the
effectiveness of either paradigm is likely task-dependent. For visual
tasks, the spatial properties of a 2D approach can provide more
intuitive and efficient interactions, aiding in design, spatial rea-
soning, and layout organization. However, this may disrupt the
narrative flow, making it less suitable for tasks that require step-by-
step instructions such as programming. Conversely, a text-centric
approach with visual enhancements may be better suited for tasks
requiring logical reasoning and narrative coherence. This distinc-
tion raises important questions for future research: when should
one paradigm be chosen over the other? Or is there potential for
blending the spatial advantages of visuals with the narrative flow
of text to enable a unified paradigm for various tasks?

9.1.2 Dynamic distributed agency between user and AI: letting users

to specify when, where, and how much. Brickify is designed to re-
duce the ambiguity in design intent expression and thus improve
users’ sense of control when working with AI. We recognize that
users’ required control varied between individuals with different
skill levels and varied at different stages in design process. When
users seek to leverage AI’s creativity, they often choose to leave
ambiguity in the visual lexicon for the AI to refine. Conversely,
when they have a clear vision, they specify their intentions with
detailed visual tokens and intricate spatial manipulations, letting AI
to execute their vision with precision. Thus, the agency distribution
between user and AI is dynamically changing, also discussed by
Satyanarayan et al. [75]. In Brickify, users can actively and explic-
itly configure when, where, and how much control they wish to shift
to AI through the use of the imagination token. For instance, during
the Study 2, P2 provided a brief description “a beautiful park” as
background, and assign a large imagination token, signaling the AI
to elaborate. Participants in our study valued this flexibility and
control. In contrast, most current text-to-image tools, like DaLLE,
MidJourney, and Adobe Firefly, automatically expand and refine
users’ whole prompts without asking users if they want, leading to
unintended results. This informs the importance of providing an
explicit way for users to actively delegate control to AI — managing
when, where, and how much — rather than assuming a fixed agency
distribution pre-defined by the system.

9.1.3 Towards bi-directional visual lexicon construction: enabling

both users and AI to be constructors. Reflecting the current design
of Brickify, design tokens serve as the communication medium
between users and AI, while the constructed visual lexicon acts as a
visual abstraction of the generated image. However, Brickify only
allows users to construct the visual lexicon, with AI solely acting
as the receiver to execute it. This workflow presents a challenge:
as mentioned by some participants, in the early ideation stage
when users may not have a clear vision, they would prefer natural
language as a quick starting point. But how can users complete the
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iterative design process without an initial visual lexicon? What if
they wish to refine an AI-generated image instead? The current
system of Brickify does not fully close this interaction loop. One
potential solution is to enable AI to construct the visual lexicon as
well. Given an image, AI could automatically extract design tokens
and compose a corresponding visual lexicon for users to manipulate.
This approach is similar to the prior work on abstraction-driven

color manipulation for image [76] and motion graphic videos [77],
where the system creates color abstractions for manipulation. This
informs that visual abstractions can be constructed bi-directionally,
with both users and AI acting as constructors. However, this also
raises the questions warrant more in-depth exploration in future
work: how to decide the granularity of the AI-generated visual
lexicon; what elements should be reified into tokens; and what
relationships should be reflected?

9.2 Design Opportunities in Brickify

9.2.1 Diversifying design token types and sources. Currently, Brick-
ify supports limited visual token types including subject, style, and
color. However, there are more visual elements essential for con-
structing a successful design, such as camera angle, depth, texture,
and material. Brickify can naturally incorporate them by adding
corresponding token types. For example, with a camera token, users
can specify the camera angle by positioning it in the visual lexicon,
which is otherwise hard to express with texts. It is also possible to
automate the token creation process by decomposing an image into
low-level design elements [91]. It is worth noting that Brickify
currently only supports reference image as the source of visual
tokens. While starting from references is common, it is certainly
not the only approach that designers use. Designers could draw
inspirations from other sources such as their own memory, using
sketches to externalize and articulate their intent [46, 50]. Expand-
ing Brickify to incorporate sketch as a source of design tokens is
a promising way to accommodate such scenarios.

9.2.2 Customizing and Re-configuring design tokens by users. While
Brickify can expand the supported design token types, it is imprac-
tical to preset every possible type. A valuable future direction is to
allow users to make their own tokens. Users could define tokens
by describing their functions in natural language and providing ex-
amples. The system would then dynamically generate and support
these tokens. Furthermore, preset tokens may not always match
user’s intended usage. It would be more flexible to allow users
to appropriate the pre-designed tokens for their specific needs —
reconfiguring their represented meanings. For example, while cur-
rent color tokens only convey proportional information through
size, we observed P3 using their position to indicate specific ar-
eas on a subject to colorize. Lastly, it is important to constrain
such customization and reconfiguration to remain interpretable by
generative AI models to ensure effective interaction.

9.2.3 Affording richer manipulations on design tokens. Brickify
currently supports themanipulations of resizing, positioning, group-
ing, and linking. However, during the user study, participants at-
tempted additional manipulations beyond those provided. For ex-
ample, in the first task, many participants (7/12) tried to rotate the
token to indicate the pumpkin’s position. Similarly, some (3/12)

wanted to move subject tokens forward or backward to specify
spatial relationships. These observations reveal the potential for
our interaction paradigm to support more intricate user intentions.
Beyond spatial relationships, other behaviors like blending could
also be supported. While richer manipulations can enhance user
experience, they also introduce complexity. Ideally, users should
rely on technical reasoning — intuitively understanding how ma-
nipulations affect outcomes — rather than procedure learning —
memorizing steps to achieve desired effects [9]. Future work will
investigate what manipulations are both desired and natural for
users to express their intentions effectively.

9.2.4 Propagating the modifications of the design token. A limita-
tion of the current version of Brickify is that only textual tokens
are editable, while visual tokens, once created, cannot be re-linked
to another visual element. For example, if a user creates a subject
token of an owl and uses it in multiple designs, changing this owl to
a rabbit requires reconstructing everything from scratch. To address
this, a possible improvement is to allow design token modification
with automatic propagation to all instances. Since we designed
the visual tokens to be persistent and every time users construct a
visual lexicon, they drag a copy of the original token, this creates
a natural link between the original and its copies. Leveraging this
link, once users modify the original token, such as re-attaching it
to a new subject in another image, we can propagate this modifica-
tion to all its copies in related visual lexicons. Such a propagation
mechanism can allow designers to quickly compare different visual
candidates and streamline their workflow.

9.2.5 Beyond static graphic design: extending Brickify to video,

3D scene, and other co-creation tasks with AI. While Brickify is
initially designed for static graphic design, its visual-centric inter-
action paradigm holds significant potential for broader applications
in general AI-assisted visual design tasks. In video creation, for
instance, Brickify could adapt the visual lexicon to a timeline-
based structure, where individual lexicons construct each scene.
Similarly, in 3D scene modeling, where spatial relationships are
more complex, Brickify could extend 2D design tokens into 3D
tokens and extend the 2D manipulations to 3D operations. While
token design and manipulations may be domain-specific, the fun-
damental interaction logic of using direct manipulation on tokens
to construct elemental relationships remains coherent and consis-
tent across different design domains. We believe Brickify opens
up the possibility to offer designers a unifying design language to
communicate with AI across the broad creative landscape.

9.3 Limitations

9.3.1 Brickifymight fail in describing unseen visuals beyond recom-

bination. Each modality has special strengths and weaknesses in
its ability to communicate particular concepts [12]. While Brickify
excels at referring to elements and describing spatial relationships,
its reliance on existing visuals might lead to design fixation [46],
where designers may unconsciously adhere to what has already
been known or available. In contrast, natural language could de-
scribe unseen visuals that go beyond recombination (e.g., “a cute
sock with a human-like face” ) or ideas that might seem unreason-
able (e.g., “time is melting” ). Therefore, our proposed visual-centric
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interaction paradigm is not intended to replace the text-centric ap-
proach. Instead, it is important for designers to strategically choose
the most suitable modality based on the design context and the
level of originality they seek to achieve.

9.3.2 Visual lexicon extraction could be improved. Our implemen-
tation of visual lexicon execution relies heavily on off-the-shelf
computer vision techniques. Despite that we selected the state-of-
the-art ones at the time of developing Brickify, these techniques
have inherent limitations that impact our system’s capacity. Cur-
rently, Brickify supports only 4-6 subject tokens. This constraint
arises because we use the Break-A-Scene [5] approach to preserve
each subject’s visual identity. However, our experiments show that
when there are more than six subjects, the performance in main-
taining visual identity drops significantly. The scope of this work
is not to improve the performances of computer vision models, but
we do hope this work informs the importance of computer vision
research to push the progress forward — training the model to be
aware and preserve visual details rather than solely taking natural
language as input.

9.3.3 Inference and computation costs could hinder user experience.

Due to the high computational costs and inference time of diffusion
models, we cannot support on-the-fly inference and immediate feed-
back. Our visual lexicon execution pipeline sequentially handles
different design aspects (layout, style, and color), each requiring
a 50-step diffusion model inference (around 30 seconds). As a re-
sult, users must click a button to generate and wait for the results,
interrupting their design experience to some degree. We envision
that as inference time and computation costs decrease, users will
no longer need to click the generation button after constructing
the visual lexicon. Instead, they will receive immediate feedback
while manipulating the tokens. This will enable users to instantly
see the effects of their actions, providing a smoother co-creation
experience with generative models.

9.3.4 Study results might not be generalizable for design novices.

Participants in our study are experienced designers, all with a mini-
mum of 3 years of design experience. These participants are trained
to approach design problems visually, and Brickifywas specifically
designed to align with this visual-centric mental model. As a result,
the study’s findings may not generalize to novice designers or ca-
sual users who lack this level of expertise. It is uncertain whether
novice users could adapt to this visual-centric paradigm and fully
leverage the fine-grained control.

10 CONCLUSION

In this paper, we introduce Brickify, a visual-centric interaction
paradigm that allows users to express design intent more effectively.
Brickify reifies primitive design elements from reference images
into interactive, reusable design tokens, enabling users to specify
what elements to use and how to construct them towards the desired
effect. We implement Brickify to exemplify how state-of-the-art
AI models can execute users’ intent expressed through Brickify.
In a user study, experienced designers found it easier to describe
visual details and relationships with fewer mental demands through
Brickify. They efficiently explored design alternatives by reusing
tokens and performed refinements more quickly, particularly for

complex designs. Designers preferred Brickify over textual-centric
prompting approach, valuing the sense of control it provided when
they had design ideas in mind. Moving forward, we plan to extend
Brickify to include more element types and operations, broadening
its expressive capabilities. The design implications derived from this
work shed light on future research to design effective interaction
mediums for human-AI co-creation.
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Table 1: The table records participants’ demographic information, including gender, age, occupation, and experiences of graphic

design in years (Design Exp.), self-rated frequency of Generative AI usage (GenAI Freq.), and GenAI tools they frequently use.

ID Gender Age Occupation Design Exp. GenAI Freq. GenAI Tools

P1 F 25 Design New Grad 5 3 Midjourney
P2 M 27 Design Researcher 5 5 Dall-E
P3 F Not Reveal Designer 4 3 Midjourney
P4 M 28 Visual Designer 5 3 Midjourney
P5 F 25 3D Artist 5 5 Dall-E, Midjourney
P6 F 26 Exhibition Designer 4 3 MidJourney
P7 M 27 Graphic Designer 5 2 MidJourney
P8 F 26 UX Designer 5 4 MidJourney
P9 M 25 Technical Aritist 3 3 MidJourney
P10 M 25 Architect 3 2 Dall-E
P11 M 25 Graphic Designer 5 4 MidJourney
P12 M 30 Visual Designer 5 3 MidJourney

Table 2: Rating rubric for the quality of participants’ expressions in terms of the element coverage, clarity of size, position,

style, and color. Raters were rated on a 7-point Likert Scale where 1 means very low and 7 means very high.

Item Score Criteria

Element Coverage
7 All key elements from the target image are included and accurately represented.
4 Three elements are missing.
1 Six or more elements are missing.

Clarity of Size
7 The relative size of all elements is clearly and accurately described.
4 The relative size of around half elements is described, but some ambiguity exists.
1 The size of elements is highly unclear or not described.

Clarity of Position

7 The position of all elements is clearly and accurately described relative to each other.
4 The position of around half elements is described, but some spatial relationships

are ambiguous.
1 The position of elements is highly unclear or not described.

Clarity of Style

7 The global style is clearly and accurately described.
1) Referred to the style of the first and/or the second reference images; or
2) style descriptors such as “minimal/simplicity/geometric/abstract” or similar ones.

4 The global style is described, but it is not apparent how it relates to the target image.
1 The style of elements is unclear or not described.

Clarity of Color

7 The color of all elements is clearly and accurately described.
4 The color of about half elements is described and close to the target colors,

but the rest are ambiguous or missing.
1 The color of elements mostly described far away from the target image or not described.

A APPENDIX

A.1 Implementation Details

The front-end user interface of Brickify was built using React.js
as the primary framework. Most of the design token management
functionalities, such as the creation, deletion, and manipulation,
were implemented using D3.js. The rest of the interface components,
such as the buttons and icons, were taken from the Material UI
library and customized to fit the needs of the application. The server-
side rendering for API calls is handled by fastAPI. The back-end
model fine-tuning and inferences for visual lexicon execution are
written in Python and performed on an 80G A100 GPU.

A.2 Participants’ Demographic Information

Table 1 describes the detailed demographic information of partici-
pants in our user study.

A.3 Rating Rubric for Expressions in Study 1

Table 2 lists the detailed rating rubric for the external scorers in
Study 1 to rate participants’ expressed intention.
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