NeuroSync: Intent-Aware Code-Based Problem Solving via
Direct LLM Understanding Modification

Wenshuo Zhang Leixian Shen Shuchang Xu
The Hong Kong University of Science The Hong Kong University of Science = The Hong Kong University of Science
and Technology and Technology and Technology
Hong Kong SAR, China Hong Kong SAR, China Hong Kong SAR, China
wzhangeb@connect.ust.hk Ishenaj@connect.ust.hk sxuby@connect.ust.hk
Jindu Wang Jian Zhao Huamin Qu
The Hong Kong University of Science University of Waterloo The Hong Kong University of Science
and Technology Waterloo, Canada and Technology
Hong Kong SAR, China jlanzhao@uwaterloo.ca Hong Kong SAR, China
jwangki@connect.ust.hk huamin@ust.hk

Lin-Ping Yuan®
The Hong Kong University of Science
and Technology
Hong Kong SAR, China
yuanlp@cse.ust.hk

Abstract

Conversational LLMs have been widely adopted by domain users
with limited programming experience to solve domain problems.
However, these users often face misalignment between their intent
and generated code, resulting in frustration and rounds of clarifi-
cation. This work first investigates the cause of this misalignment,
which dues to bidirectional ambiguity: both user intents and coding
tasks are inherently nonlinear, yet must be expressed and inter-
preted through linear prompts and code sequences. To address this,
we propose direct intent—task matching, a new human-LLM interac-
tion paradigm that externalizes and enables direct manipulation of
the LLM understanding, i.e., the coding tasks and their relationships
inferred by the LLM prior to code generation. As a proof-of-concept,
this paradigm is then implemented in NeuroSync, which employs a
knowledge distillation pipeline to extract LLM understanding, user
intents, and their mappings, and enhances the alignment by allow-
ing users to intuitively inspect and edit them via visualizations. We
evaluate the algorithmic components of NeuroSync via technical
experiments, and assess its overall usability and effectiveness via a
user study (N=12). The results show that it enhances intent-task
alignment, lowers cognitive effort, and improves coding efficiency.

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’25, Busan, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2037-6/2025/09

https://doi.org/10.1145/3746059.3747668

CCS Concepts

« Human-centered computing — Graphical user interfaces; HCI
theory, concepts and models; « Computing methodologies —
Discourse, dialogue and pragmatics.

Keywords

Human-LLM Alignment, Coding, Bidirectional Ambiguity, Graph
Representation, Distillation

ACM Reference Format:

Wenshuo Zhang, Leixian Shen, Shuchang Xu, Jindu Wang, Jian Zhao,
Huamin Qu, and Lin-Ping Yuan. 2025. NeuroSync: Intent-Aware Code-Based
Problem Solving via Direct LLM Understanding Modification. In The 38th
Annual ACM Symposium on User Interface Software and Technology (UIST
’25), September 28-October 1, 2025, Busan, Republic of Korea. ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3746059.3747668

1 Introduction

Programming is an essential and practical tool for domain users
to solve problems within their areas of expertise. For instance, a
marine biologist might need to analyze large amounts of ocean data
to study climate change or marine ecosystems. These domain users
often lack programming skills and struggle to implement these so-
lutions themselves. Conversational Large Language Models (LLMs),
such as ChatGPT, have become popular among these users [65]
because they allow users to express their problem-solving intents
through natural language prompts and receive automatically gen-
erated code. This lowers the barriers to leveraging programming
to solve problems. Despite this benefit, users frequently encounter
misalignment between their intents and the code generated by
LLMs [52]. This misalignment typically leads to repetitive cycles of
clarification and debugging, causing frustration and task failure.

https://orcid.org/0009-0007-9226-0713
https://orcid.org/0000-0003-1084-4912
https://orcid.org/0000-0002-7642-9044
https://orcid.org/0009-0009-4028-4662
https://orcid.org/0000-0001-5008-4319
https://orcid.org/0000-0002-3344-9694
https://orcid.org/0000-0001-6268-1583
https://doi.org/10.1145/3746059.3747668
https://doi.org/10.1145/3746059.3747668

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Current efforts addressing misalignment generally fall into two
categories. The first body of work focuses on improving user-to-
LLM communication, aiming to help users formulate clear and struc-
tured prompts, such as logically organized coding tasks or pseudo-
code [64, 71]. The second targets LLM-to-user communication, which
seeks to enhance users’ understanding of generated code via in-
teractive explanations and visualizations [65, 66]. While effective,
they are primarily designed to support professional programmers,
who have the expertise to decompose problems into coding tasks
and interpret the generated code. In contrast, domain users lack
the expertise to identify or articulate misalignment through direct
interaction with code. They instead rely heavily on conversational
interactions with LLMs, and often result in notable friction to com-
plete their tasks with current approaches.

To better understand why misalignment exists during the con-
versational process and how it can be effectively addressed, we
conducted a two-phase formative study with six domain users to in-
vestigate this problem. In the first phase, we analyzed human-LLM
conversation histories arising from their daily work. We uncovered
bidirectional ambiguity as a key reason for misalignment: both user
intents and coding tasks are inherently nonlinear and dynamic,
yet must be communicated through linear prompts and code rep-
resentations. Building on this insight, the second phase centered
on finding suitable visual representations for alleviating such mis-
alignment. We explored graph visualizations for non-linear coding
tasks and employed a tech probe to evaluate their pros and cons.

Upon deeper understanding of the bidirectional ambiguity, we
propose a novel human-LLM interaction paradigm called direct
intent—task matching to address this issue (Fig. 1). In traditional
paradigms, LLMs generate code directly from user prompts without
revealing their “internal understanding”. In contrast, our approach
introduces a transparent process that externalizes the LLM under-
standing, which refers to the coding tasks and their relationships.
These tasks and relationships are inferred by the LLM from a user’s
prompt and serve as the basis for the code it generates. This para-
digm allows users to directly interact with the LLM understanding,
diagnosing and correcting any inaccuracies or misalignment, before
code is generated.

We operationalized this paradigm in a proof-of-concept system
named NeuroSync. As shown in Fig. 2, when a user inputs a prompt,
NeuroSync first extracts the LLM understanding, user intents, and
their mappings. It then visualizes the LLM understanding as a
graph and user intents as a tree, allowing users to manipulate and
refine the graph according to their intents visualized in the tree.
Once the user confirms, NeuroSync generates and displays code
guided by the updated LLM understanding, ensuring it accurately
aligns with the user intents. Furthermore, NeuroSync incorporates
two algorithmic components to address two critical challenges
during the process. First, users often lose track of how the LLM
understanding graph evolves while the intent changes, especially
when the graph grows more complex. We thus designed an intent-
aware graph simplication algorithm that can identify the nodes
related to the intent changes, allowing for emphasizing them in
the visualization. Second, extracting LLM understandings and user
intents can be computationally heavy. We then leveraged a novel
distillation pipeline to fine-tune small language models to enable
faster extraction.

Zhang et al.

~~ |terative Prompt

Traditional Paradigm:
J Optimization

Abstract Matching based on

Nonliner 5 Linear 5 Linear 5 & Nonlinear
é Intents Prompts Codes :-3 Tasks

Our Paradigm:

Externalized LLM’s
Direct Intent-Task Matching based on @ In

ternal Understanding

Figure 1: Comparison between the proposed direct in-
tent-task matching paradigm and the traditional paradigm
for user-LLM interactions in programming,.

o Extracted LLM
Understanding

Simplified Graph

Triple | Graph
Extractor Simplifier

Jo

2 Graph Understanding Manipulation Panelj«— 2 Intent-Task Mapping View,

Figure 2: Overview of NeuroSync, a proof-of-concept imple-
mentation of the direct intent-task matching paradigm. Neu-
roSync takes user prompts as input, extracts the LLM under-
standing, enables users to refine this understanding through
graph-based visualizations, and feeds the refined understand-
ing back to the LLM to generate code that more accurately
aligns with user intents.

We carried out technical experiments to assess the graph im-
plications algorithm and the distillation pipeline, revealing the
effectiveness of our designed algorithms. We further evaluated
NeuroSync through a controlled user study with 12 domain users,
compared to a customized baseline. The results demonstrate that
NeuroSync substantially improves intent-task alignment, reduces
cognitive load, and enhances coding efficiency, confirming the ef-
fectiveness of direct intent—task matching as a novel conversational
coding paradigm for non-professional programmers.

In summary, our contributions are threefold:

e We introduce direct intent—task matching, a paradigm that exter-
nalizes LLM understanding, enabling domain users with limited
programming expertise to refine and align coding tasks with
their intents before code generation.
We develop NeuroSync, a proof-of-concept system that imple-
ments this paradigm with interactive graph-based visualizations
and two algorithmic components: a simplification algorithm to
manage graph complexity and a distillation pipeline for faster
extraction of LLM understanding.
o We validate NeuroSync through technical experiments and a user
study, demonstrating its ability to improve intent-task alignment,
reduce cognitive load, and enhance coding efficiency.

2 Related Work

2.1 Human-LLM Alignment in Coding

Human-LLM alignment seeks to ensure that LLM outputs reflect
users’ intentions, particularly in code-based problem-solving sce-
narios [59, 60]. Two key issues are commonly identified: how to help

NeuroSync

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Table 1: Demographics of Participants in the Formative Study. ‘Exp. denotes their user experience within their respective
domains. ‘Task’ indicates the specific tasks performed according to their provided dialog history. ‘Rounds’ represents the

number of conversation rounds conducted.

ID Domain Exp. Task Interaction Mode/LLM Name Rounds
P1 Design (Ph.D.) 1.5 Years Web article crawlers with python Coding Mode/Qwen 11

P2 Electric Grid (UG) 0.5 Years Signal analysis with Matlab Chatting Mode/Doubao 13

P3 Clinical Medicine (Ph.D.) 6 Years Medical image processing and classification with Python Chatting Mode/Kimi 21

P4 Theory Math (Ph.D.) 3 Years Table drawing and adjusting with Latex Coding Mode/Qwen 8

P5 Policy Making (M.S.) 1 Year Interview data analysis and visualization with python Coding Mode/GPT-40 13

P6 Economics (M.S.) 5 Years Financial data analysis and visualization with python Data Analysis Mode/GPT-40 29

users formulate effective instructions, and how to assess whether
the generated outputs match their intents [43].

Prompt engineering is the primary approach for improving align-
ment in conversational coding systems. Sarkar et al. [41] highlight
users’ iterative refinement of prompts, describing this iterative pro-
cess as abstract matching, which reflects Norman’s gulf of execu-
tion [17]. In addition to this, users also encounter a related cognitive
barrier known as the “gulf of envisioning” [52], where articulating
clear tasks and anticipating model outputs is challenging. To bridge
this cognitive gap, prior works have proposed various strategies
such as in-context learning [7, 26], structured decomposition ap-
proaches (e.g., Al Chains [64], CoLadder [71]), and the feedforward
mechanism [31, 46, 58]. Among them, CoLadder [71] uses unidi-
rectional, monologue-driven interaction and content in “block” or
“chain” Uls [64] are generated statically rather than automatically
adapting to users’ changing intent during usage, while NeuroSync
is used in a bidirectional dialogue scenario and generates editable,
simplified graphs on the fly based on dynamic user intents in each
interaction round.

Feedforward specifically anticipates outcomes before actions
occur by prompting the model to generate interactive previews,
such as predicted visual outputs, code suggestions, or descriptive
summaries, based on user input. These previews help minimize
unnecessary clarification rounds, bridge abstraction gaps between
users and Al [28, 50, 56], and support users’ metacognitive reason-
ing [55]. Compared to existing work [28] that directly presents real
LLM-generated code directly as feedforward information [28], Neu-
roSync externalizes the LLM’s internal understanding—the tasks
and their relationships that are implicitly encoded in the generated
code—before code is generated. This reduces the cost of iteration
and ensures consistency between preview and final output via
knowledge distillation [11].

Alignment and intent specification challenges are also well-
studied in program synthesis, where the focus has shifted from
complete formal specifications to interpreting ambiguous, high-
level user intents. To address this ambiguity, interactive methods
refine intent through user feedback, such as selecting distinguish-
ing inputs to disambiguate candidate programs [22, 75], or through
multi-turn conversational dialogues [33]. For complex tasks, Gul-
wani’s work in programming-by-example introduced divide-and-
conquer strategies [12], recursively partitioning examples, synthe-
sizing distinct programs for subsets, and composing results with
conditionals. More recently, reinforcement learning has been used
to align programs with functional correctness by rewarding models
for passing unit tests [73]. A key distinction lies in the abstraction

level: traditional pre-LLM methods emphasize code-level interac-
tions (e.g., input-output examples [13, 37], execution traces [6, 49],
or program sketches [51]), whereas NeuroSync operates at the task
level, externalizing high-level LLM tasks before code generation.

Current research also highlights the cognitive load associated
with comprehending and debugging LLM-generated code [1, 32, 71].
Approaches such as real-time explanations [9, 66] and visualization-
based presentations [65] have been proposed to ease understanding.
Unlike these post-generation methods, NeuroSync intervenes be-
fore code generation, explicitly visualizing tasks and their relations,
thus reducing cognitive complexity at an earlier stage.

2.2 Graph-Based Interfaces for LLM Interaction

Conversational LLM interfaces predominantly adopt linear interac-
tion flows, where user prompts and model responses are serialized
in turn [65]. While simple, such interfaces struggle with complex
tasks due to high cognitive load [65], versioning issues [21], and
limited user control [30, 70]. To overcome these limitations, re-
cent systems explore alternative interaction paradigms for complex
tasks like creative design [53], exploratory analyses [54], and data
analysis programming [65].

Graphs naturally represent relational structures via nodes and
edges [39], with diverse visualizations like node-link diagrams [18,
48] and hierarchical trees [74]. Recent studies have leveraged graph-
based Uls to enhance LLM-driven management and logical reason-
ing [67]. For instance, Kim et al. [21] abstract writing processes into
graphs to facilitate versioning; WaitGPT [65] visualizes analysis
tasks via data-flow graphs; Promptchainer [63] and GoT [2] use
graph representations to support multi-step task decomposition.
Moreover, tools like Low-code LLM [4] and CoLadder [71] employ
graph interfaces to directly organize intents and code snippets,
improving alignment and clarity.

Recognizing these advantages, NeuroSync adopts graph-based
visualizations to represent coding tasks and their relations. While
existing studies focus mostly on static graph visualizations and
cognitive load management [72], NeuroSync introduces dynamic
graph simplification that automatically adapts graphs in real-time
according to evolving user intents, reducing users’ cognitive burden
during multi-turn interactions.

2.3 LLM Reasoning and Task Structuring

Recent advances in applying LLMs to reasoning-intensive tasks
(e.g., programming [23], mathematics [16]) have identified lim-
itations in reasoning capabilities of basic LLM models [10]. To

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

enhance reasoning, researchers proposed techniques like prompt
tuning [29, 40] and structured reasoning prompts such as Chain-of-
Thought (CoT) [62], Least-to-Most (L2M) [77], and Tree-of-Thought
(ToT) [69]. These methods decompose reasoning into intermediate
steps, enhancing model performance on complex problems.

CoT decomposes complex problems into linear sub-steps, which
is suitable for problems with sequential logic but has limited ability
to support nonlinear reasoning [3]. In contrast, methods such as
L2M [77] incrementally introduce complexity, avoiding premature
limitations in thought exploration. Variants like Path-of-Thought
(PoT) [5], Concept Composition (CoC) [24], and Aggregation-of-
Thought (AoT) [42] further optimize efficiency and performance.
Meanwhile, ToT explores choices via tree-structured decision points,
supporting complex multi-step tasks, with Graph-of-Thoughts
(GoT) [2] providing an aggregated state exploration approach.

These approaches aim to improve internal LLM reasoning. In
contrast, NeuroSync externalizes and exposes the LLM’s inferred
task structure—what we term the model’s internal understanding—
before execution. While different in purpose, both lines of work
reflect the importance of intermediate structure in aligning model
behavior with user intent. In NeuroSync, this structure serves not
only as guidance for code generation but also as a manipulable
medium for user-LLM alignment.

3 Formative Study

To examine the causes of human-LLM misalignment in conversa-
tional coding and inform system design, we conducted a formative
study with domain users who have little coding experiences. The
study included (1) interaction history analysis and interviews to
uncover misalignment patterns, and (2) semi-structured interviews,
informed by a literature review, to explore effective representations
of graphs for conveying code tasks and user intent.

3.1 Study 1: Understanding Human-LLM
Misalignment

3.1.1 Participants and Data. We invited six participants (P1- P6)
to conduct retrospective analysis. They were from diverse domain
backgrounds with varying levels of programming experience and
education background (Tab. 1). Each provided full records of prior
real-world interactions with LLMs while performing coding tasks
for problem-solving. On average, each task had 15.83 interaction
rounds (SD = 7.76) per session, spanning four LLM platforms and
multiple programming languages (e.g., Python, MATLAB, LaTeX)
under different LLM modes.

To analyze the reasons behind misalignment during conversa-
tional code generation, we conducted an analysis on users’ inter-
action history and observed that the phenomenon of LLMs failing
to accurately generate code aligned with user intent is widespread
(6/6) and leads to a number of useless interactions.

3.1.2 Analysis Protocol. We analyzed participants’ interaction his-
tories with LLMs using an open-coding approach [20]. Two authors
independently coded the data and iteratively refined the codes until
reaching agreement. The codes were then grouped into themes,
which were carefully reviewed and discussed to identify the key
findings of the study.

Zhang et al.

O Nonlinear
M Intent

Round t

—— Linear Prompt <H Linear Code —) N°Tna|i5"kea" @

o
7 Write a python crawler to crawl web sk Graph
articles based on ...
Get web page

. content using
Craviweb # def request_HTTP(): 57} HTTP request
articles .

def parsing_html(): Parsing with
BeautifulSoup

def extract_text_save():

Find allimages ~ Extract text

Savetext Saveimages # def locate_images(): in html and save

def download_imgs(): Download
allimages

Round t+1

Jo

Get web page
57 content using
HTTP request
| want to save paragraphs and |
pictures in order in a markdown. Parsing with
BeautifulSoup
CEIRTD # def request_HTTP(): P

articles

Jo

Find all images
def parsing_html(): in html

Save text Save images # def locate_images(): one mage

Extract text

Download a and image

image -
Savein . Fnden
Sequence # def save_in_sequence

def extract_text_save(): s
ave in
Wi Sequence

def download_imgs(): pdated Task Grapl

Figure 3: Illustration of bidirectional ambiguity.

We first annotated each interaction round with: (1) User intent,
inferred through participant clarification and interaction review;
(2) Prompt quality, evaluated by independent raters to assess how
well the prompt conveyed the intended task; (3) LLM-executed tasks,
extracted from generated code and mapped to user intent.

Building on these annotations, we further identified potential
misalignment points—rounds where user intent remained stable but
the generated code deviated from the intended task. This process
allowed us to trace breakdowns across turns and identify underlying
causes of intent-task misalignment.

3.1.3 Findings. Bidirectional ambiguity is a major cause of
human-LLM misalignment in conversational coding tasks.
During the conversation with LLM for coding tasks, ambiguity
is bidirectional: User-to-LLM: Users find it challenging to clearly
express their needs and the information required by the LLM in
their prompts. For example, converting tree-like intent in Fig. 3
into prompt will lose direct structure and cause ambiguity. LLM-to-
User: Users struggle to understand the specific tasks and execution
logic embedded in the code, making it difficult to provide precise
modification requests. For example, in Fig. 3, users need to recon-
struct codes and code relationships by themselves, which is difficult
and low ability of understanding code will lead to ambiguity. This
bidirectional ambiguity compounds over turns, causing LLMs to
produce code misaligned with user intent. As LLM capabilities
grow and inference slows, the cost of these ineffective interactions
increases.

User-to-LLM Ambiguity. Users often struggle to express their
intent clearly due to three key issues: (1) Nonlinear intent loss: User
goals are typically hierarchical and evolve over time. However,
when mapped into linear prompts, this structure is flattened, lead-
ing to semantic ambiguity and loss of global intent. (2) Contextual
omissions: Prompts often lack critical information due to delayed

NeuroSync

Table 2: Comparison of different task representations.

Easy to Layman-

Representation Method Intuitive Modify friendly
Task Flow Diagram (Graph) [57] v v
Pseudocode [34] X X X
UML Activity Diagram [8] v v X
Decision Table [38] X X X
Data Flow Diagram [65] v v X
Natural Language Description X X v

articulation and limited user memory. LLMs, with constrained con-
text windows, may miss important prior requirements. (3) Vague
modification guidance: Domain users, unfamiliar with code inter-
nals, frequently describe desired outcomes without specifying what
to change. This hampers LLMs to revise code accurately.

LLM-to-User Ambiguity. LLM-generated code embeds multi-
ple interrelated tasks, often structured nonlinearly. Users with lim-
ited programming experience face difficulty in unpacking this struc-
ture, identifying task boundaries, and understanding the model’s
reasoning. As a result, they may overlook unintended logic, misin-
terpret execution flow, or fail to spot partial completions, making it
hard to issue precise follow-up instructions. This impairs both com-
prehension and correction, especially in multi-round interactions
where misunderstandings accumulate.

3.1.4 Implications. To reduce LLM-to-user ambiguity, systems
must present model-inferred tasks in a more interpretable form,
allowing users, especially those with limited coding expertise, to
understand and guide code generation without reading raw code.

3.2 Study 2: Exploring Graph-Based
Representations for Code Tasks

As discovered in Study 1, prompts and code presented in linear
forms do not effectively convey non-linear intents or help users
understand non-linear code tasks involved in multiple rounds of
interactions. Therefore, in Study 2, we aim to explore whether
there are better representations that improve the communication
of non-linear coding tasks between users and LLMs.

3.2.1 Representation Survey. We first conducted an expert-driven
ideation to enumerate common formats, and then verified each
through a focused review of recent representative papers. This
approach allowed us to capture a broad spectrum of practical repre-
sentations without relying on unfocused keyword searches. Results
are shown in Tab. 2. Among these, graph-based structures (e.g.,
task flow graphs) emerged as intuitive, editable, and directly tied to
task logic. While promising, we also observed that as programming
intent evolves, task graphs can become increasingly complex, high-
lighting the need for intent-aware abstraction and scalable visual
structures.

3.2.2 Graph-Based Two-stage Extractor. To evaluate the feasibility
of graph-based representations in real-world interactions, we devel-
oped a prototype tool that extracts task graphs from user-LLM in-
teractions. The probe processes both initial prompts and follow-up
inputs to incrementally build and update task-level representations
(Fig. 4). It supports:

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

& UserInput Prompt Structure (DeepSeek R1)

"Help me to scrape web articles.” Your task is to write code that assists a user in
solving the problem based on their input.

&, User Prompt

@ Chat history

Prompt Structure (R1/Qwen-max)

Step 1: Code Generation

Intermediate content
Code and code description in markdown format
Your task is to generate a task graph from the
code, outlining the tasks and their relationships.
& Current and previous user prompts
Intermediate content
[EA Task graph from the last round

Step 2: Task Extraction

(=] Task graphs
Task Graphs

Figure 4: Two-stage extractor. Graph-based task representa-
tion will be extracted after the code is generated based on
the user prompt.

o Task Graph Initialization: At the first interaction, the probe ana-
lyzes the user’s prompt and the LLM’s response (codes) to identify
and structure basic tasks, subtask groups, and task dependen-
cies behind the codes. The result is a hierarchical graph, where
nodes represent tasks and edges denote logical or sequential
relationships.

o Task Graph Refinement: In subsequent turns, the graph is incre-
mentally updated based on new prompts, responses, and histori-
cal context. Refinement includes task additions, deletions, and
updates, especially around variable usage and logic changes, to
ensure consistency and traceability across rounds.

Task graphs are rendered as part of the conversation interface
and stored for further review. However, during early trials, we
noted that API latency became a bottleneck in multi-turn settings,
pointing to the need for lighter-weight implementations.

3.2.3 Study Protocol. To assess the effectiveness of task graphs,
we conducted semi-structured interviews with the same six in-
terdisciplinary users in Study 1 (P1-P6) and used an open-coding
approach [20] for data analysis. We first extracted samples from
three key stages of user-LLM interaction: initialization, intent
progression, and completion. Each sample included the prompt,
LLM-generated code, and the corresponding task graph, presented
sequentially to participants. The procedure includes three stages.
In Stage 1, participants reviewed only the generated code and de-
scribed their understanding and obstacles. In Stage 2, they examined
both the code and task graph, comparing the ease of task compre-
hension with and without the graph, and offered suggestions for
improvement. In Stage 3, we showed consecutive code—graph pairs
from two interaction turns and asked participants to identify task
changes, misunderstandings, and strategies for tracking differences.
Interviews focused on two core questions: (1) Do graphs improve
task understanding compared to directly reading code? (2) What
features are needed to support effective graph interpretation and
updates? Throughout the process, we observed participants’ behav-
iors in navigating graph changes and concluded with a reflection
session to gather feedback on cognitive load, update clarity, and
expectations for graph design.

3.24 Findings. All participants reported difficulty in understand-
ing raw code due to limited programming knowledge. Key barriers
included misalignment between linear code flow and branching task
logic (P1, P4, P5), and high cognitive load from memorizing variable
usage and logic transitions (P3, P6). In contrast, task graphs were

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

consistently viewed as more helpful. Participants highlighted two
key benefits: (1) Improved task comprehension through clear visu-
alization of task dependencies and subgoals (P1, P3, P4, P5, P6); (2)
Enhanced efficiency in locating key logic points and understanding
overall code purpose (P1, P3, P5).

However, as interaction rounds increased, graph complexity
grew and negatively impacted interpret ability. While some partici-
pants were able to reconstruct evolving task intents (P1, P2, P5, P6),
others reported confusion or errors (P3, P4). To address this, users
suggested: (1) Providing abstracted overviews with zoom-in capa-
bilities (P1-P6); (2) Supporting node-level exploration for localized
inspection (P1, P4); (3) Grouping and annotating task clusters to
clarify hierarchy and dependencies (P2, P3, P5, P6).

3.2.5 Implications. Use graph-based representations to externalize
LLM coding tasks and tree structures to model user intents, en-
abling fine-grained alignment. To ensure responsiveness, employ
lightweight feedforward representations and dynamically abstract
graph complexity based on evolving user intent.

3.3 Design Considerations

Based on the findings from the two phases, we derive several design
considerations:

DC1: Support Bidirectional Disambiguation through In-
tent and Task Externalization. To mitigate user-LLM misalign-
ment, systems should support bidirectional disambiguation. On
the user-to-LLM side, this requires making user intent explicit and
editable, preserving task structure and global context beyond linear
prompt input. On the LLM-to-user side, the model’s inferred cod-
ing tasks should be externalized in interpretable forms, enabling
non-programmers to understand, verify, and adjust the system’s
interpretation without reading raw code.

DC2: Enhance Fluid Modification on Tasks to Align In-
tent in Multi-round Interactions. Matching intent and tasks in
conversational systems often requires multiple rounds, but high
latency can disrupt users’ focus, making it difficult to think fluidly
and modify tasks effectively. To enable effective intent-task align-
ment, systems should support low-latency interactions. However,
extracting LLM understanding and user intent can be computation-
ally expensive, especially when task structures grow in complexity.
Therefore, the system should employ lightweight yet accurate feed-
forward mechanisms that allow for rapid generation and update of
intermediate representations.

DC3: Leverage Structured Graph Representations with
Intent-Aware Abstraction. Graph-based representations are ef-
fective for externalizing the LLM’s task structure, while user intent
can be modeled as a tree, a specialized directed acyclic graph re-
flecting hierarchical goal decomposition. To manage complexity
and cognitive load, systems should dynamically abstract or simplify
task graphs based on evolving user intent, enabling scalable yet
focused interaction across varying levels of detail.

4 Direct Intent-Task Matching

Informed by DC1, we propose a novel human-LLM interaction
paradigm called direct intent—task matching (Fig. 1). The paradigm
externalizes and enables direct manipulation of the LLM under-
standing to support bidirectional disambiguation.

Zhang et al.

Specifically, inspired by the concept of user understanding, where
humans develop their interpretation of LLM outputs, we suggest
that LLMs form a kind of understanding of user inputs. We call
this LLM understanding, which refers to the tasks and their rela-
tionships implicitly encoded in the code that an LLM is expected
to generate based on user prompts. By exposing this LLM Under-
standing prior to code generation, users can interpret the intended
tasks without reading raw code, reducing LLM-to-user ambiguity.
Moreover, since the structure is editable, users can directly modify
task representations, aligning them with their actual intent. This
feedforward representation not only improves transparency but
also serves as a lightweight, structured input alongside prompts,
helping to resolve user-to-LLM ambiguity.

Direct Intent-Task Matching is a process that allows users
to engage directly with the LLM understanding before code is gen-
erated to address bidirectional ambiguity. Instead of relying on
traditional prompt iteration or adjusting mismatched outputs after
generation, users can iteratively refine how the LLM interprets
their intent into specific coding tasks. This refinement resolves
misalignments early in the process, ensuring the LLM’s under-
standing evolves dynamically with each adjustment. By feeding
this corrected understanding back into the LLM, users can achieve
more efficient, interpretable, and intent-aligned code generation,
streamlining the path from intent to output.

5 NeuroSync

We implement the direct intent—task matching paradigm into a
proof-of-concept system named NeuroSync (Fig. 2).

5.1 Overview

NeuroSync operates in a multi-stage interaction loop. After the user
submits a natural language prompt, NeuroSync extracts a structured
representation of the LLM understanding (i.e., the predicted code-
level tasks and their relationships), alongside the user’s intent and
their mappings. These representations are then externalized in
visual forms: the LLM understanding is shown as a graph based
on our formative study 3, while the user intent is presented as a
hierarchical tree structure based on previous research [71]. This
visual design allows users to directly inspect, correct, and confirm
task-level alignment, addressing DC1 by supporting bidirectional
disambiguation, as users no longer need to guess what the LLM
will do, nor must they articulate intent solely through prompts.

To maintain low-latency interaction during multi-turn ses-
sions, especially given the cost of extracting structured task rep-
resentations, we implement a lightweight knowledge distillation
pipeline 5.3.2. This pipeline fine-tunes a small language model
(SLM) to extract LLM understanding efficiently, based on training
data generated by a multi-agent simulation system 5.3.3. This de-
sign meets DC2, ensuring that feedforward task information can
be presented quickly and accurately without introducing delay or
performance bottlenecks.

To support effective task visualization and user control, Neu-
roSync adopts graph-based representations and integrates an intent-
aware graph simplification algorithm 5.4 that dynamically adjusts
the complexity of the understanding graph according to recent

NeuroSync

= = @ & www.url.com

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

('|||' LLM Conversation Panel

‘jfﬁ Understanding Graph Manipulation Panel

O

~— Help me write a python code crawl Medium article.

Certainly! Here's how you can approach scraping Medium article using Python. Below is
a simplified example script demonstrating how to use Python and “selenium’ to access

an article page and extract text content:

pip install selenium
Here's a basic Python script example:

from selenium import webdriver

from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By

from selenium.webdriver.chrome.options import Options

Set up Chrome options
chrome_options = Options()
chrome_options.add_argument("-headless”) # Runin headless mode

... (Other Code)
Extract the article title and content

title = driver.find_element(By. TAG_NAME, 'h1').text
content = driver.find_element(By.ID, js_content').text

print(f"Article Title: {title}")

Replace ‘/path/to/chromedriver” with the actual path to your ChromeDriver executable,
and replace "https://mp.weixin.qq.com/s/your_article_id"* with the URL of the WeChat in the article

article you wish to scrape.

Remember, scraping should always be done ethically and legally. Unauthorized scraping
of WeChat or any other platform may violate their terms of service and could result in

penalties or blocked access.

O Next requirements given by user for further
) intention on code.

@ T

First, make sure to install *selenium’ and have a browser driver (like ChromeDriver)

T Please help me save the title, body and pictures in the
original text in the order they were in the original text.

Initialize the crawler
configuration and create
the request header

Parse the web article
interface using
beatifulSoup .
Content and postion information
Content S ot P
Extract the title of each ~ Extract text of Extract the article Extract other
level of the article the article and cover image and images and their
saveittoafie save it to the cover ' location in the text

Extract the title and Save the title, text,
@ body in order and and picture name of
save them as txt files each level in order

LjL_ﬁ Intent-Task Mapping View

Intent Tree View
Process the text in the article
Tag different level headings

®
Process the text Tag normal text y
Process the image in the article

Save cover image
Save other image
Save title, text and img name

@
Save cover image e

®
Save other image

Extract other
images and their
Save the title, text, location in the text
and picture name of
each level in order

Figure 5: Interface of NeuroSync. Users interact with the LLM through Panel A (LLM Conversation Panel). Before each LLM
response, the system generates an LLM understanding graph in Panel B (Understanding Graph Manipulation Panel) and a
simplified version in Panel C (Intent-Task Mapping View). Users can edit the task graph in Panel B and explore task structures

and intent alignment via Panel C.

intent updates. This design directly responds to DC3, enabling scal-
able interaction through focused abstraction: users can access both
global task structure and local task details, and selectively expand
or highlight task components as needed.

5.2 Usage Scenario

5.2.1 User Interface. Asshown inFig. 5, NeuroSync’s user interface
consists of (A) LLM Conversation Panel, (B) Understanding Graph
Manipulation Panel, and (C) Intent-Task Mapping View.

(A) LLM Conversation Panel. It functions like a standard LLM
interface, where users input prompts and receive responses. How-
ever, unlike traditional systems that rely solely on text prompts,
NeuroSync also incorporates the current version of the Understand-
ing Graph into the generation process. Users can iteratively refine
the graph without submitting a new prompt, enabling multiple
rounds of graph-guided responses under the same user intent.

(B) Understanding Graph Panel. Before each LLM response,
the system generates a task-level Understanding Graph based on
the user’s prompt. Users can inspect and directly edit the graph

to correct or clarify task understanding, including two levels of
modification:

o Graph-Level Modification: Users input natural language instruc-
tions into a modify block, and NeuroSync applies large-scale
structural edits via the LLM APIL This is ideal for reorganizing
major task flows or introducing new task groups.

o Node-Level Modification: Users can manually adjust nodes and
links, i.e., adding, deleting, or editing task descriptions, enabling
precise control over subtasks.

(C) Intent-Task Mapping Panel. To reduce cognitive load,
this panel presents a simplified view of the Understanding Graph
aligned with the user’s intent. It includes two components:

o Intent Tree View: A hierarchical tree representing the user’s
structured goals.

o Simplified Understanding Graph: A filtered version of the full
graph, generated using our intent-aware graph simplification
algorithm (Sec. 5.4). It highlights nodes directly relevant to the
current intent and merges irrelevant ones for clarity.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Zhang et al.

I Code Generated

Python code scrawl web article: save titles, text and images in original order locall
7

3 Panel B&C After Graph Level Modification 4 Panel B&C Using Exploration Function

- Initialize crawler
Al config and create
X the request header

B1

Parse the web article content and

User prompt:
Help me write a python code crawl medium article
Vv 1 Panel B&C After First Round Input 2 Panel B&C After Node Level Modification
Save the title, body and pictures in the
original order A"/}
Initialize crawler Al
A1 config and create the
request header . Contentand
Extract the title ,_Content B1 position |
| Parse the web article of each level of Content information
using beatifulSoup the article
: Content content C°f!te"‘ Ff;d . Extract the text Cc3
onten position information " i Content
Cliract the text | C2 T'":"O‘:at‘on oo(fh;??e:: ticle onten
of the article and Extractcover C3 and text mn
saveittoafie = imageandsaveit Download V | Extract the title
images .
Check if the = S and body in order Cc2
content is safe BN and save them
H
Initialize crawler N i
A1Config and create the Intent Tree View Intent Tree View
Wiite python to do web page crawing Wit python to do web page crawing
z request header Process the text n the article A1 rocess the text n the artcle
8 css the image in the article Process the image in the aricle
s B, _ ove conr et ‘Sove covr mage
2 arse the web article Save other image ave other image
g using beatifulSou
r;n' - 2 Content and v B1
% ,*CC’"'E’“ Content “osition information
[xtract the text ™ e yiract cover |C3
§ ofthearticleand jo0e g save it | Download Cc1 c2 c3
3 save it to a file images
#®
1 Check if the [} D1
content is safe

using beatifulSoup position
Content information
Extract the text Extract other
oftheartice ~ C2 imagesand their
and save it location in text

Extract other

(o) c1 c2 images and their
location in the text Extract the title

Vil of each level of
D the article
D2 Save the title, text, !
and picture name of
each level in order

Content
Content

Extract the title and
body in order and
save them as txt files

Save the title, text,
and picture name of
each level in order

Intent Tree View

Wite python to do web page crawiing
rocess the text in the article

Intent Tree View
Wite python to do web page crawling
Process the text in the arlicle
Tag different level headings
Tag normal text
Process the image in the article

Process the t. IX
Process the text in the article

in the article Process the image in the article

Mark the location of each image
‘Save title, text and img name in order

Mark the location of each image

Save cover image S i, textand img name norcer

Save other
image

Extract other
Save the title, text, | images and their
and picture name of location in the tex VIl
each level in order

Extract other
images and their
location in the text

Save the title, text,
and picture name of
each level in order

Figure 6: User interactions with NeuroSync. After entering a prompt in Panel A, users engage in a four-stage process of task
exploration and modification in Panels B and C prior to code generation. (1) Upon prompt submission, an initial understanding
graph is shown in Panel B, along with a simplified version in Panel C, where nodes associated with intent changes are
highlighted. (2) Users can interactively explore the graph (e.g., via dragging) and perform fine-grained node-level edits, such as
modifying descriptions or adding nodes. (3) Alternatively, users may issue natural language commands to modify the graph.
These updates are reflected in both panels, again with intent-relevant nodes highlighted. (4) Users may also click on merged
nodes in Panel C to focus on corresponding subgraphs in Panel B. Once confirmed, the updated understanding is passed to the
LLM for code generation. Selected nodes are zoomed in for clarity.

Panel C updates when a new prompt is submitted or when ma-
jor edits occur in Panel B. Clicking a merged node highlights its
corresponding region in the full Understanding Graph for focused
inspection.

5.2.2 Walkthrough Example. Consider Kelly, a journalism student
developing a web-based system for monitoring public opinion. To
support her project, she needs a web crawler capable of extracting
article content; however, she lacks the programming expertise to
implement one herself. As a result, she turns to NeuroSync for
assistance.

Upon launching the LLM interface with NeuroSync enabled,
Kelly is presented with a standard conversation panel (see Fig. 5A),
accompanied by the Understanding Graph panel (B) and the In-
tent-Task Mapping panel (C). Kelly enters her request in the in-
put field of Panel A, for example: e.g., “Help me write a Python
script to crawl media articles”. Unlike traditional LLM systems, Neu-
roSync immediately visualizes its inferred understanding in Panel B
(see Iin Fig. 6) and displays structured user intent in Panel C (Il and
IV in Fig. 6). The system decomposes the request into a sequence
of subtasks—such as “Initialize the crawler configuration and create
the request header” and “Download images”—and organizes them
as a task flow diagram (see I in Fig. 6). Panel C shows the same
graph structure, highlighting all task nodes (see II in Fig. 6) and
presenting the overall intent tree (see IV in Fig. 6).

Kelly interacts with the Understanding Graph by dragging nodes
to explore its structure and quickly identifies a misrepresen-
tation of her original intent (see IIl in Fig. 6). Specifically, she
notices that the graph includes a task related to content safety check-
ing, which is outside the scope of her current objective. Instead,
her goal is to distinguish between different title levels and save
them alongside the main article text. To achieve this, she deletes
the security-checking node and adds a new node labeled “Extract
the title at each level of the article” in Panel B. To accommodate
this addition, she re-names the existing node “Extract the text of
the article and save it to a file” as “Extract the title and body in order
and save them as TXT files”. She then creates appropriate links to
integrate the new node into the existing task flow. These operations
are shown in V in Fig. 6.

After completing the initial modifications and finalizing the
graph as shown in Panel B of Region 2, Kelly encounters a new
challenge: she wants to save the titles, body text, and images from
the original webpage in their original order. However, she finds
this task complex and is uncertain how to proceed. She enters her
revised requirement into the modification input block in Panel B
(see VIin Fig. 6) and clicks Modify. In response, NeuroSync automat-
ically updates the Understanding Graph by adding two new nodes
(highlighted in yellow in VII in Fig. 6) and generates an updated,
simplified graph along with a highlighted intent tree in Panel C
(VIIL in Fig. 6). To reflect the refined goal, NeuroSync merges rele-
vant nodes in the Understanding Graph based on high-level intent

NeuroSync

Intent Tree Mapping LLM Understanding Graph
Crawl web Create crawler Create a save
articles head directory

Save image
Save in with image
sequence location
|
Save titles SER

text

Figure 7: Illustration of a triple, which consists of an intent
tree, an LLM understanding graph (i.e., a task graph generated
prior to code generation), and their mappings. Each node in
the intent tree may correspond to one or more nodes in the
LLM understanding graph. The figure highlights the map-
pings for two example intent nodes.

tree components such as “Process the text in the article” and “Save
cover image”, selectively highlighting and retaining only the nodes
directly associated with the updated intent.

Finding it challenging to interpret the entire Understanding
Graph, Kelly clicks the extension button to focus on a specific sub-
intent: “Process the text in the article” (IX in Fig. 6). In response, Panel
B highlights the subset of nodes related to this intent, allowing her
to concentrate more effectively on the text processing components
(X in Fig. 6). Once satisfied with the revised structure, Kelly clicks
Confirm Graph, prompting the LLM to generate code aligned with
her refined understanding as represented in the graph.

Compared to her prior experiences—which typically required
seven to eight rounds of back-and-forth interaction—Kelly is now
able to complete the task in just one or two iterations. Minor errors
are easily addressed through a quick update to the graph, followed
by code regeneration.

5.3 Triple Extractor

The Triple Extractor updates the LLM understanding, user intent,
and their mappings each time a domain user inputs a prompt in the
LLM Conversation Panel. The extraction process must be efficient
to reduce the delay perceived by users (DC2).

An intuitive but slow implementation is the two-stage extractor
used in our formative study (Fig. 4). While this approach achieves
high accuracy, it requires two rounds of computationally expensive
LLM calls and generates many intermediate tokens. To improve
efficiency, we construct the Triple Extractor using a fine-tuned
Small Language Model (SLM) that can extract triples in a single step
while maintaining sufficient similarity to those extracted by the two-
stage extractor, i.e., faithful reflection of intent, understanding and
their mapping [19]. This is achieved by a novel and cost-effective
triple distillation pipeline (Fig. 8) that aligns the SLM with the LLM
using data synthesized by a multi-agent system (Fig. 9).

5.3.1 Triples. For clarity, we first define a unified structure, re-
ferred to as triples, as follows:

triples := {Intent Tree,Understanding Graph,Mapping} (1)

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

— LLMg Generate - y LIMg Extract

eacher Pat

2 User Prompts Triple;

Triple/

Triple,_, Extract

Student Path

Figure 8: Triple Distillation Pipeline. It aligns the SLM in the
student path with the two-stage extractor in the teacher path.
The SLM can extract triples directly from prompts, bypassing
intermediate code generation to speed up triple extraction.

e Intent Tree. A hierarchical structure expressing the user’s
goal decomposition. The root node represents the high-level
objective, while child nodes define sub-intents and operational
details. This tree explicitly externalizes user intent in a form
suitable for reasoning and alignment (Fig. 7 left).

e Understanding Graph. A directed node-link diagram represent-
ing the LLM’s internal task structure. Each node corresponds
to a discrete subtask (e.g., creating directories, validating input),
and edges encode dependencies or data flow between them. This
graph abstracts execution logic at the task level, without binding
to specific code implementations (Fig. 7 right).

e Mapping. A cross-structure alignment that links each intent
node to a corresponding node or subgraph in the Understanding
Graph. This mapping ensures semantic consistency between
user goals and generated code tasks, and supports graph-level
operations such as task expansion, simplification, and selective
editing based on user intent (Fig. 7 middle).

5.3.2 SLM Fine-tuning with a Distillation Pipeline. To address the
inefficiency caused by two-round LLM calls, we follow the common
practice of fine-tuning existing SLMs for specific coding tasks. We
aim to fine-tune an SLM that can (1) generate triples from prompts
in a single step, bypassing the need for intermediate code genera-
tion, and (2) ensure that the triples extracted directly from prompts
align closely with those produced by the two-stage extractor, which
depends on intermediate code. The error propagation during multi-
round interaction will be mitigated by the self-healing ability of
the fine-tuned SLM and users’ direct modification.

We draw on knowledge distillation [11], a model compression
technique that uses a teacher-student framework to transfer knowl-
edge from a large, complex model (the teacher) to a smaller, more
efficient model (the student). Knowledge distillation is well-suited
for our goals because it enables the SLM (student) to replicate
the outputs of the two-stage extractor (teacher) while being faster.
Specifically, our pipeline has a teacher path and a student path,
utilizing three models (Fig. 8): a small language model (SLM), a
conversational language model (LLM,), and a triple extraction lan-
guage model (LLM,). For clarity, we define the following symbols:
triples Tz, prompts P, and intermediate code Cy, where ¢ represents
different rounds.

Teacher Path. We embed the two-stage extractor (Fig. 4)
into the teacher path. First, intermediate code is generated by
LLM,, and then triples T; are extracted using LLM,, based on

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

General task description }—
“Write a python crawler to crawl the
content of web articles”

€ Agent: Intent Tree Constructor

Intent Tree
Detailed generated intent tree(AlI[NOT

COMPLETED])

v

v

& Agent: Domain User Simulator

Zhang et al.

Input Example for Random Intent Tree generation

INPUT: General problem description like “scrape web articles and organize them”

ACTIONS:

1. generate semantically equivalent variants: like Grab the latest articles from the web and process the pictures
and text in them to save locally

2. Broken down descriptions into subtasks such as data collection, text extraction, and media download.

3. Reorganize these subtasks into given intent tree format

RESPONSE: A hierarchical set of subtasks, which forms an intent tree like: {scrape web articles[NOT COMPLETED]:
{process text[NOT COMPLETED]:{}, process image[NOT COMPLETED]:{save cover image[NOT COMPLETED]:{}}}}.

Input Example for Domain User Simulation

Prompt
I need you to help me write a Python
program that can process my MP3 files. Can
you write it?

§ Agent: Code Generator

INPUT: Intent tree with sub-tasks progress status like {scrape web articlesflCOMPLETED]:{process text{COMPLETED]:
{}, process image[COMPLETED]:{save cover image[NOT COMPLETED]:{}}}} and code running report(if exists)

Actions:
1. Analyse input intent tree and check first subtask marked as [NOT COMPLETED] like: “process the cover pictures”
2. Crafts prompts that propose new requirements or clarifications based on step1 and user’s behaviour
3. Gradually increases the complexity of expressions and technical terminology, mirroring how real users

gain confidence and understanding over time.

RESPONSE: A synthesized user prompts like “Can you help me add the ability to save the cover image in this code”

Input Example for Code Generator(The LLM Users are Chatting with)

Generated Code
To process MP3 files in Python, you can

* INPUT: User prompt like: “Can you help me to save the cover image in this code” and conversation history

RESPONSE: Generate new code

use libraries such as "pydub " for audio
manipulation and mutagen for metadata

Input Example for Execution Analyzer

handling. Below is a Python program xxx

(>)Agent: Execution Analyzer

Actions:

Intent Tree

Updated intent tree(INOT COMPLETED]
+[COMPLETED])

INPUT: Generated code and Intent tree with sub-tasks progress status like {scrape web articleslCOMPLETED]:
{process text{COMPLETED]:{}, process image[COMPLETED]:{save cover image[NOT COMPLETED]:{}}}}

1.It provides a virtual execution environment to run the generated code and produces a report summarizing the
predicted outcomes. Like coverage image has been saved
2.It analyses code result and update intent tree. like update save cover image[NOT COMPLETED] to [COMPLETED]

RESPONSE: Updated intent tree and running result report

Figure 9: Multi-Agent Module Overview: This module involves four agents designed to interact with each other, simulating a
domain user’s experience of leveraging an LLM for code generation based on our findings on user behavior patterns.

the previous round’s triples T;_1, the current round’s prompt
Py, and the intermediate code output C;. Specifically, we have
Ty = LLM,(Py, LLM.(P;), T;—1). Here, LLM, can be any sufficiently
powerful model.

Student Path. To generate more accurate triples without rely-
ing on the code produced by LLM,, it is necessary to construct a
knowledge base that connects the beginning and the end of the
teacher path and transfer this knowledge to an SLM. To achieve
this, we design the student path and train the SLM. To preserve
the original generalization ability of the SLM, we incorporate a
LoRA [15] adapter, keeping the original parameters of the SLM
fixed while tuning only the adapter’s parameters. The SLM then
directly generates the current round’s triples T; based on the cur-
rent prompt P; and the previous round’s triples T;_1, expressed as
Tt = SLM(Pt, Tt—1)~

Alignment. We use the mean squared error (MSE), MSE =
% > (Ty; = Tyi)2, to align T; and T; (the outputs of the student
path and teacher path, respectively) across all output tokens. Here, i
refers to the token index. In this way, the SLM can bridge the begin-
ning (P¢, T;—1) and end (T;) of the teacher path without generating
intermediate code.

5.3.3 Dataset Generation with a Multi-Agent Module. The distilla-
tion pipeline relies on user prompts as input. However, collecting
prompts directly from real users is costly and time-consuming. To
address this challenge, we introduce a multi-agent module designed

to efficiently synthesize prompts. Our formative findings reveal that
domain users typically initiate the problem-solving process with an
LLM by crafting prompts with a general problem description. They
then receive code generated by an LLM, execute it directly without
closely reading the code, and refine their prompts for subsequent
interactions based on where the results do not match their expecta-
tions. To simulate this process, we design the multi-agent system
with four specialized agents. Below, we outline the roles of these
agents and how they collaborate to generate prompts effectively,
with an example shown in Fig. 9.

Agent Design. All four agents are built on LLMs, using well-
designed prompts to generate realistic responses:

o Intent Tree Constructor. This agent takes a general problem de-
scription as input and then decomposes it into a hierarchical set
of subtasks, which forms an intent tree. For example, a descrip-
tion of “scrape web articles and organize them” might be broken
down into subtasks such as data collection, text extraction, and
media download. For each description, we ensure the agent can
generate semantically equivalent variants in different expres-
sions, accommodating the varying ways users might phrase their
tasks.

o Code Generator. This agent takes synthetic prompts as input and
outputs generated code along with comments. It functions the
same as an LLM (e.g., ChatGPT) that a domain user interacts with
in real-world scenarios.

NeuroSync

o Execution Analyzer. This agent simulates a user executing code
and comparing the results with their expectations. Specifically,
it provides a virtual execution environment to run the generated
code and produces a report summarizing the predicted outcomes,
file changes, and any errors encountered. Additionally, it ana-
lyzes the execution results against the subtasks in the intent tree,
updating the state of each subtask as either [COMPLETED] or
[NOT COMPLETED].

e Domain User Simulator. This agent takes an intent tree with
states as input and synthesizes user prompts. Specifically, it crafts
prompts that propose new requirements or clarifications based on
the first subtask marked as [NOT COMPLETED)], simulating how
a real user’s intent is often shaped by the first unexpected result.
The agent is instructed to craft prompts in the style of a domain
user without coding expertise, using emotional markers to make
user reactions more realistic. As the conversation progresses,
the agent gradually increases the complexity of expressions and
technical terminology, mirroring how real users gain confidence
and understanding over time.

Prompt Generation with Agents. With the four agents, each
execution of the following process generates a multi-round prompt
history for a single problem:

o Initialization: The process begins with a general task description,
which the Intent Tree Constructor uses to generate an intent tree.
This tree serves as the foundation for identifying and tracking
subtasks throughout the process.

Collaboration Loop: The system enters an iterative loop of prompt

generation, code generation, and state updates. Specifically, the

Domain User Simulator identifies subtasks marked as [NOT COM-

PLETED] and crafts refined prompts. These prompts are passed to

the Code Generator, which produces executable code and detailed

explanations. The Execution Analyzer then runs the code, evalu-
ates the results, and updates the task status within the intent tree.

This iterative loop continues, with each agent collaboratively

refining prompts and advancing task completion.

o Termination: The process ends when all subtasks are [COM-
PLETED], or if no progress occurs over five consecutive dialogue
rounds. This ensures the workflow is both goal-oriented and
time-efficient.

5.4 Graph Simplifier

Since users often lose track of how the complex LLM understanding
graph evolves as their intent changes, they require the graph to be
simplified in alignment with their updated intent (DC3). To address
this, we propose an intent-aware graph simplification algorithm
that highlights nodes directly related to intent changes and collapses
other nodes (Fig. 10). It operates in two stages: intent tracking and
graph simplification.

Intent tracking. The algorithm explicitly tracks user intent
changes across multiple dialogue rounds. To achieve this, we con-
struct a Nondeterministic Finite Automaton that expresses and
automatically updates user intents. Initially, the algorithm analyzes
the user’s input, extracts the overall goal, and identifies specific
subtasks or requirements, organizing this information into an in-
tent tree. As the dialogue progresses, the Intent Tree is updated

UIST °25, September 28-October 1, 2025,

Create crawler Create a save

Busan, Republic of Korea

Crawl web °
articles head directory
Savein Save image
sequence Save image with image
with image \ location
location Save Save
| titles text
Save Save o
Understan- tjtles reen Simplified
Intent Tree ding Graph Understanding Graph

Figure 10: Intent-aware graph simplification algorithm. The
left figure illustrates an intent tree, where each node corre-
sponds to a sub-understanding graph. During the simplifica-
tion process, nodes that are mapped to changes in the intent
tree are directly transferred to the simplified graph (i.e., red
dashed box). Meanwhile, parts mapped to unchanged nodes
are recursively collapsed or zoomed out (i.e., blue and green
boxes).

Table 3: Comparison of three fine-tuned SLMs and their zero-
shot counterparts. Higher values indicate greater similarity
to the ground truth produced by the two-stage extractor.

Qwen 1.5B Qwen 7B LLaMa 8B
Metric Zero- Fine- Zero- Fine- Zero- Fine-
shot tuned shot tuned shot tuned
ROUGE-1 0.8503 0.8946 0.8590 0.9099 0.8621 0.9274
ROUGE-2 0.6941 0.7884 0.7259 0.8209 0.7277 0.8545
ROUGE-L 0.7872 0.8644 0.8203 0.8885 0.8214 0.9126
BLEU 0.8598 0.9214 0.8747 0.9340 0.8741 0.9434

to reflect the user’s latest input. These updates may involve re-
fining existing intents, introducing new intents, merging similar
intents, adjusting relationships between parent and child nodes,
or confirming that no changes are necessary. After every update,
the algorithm synchronizes the Intent Tree with the understanding
graph, ensuring that each intent node corresponds to a subgraph
within the task graph. This synchronization provides a clear map-
ping between user intentions and the graph structure, enabling the
targeted simplification of the graph in the next stage.

Graph simplification. The algorithm employs recursive topo-
logical reduction of the hierarchical intent tree. Given a focus node
set F € Vr (Vr being the set of intent tree nodes), the algorithm

recursively traverses from the second-layer nodes {Ui(z) }: for any
node v, if its sub-tree 7 (v) satisfies F N 7 (v) = 0, the correspond-
ing subgraph G, C G is collapsed into a supernode u, establishing
a mapping ¢ : V(Gy) — u; otherwise, it recursively checks the
direct child nodes {c;} of 7 (v), repeating the above judgment for
each c;. Ultimately, all subgraph structures containing members of
F are preserved, unrelated branches are merged, and the edge set
across subgraphs U{(s",t')|s" = ¢(s),t’ = ¢(t), (s, t) € E} is recon-
structed through ¢, where ¢(x) = x if and only if x ¢ | V(Gy,) (vi
being the merged nodes). The corresponding process is shown be-
low (Fig. 10), ensuring graph simplification while balancing global
awareness and cognitive load.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Token Generation Speed Across Different Systems

Model & Speed Comparison
B Qwen 1.5B 25.9x
B Llama 8B 43.9x
B Qwen7B | ,_________4_1.;70
40 1|— Actual tokens/second 4 1
— Multiples of Qwen2.5 Max| | | 20.2x
— Multiples of Deepseek R1 | | H
2 | i i 32.49
o 31.0x : :
O 30l 29.49 i i
0 | |
i i
o ! ! [13.5x
GJ i 1 22.9%
o (a0 | 21.71
n E R
c 20 1
] 8.7x | i
) 7.7%14.7x i i
= 13.1>13.99 ! 2140
12.42 i Tos —43.9%
i]
101 i i
| 1
| 1
| 1
| 1
' :
1.61
0.95
. i 5

PV QY
2090° que® oeev‘*‘ee\L pe00 ©

Figure 11: Efficiency gains in SLM inference speed over
the two-stage extractor across different hardware settings.
Higher values indicate faster extraction speed.

6 Technical Evaluation

This section evaluates how well our distillation pipeline (Sec. 5.3.2)
transfers knowledge from the two-stage extractor with two-round
LLM calls to an SLM (Fig. 4) for triples extraction. The pipeline is
designed to fine-tune the SLM to mimic the behavior of the two-
stage extractor while being more lightweight. Therefore, we assess
the SLM from two aspects: (1) similarity, which measures how
closely the triples extracted by the SLM align with those extracted
by the two-stage extractor, and (2) efficiency, which evaluates the
speed of the SLM compared to the two-stage extractor.

6.1 Similarity Between SLM Outputs and the
Two-Stage Extractor Outputs

In this evaluation, we compare the outputs of the fine-tuned SLMs
with their zero-shot counterparts (acting as baselines), using the
outputs of the two-stage extractor as the ground truth.

Metrics. To measure similarity, we employ two widely used met-
rics in nature language processing: ROUGE [27] and BLEU [36].
ROUGE is a recall-based metric that evaluates how much of the
reference text (i.e., the 2-stage method’s outputs) is covered in the
target text (i.e., the SLM’s outputs). Specifically, ROUGE-1 mea-
sures overlaps of single words, ROUGE-2 measures overlaps of
two consecutive words, and ROUGE-L evaluates the longest com-
mon subsequence between the texts. BLEU, on the other hand, is
a precision-based metric that evaluates how well the target text
matches the reference while penalizing irrelevant content. ROUGE
and BLEU provide a balanced evaluation of content coverage and
precision, assessing how well the SLMs replicate the LLM.

Baselines. We considered three pre-trained SLMs in our exper-
iments: Qwen-2.5 1.5B, Qwen-2.5 7B, and Llama 8B. They served

Zhang et al.

both as zero-shot baselines and as the foundation for the student
models trained during the distillation process.

Experiments. Our experiments consisted of three phases: SLM
fine-tuning, inference, and comparison. During SLM fine-tuning, we
placed each pre-trained SLM in the student path and fine-tuned each
of them on a server with three NVIDIA 3090 GPUs. This process
produced three distilled SLMs corresponding to Qwen-2.5 1.5B,
Qwen-2.5 7B, and Llama 8B, respectively. Zero-shot baselines used
the pre-trained models without fine-tuning, enabling a comparison
of improvements from the distillation process. In the inference
phase, fine-tuned and zero-shot SLMs generated triples for a testing
dataset of 40 samples per epoch, producing one triple per sample.
The teacher path’s two-stage extractor also generated one triple per
sample, serving as ground truth. Lastly, we compared the triples
from fine-tuned and zero-shot SLMs to the ground truths using
ROUGE and BLEU, averaging the values across the 40 samples in
the final epoch.

Result analysis. The results in Tab. 3 demonstrate the effec-
tiveness of our distillation pipeline, with fine-tuned SLMs outper-
forming their zero-shot counterparts across all metrics. Specifically,
these results highlight the pipeline’s ability to enhance both content
coverage and precision, achieving alignment with the two-stage
extractor’s outputs at over 90% similarity in most metrics. Larger
models, such as LLaMa 8B, show greater improvements. While
slight performance gaps remain due to the inherent randomness in
language generation, they do not hinder the overall alignment and
effectiveness of the fine-tuned models.

6.2 Efficiency Gains in SLM Inference Speed

In this evaluation, we compare the inference efficiency of fine-tuned
SLMs to the two-stage extractor for triple extraction.

Metrics. We calculate valid tokens per second, which measures
the number of tokens generated per second that correspond di-
rectly to triples. Unlike the commonly used token per second
(i.e., Overtime Tokens/Ouverall Time), this metric excludes irrel-
evant intermediate tokens, offering a more focused comparison
between the fine-tuned SLMs and the two-stage extractor.

Baselines. The two-stage extractor serves as the baseline and
we consider two variants of its implementation. Specifically, the
two-stage extractor involves two LLM calls: the first LLM, Deepseek
R1 [14], is used to generate code, while the second LLM extracts
triples based on the generated code. For the second LLM, we eval-
uate two options: Qwen-Max [68], an SOTA general LLM, and
DeepSeek R1 [14], an SOTA reasoning LLM.

Experiments. We evaluated the efficiency of fine-tuned SLMs
and the two-stage extractor variants on two hardware platforms:
an NVIDIA 3090 server and an NVIDIA A800 server. The 3090
server simulates a setup for individual users, while the A800 server
reflects a deployment used in industry settings. Each configuration
was tested on 40 user prompts. For each prompt, we calculated
valid tokens per second based on the total processing time and the
number of valid tokens generated. The results were averaged across
all prompts.

Result analysis. The results in Fig. 11 highlight the significant
efficiency gains achieved by the fine-tuned SLMs. The distilled
SLMs consistently outperformed the two-stage extractor variants

NeuroSync

Table 4: Participant demographics in the user study.

ID Gender Age Education Domain Expertise
P1 M 24 Ph.D Theoretical Mathematics
P2 M 23 Ph.D Operations Research
P3 F 23 MS. Art

P4 F 23 M.S. Design

P5 M 26 PhD Civil Engineering
P6 M 24 Ph.D Economics

P7 F 25 Ph.D Linguistics

P8 F 24 MS. Design

P9 M 23 M.S. Finance

P10 F 24 PhD Biology

P11 M 28 MS. Architecture
P12 F 23 MS. Education

at both server settings. For example, using Llama 8B, the A800
server achieved a 22.9x speed improvement compared to the two-
stage extractor with Deepseek R1, and the same model on the 3090
server achieved a 13.1x speedup. These findings indicate that our
proposed method is advantageous for both individual and industrial
applications.

7 Controlled User Study

To evaluate the usability and effectiveness of NeuroSync in support-
ing conversational LLM-based coding, we conducted a controlled
study with 12 domain users with limited programming experience.
The study addressed two primary research questions:

RQ1: Can NeuroSync improve domain users’ ability to effectively
perform conversation-based coding with LLMs?

RQ1.1: Does the graph-based representation facilitate task com-
prehension and reduce barriers to real-time coding?

RQ1.2: Can NeuroSync support more precise, controlled modifica-
tions to users’ task-level understanding?

RQ1.3: Does NeuroSync help domain users accomplish intent-
aligned code generation more efficiently, with fewer in-
teractions?

RQ2: How does NeuroSync affect user perceptions and behaviors
during LLM-based coding interactions?

RQ2.1: How does the system shift users’ mental models regarding
coding with LLMs?

RQ2.2: How does the interaction paradigm influence user behav-
iors in multi-turn coding?

RQ2.3: What additional or unforeseen impacts does using Neu-
roSync introduce?

7.1 Methods

7.1.1 Participants. We recruited 12 postgraduate students (six
males, six females) aged 23 to 28 years (M = 24.17, SD = 1.53),
from diverse domains such as art and design, linguistics, educa-
tion, economic, finance, and architecture. Participants self-rated
themselves as having general experience within their own domain
(M =3.58, SD = 0.51), but limited familiarity with coding (M = 2,
SD = 0.85). They reported prior experience with LLM-powered

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

chatbots (M = 4.16, SD = 0.73), based on a 5-point Likert scale (1 =
lowest, 5 = highest). Detailed demographic information is provided
in Tab. 4.

7.1.2 Tasks. Participants completed two programming tasks: a
web crawler task and an audio processing task. In the web crawler
task, they implemented a crawler that retrieved content from a spec-
ified WeChat article URL. In the audio processing task, participants
developed a Python script that converted MP3 audio into text and
extracted keywords relevant to sentiment analysis.

7.1.3 Baseline. We used a simplified version of NeuroSync , re-
ferred to as the Baseline, which excluded graphical representa-
tions while preserving conversational features (e.g., ChatGPT-style
prompting). The baseline included standard Python syntax high-
lighting and detailed inline code comments. Both experimental
conditions maintained identical user interface styles to control
for differences in visual aesthetics. The read-only task graph was
not considered a baseline because feedforward and editing were
designed as an integrated mechanism to address misalignment;
evaluating them separately would not reflect their intended use.

7.14 Apparatus. All participants completed the tasks on desktop
environments, each connected via SSH to a GPU server equipped
with an NVIDIA A800.

7.1.5 Procedure. We employed a counterbalanced within-
subjects design. Participants were divided into two clusters, each
performing both tasks, one task using NeuroSync, the other using
the baseline. Task order and condition assignments were balanced
within clusters. Each session comprised an introduction (5 mins),
two task sessions (10-45 mins each), post-task questionnaires (10
mins each), and a final semi-structured interview (15-25 mins).
Interviews were audio-recorded, and each participant was compen-
sated $12/hour (approximately 1.5 hours per session). To ensure
the tasks remained exploratory and truly started from scratch, we
designed the task session by distributing task information and com-
pletion criteria across two complementary communication chan-
nels, each serving a different purpose. Participants first received
a written task description outlining high-level goals, followed by
oral delivery of more detailed background context. This separation
was intended to promote diverse problem-solving approaches and
avoid uniform strategies, such as copying all requirements directly
into the LLM. After task presentation, participants were asked to
articulate their understanding to confirm comprehension before
proceeding independently. Once they believed they had completed
the task, the facilitator reviewed their outcome against general
completion criteria and provided feedback indicating whether the
task was complete or needed further refinement.

7.1.6 Measurements. We evaluated both systems across three
aspects: System Usability, Cognitive Load, and Coding Efficiency.
System Usability was measured using a custom 7-point Likert ques-
tionnaire that evaluated learnability, code comprehension, task
modification accuracy, and alignment. Cognitive Load was assessed
using the NASA-TLX, which included a measure of perceived coop-
eration to capture subjective mental workload differences between
conditions. Coding Efficiency was evaluated through task comple-
tion times, durations of task-focused thinking and manipulation

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

NeuroSync

Qu: Fast Learn how to code with system

Q2: More attention on task and problem

Q3: Fast understanding code tasks

Q4: Intuitive code task modification

Qs: Flexible code task modification

Q6: Sense of control over the code generation

Q7: Alignment of code tasks with intent
!

Zhang et al.

Baseline

T T T
0% 25% 50%

mmm 1 - strongly disagree - 2 3

T 1 r T T
75% 100% 0% 25% 50%

4 - netural E = 6 mmm 7 - strongly agree

Figure 12: User ratings on the baseline and NeuroSync with a 7-point Likert scale.

Table 5: Comparison of mean scores in 7 questions (Fig. 12)
between the baseline and NeuroSync with statistical analysis.
M. denotes the mean score for each system, Diff. indicates
the difference, and t and p report the paired t-test results.

Dim. M.(Baseline) M.(Ours) Diff. t P
Q1 4.58 5.75 1.17 2.18 .05150
Q2 3.83 6.08 2.25 3.28 .00738
Q3 3.67 6.42 2.75 5.25 .00027
Q4 3.83 5.83 2.00 3.32 .00687
Q5 3.33 6.25 2.92 5.24 .00028
Q6 3.08 6.42 3.33 5.61 .00016
Q7 4.08 6.67 2.58 6.49 .00004

(excluding waiting time for LLM inference), and the number of LLM
queries made during the tasks.

7.1.7 Analysis. Throughout the study, we collected audio record-
ings, interaction logs, and questionnaire data. We used an open-
coding approach [20] for data analysis. For quantitative measures
that met assumptions of normality and homogeneity of variance,
paired t-tests were employed to assess statistical significance. Sub-
jective ratings were evaluated using the Wilcoxon signed-rank
test. Audio recordings were transcribed and categorized based on
the research questions. The results are presented according to this
analytical approach.

7.2 Quantitative Results

To evaluate NeuroSync against the Baseline, we assessed perfor-
mance across three dimensions: system usability for coding, cognitive
load, and coding efficiency.

7.2.1 System Usability for Coding (RQT). To assess usability,
we administered a questionnaire (Q1-Q7) using a 7-point Likert
scale, covering learnability (RQ1.1), code comprehension (RQ1.1),
task modification (RQ1.2), and misalignment reduction (RQ1.3). As
shown in Fig. 12 and Tab. 5, NeuroSync consistently outperformed
the baseline across all dimensions:

Lower Learning Threshold. NeuroSync showed an improve-
ment in learnability (Q1; Baseline: 4.58 vs. NeuroSync: 5.75; p =

Dimension Ratings Comparison

Dimension Weights Distribution
200 System

= Baseline [Base zm‘ |u%‘ 25% *1'+1n%
=] line

75 * Outlier
*
150 Diff} 9.3 *xx

Diffi 7.0 *** Ours n'/.**zo%[25% |15-409

o 00 02 0.4 06 08 10
o § Weiaht Proportion
=) Diff; 7.3 == 1 33
o o2 34 e
c
=1 Weighted Score (***)
© 15.0
-4 13.2

125

100 8.93

00l
Baseline NeuroSync

Figure 13: User ratings on the baseline and NeuroSync using
NASA-TLX. Dimension weight shows each dimension’s rela-
tive importance to the overall workload.

.051). While the addition of graph-based interactions introduced
new functionality, users found the system easier to learn.

Improved Task Comprehension. Participants rated the graph
representation as highly intuitive for understanding code logic (Q3;
mean diff = 2.75, p < .001) and focusing on task structure (Q2; mean
diff = 2.25, p < .001), enabling direct mapping between intent and
generated functionality.

Enhanced Control and Modification. NeuroSync significantly
enhanced users’ ability to identify, modify, and refine code tasks
(Q4-Q6; all p < .01). The explicit task-level editing mechanism
allowed users to bypass abstract prompt tuning, reducing cognitive
overload and frustration.

Reduced Intent-Code Misalignment. Participants reported
fewer instances of code diverging from their original intentions
when using NeuroSync (Q7; mean diff = 2.58, p < .001), validating
the effectiveness of task-level alignment.

7.2.2 Cognitive Load (RQ2.1). We used NASA-TLX to evaluate
perceived mental workload after completing tasks with each system.
As shown in Fig. 13, NeuroSync led to significantly lower cognitive
load across all six dimensions:

NeuroSync

Time Comparison LLM Call Round Comparison

304 =1 Baseline Total Time 51 =3 Baseline LLM Call
=3 NeuroSync Total Time Reason LLM Call
[Z2 Thinking Time = Modify LLM Call
ZZ1 Thinking & Task Manip. Time @ outlier
251 23.8 @ outlier 3l9
Diff: 11.8 *+* 49 \ Diff: 2.8 +**
—~ 201 (%)
% 20 =
[©
2 O 3
2 Y
=]
=
E15 8
[11.9
£ €. .
= =
101 13
1
54
f 0 T
Baseline NeuroSync Baseline NeuroSync

Statistical Significance
tp<0.1 *p<0.05 #p<0.01 ***p<0.001

Figure 14: Quantitative results of baseline and NeuroSync on
time consumption and LLM call rounds.

Overall Load Reduction. Participants experienced lower total
workload with NeuroSync (Baseline: 13.26 vs. NeuroSync: 8.93;
p < .001), especially in task time demand (D3; diff = 9.3, p < .001)
and frustration (D6; diff = 7.3, p < .001), with frustration levels
dropping from 18% to 10%.

Performance Not a Bottleneck. Although performance scores
(D4) improved with NeuroSync (diff = 4.9, p < .01), this dimension
showed the smallest margin. This suggests that LLMs already met
baseline task requirements, and the benefit of NeuroSync was in
making their output more controllable and understandable.

Shifted Cognitive Effort. Mental Demand (D1) and Effort (D5)
were slightly higher than other NeuroSync dimensions (D1 = 7.75;
D5 = 7.16), though still significantly lower than Baseline. This re-
flects the tradeoff: while NeuroSync reduces effort in code under-
standing, it introduces new cognitive demands in interacting with
the graph.

7.2.3 Coding Efficiency (RQ2.2). We recorded task duration,
user thinking/manipulation time (excluding LLM wait time), and
total LLM calls per task. As shown in Fig. 14, key findings included:
Faster Task Completion. Participants using NeuroSync com-
pleted tasks significantly faster (23.8 mins vs. 13.9 mins; p < .001),
with fewer LLM calls (3.9 vs. 1.3; p < .001). This demonstrates that
task-level editing reduced the need for iterative prompt correction.
Increased Task Focus. With NeuroSync, users spent more time
on task reasoning (62% vs. 42.3%) rather than interpreting or rewrit-
ing prompts. The externalization of task structure helped them
focus on problem-solving rather than system communication.

7.3 Qualitative Insights

Through post-task interviews, participants expressed generally
positive feedback on the usability and effectiveness of NeuroSync.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Improved Task Understanding. One of the most recognized
advantages was its ability to assist users in understanding the struc-
ture and logic of code through the pre-generated task graph (P1-P7,
P9-P10, P12). Compared with directly reading raw code, the graph
provided a clearer and more intuitive overview of task flow, espe-
cially for users with limited programming experience. As P3 men-
tioned, ‘T didn’t need to understand every line of code—I just looked
at the flow and knew what was going on.” This visual representation
enabled participants to enter the problem-solving process more
efficiently and reduced their reliance on reading and interpreting
code syntax line by line.

Reduced Programming Barrier. The graph-based interaction
was considered effective in lowering the entry barrier for program-
ming tasks. Several participants (P1, P3-P5, P8-P9, P12) commented
that they could express their ideas more clearly through structured
tasks in the graph, rather than struggling to describe them precisely
using natural language prompts. For example, P4 stated, “The graph
helped me break down what I wanted into manageable parts—without
thinking about how to write it in code.” This form of externalized task
structure encouraged users to reflect on and refine their intentions
more systematically, especially when handling multi-step tasks.

More Accurate Modifications. Participants (P3-P9, P12) also
emphasized the benefits of the graph-editing mechanism in improv-
ing task modification. Compared with traditional prompt-based
interaction, direct manipulation of task nodes allowed for more
accurate and targeted adjustments. As P6 said, “Instead of rewrit-
ing everything, I just fixed the node that was wrong and got what I
wanted.” Moreover, when users were uncertain about how to mod-
ify the graph manually, the natural language-based modification
interface provided a convenient alternative (P2-P3, P7-P8, P10). P2
noted, “Sometimes I didn’t know how to change the graph directly, so
I just typed what I wanted, and it worked.” These complementary
interaction modalities enhanced users’ control over task editing.

Fewer Dialog Turns. Furthermore, many participants (P2-P3,
P5, P7-P10) reported that the system effectively reduced the number
of interaction rounds required to align code with their intentions.
The holistic representation of tasks, along with the ability to directly
revise sub-tasks, allowed users to express and adjust their goals
more clearly. As P8 observed, “Normally it takes me five tries to get
it right. With this, I got most of it on the first go.” This improvement
in efficiency was particularly appreciated by users who had prior
experience with LLM-based tools.

Effective Graph Simplification. The graph simplification mech-
anism was also highly valued by all participants. The integration of
the intent tree with the simplified task graph enabled users to effi-
ciently identify key task components and understand overall logic
at both macro and micro levels. P9 commented, “It’s like zooming
out and zooming in at the same time. I could see the big picture and
the small details without getting lost.” The highlight feature, which
linked simplified and detailed views, further facilitated focused
editing and task tracing during multi-round interactions.

Different Interaction Patterns. The externalized LLM under-
standing shifted the participants’ interaction patterns in two ways.
The first was misalignment resolution. With the baseline, partici-
pants often addressed only partial misalignments and introduced
new ones due to incomplete reviews of code and prompts. In con-
trast, NeuroSync’s task graph allowed them to detect and resolve all

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

misalignments in a single pass by directly modifying relevant nodes,
improving their understanding of the problem-solving process. The
second was the timing of instruction. With the baseline, partic-
ipants issued instructions reactively after each code generation
round, resulting in more iterations. NeuroSync, however, enabled
users to proactively align intent before generation—typically after
reviewing the entire intent tree in the first round—thereby reduc-
ing the number of iterations. For example, P6 commented, ‘T can
solve many problems at once before generating code, which is really
convenient compared with using ChatGPT directly.” In later rounds,
the simplified graph further accelerated instruction delivery.

Changed Debugging and Testing Behaviors. We observed
how NeuroSync changed developer behaviors in testing and debug-
ging. First, users could perform code-free, task-directed testing and
debugging, directly interacting with subtasks without needing to
understand or modify code, as required in traditional program de-
velopment. Participants (e.g.,, P7, P11) reported that understanding
bugs and testing outcomes became less difficult, allowing them to
focus more on the task itself. Second, by leveraging the understand-
ing graph, they shifted from sequential, step-by-step debugging and
testing to parallel, one-shot processes. Participants noted that com-
pressing multi-round debugging and testing improved efficiency.

Limitations and Suggestions. Nevertheless, a few limitations
were also reported. Some participants (e.g., P1, P10) found that the
initial learning curve of the graph interface was relatively steep,
especially for users without prior exposure to task-structured pro-
gramming. In addition, participants held differing opinions on the
appropriate level of detail in graph nodes. While some preferred
concise and abstract task descriptions, others expressed the need
for more technical detail, such as variable names and code-level
semantics (P6, P7). Thus, they suggested providing customizable
levels of granularity and tutorial support to accommodate their
diverse backgrounds and preferences.

Design Takeaways. Based on the above qualitative insights,
we distill two design takeaways for future systems that wish to
externalize LLM Understanding. First, since externalization allows
users to shift from sequential to parallel misalignment resolution,
future systems need to thoughtfully design representations (e.g., ,
task graphs) that consolidate sequential steps in domain-specific
workflows like programming. Second, direct task-intent matching
involves multi-round interactions where user intents are constantly
changing. The system should provide targeted information aligned
with updated user intents to reduce users’ cognitive load and im-
prove system usability.

8 Discussion

We reflect on the broader implications of our approach, potential
for generalization, and directions for future improvement.

8.1 Towards Personalized LLM Task
Representations

While the graph-based representation in NeuroSync has been

shown to support effective task viewing, tracking, and editing, our

user study revealed considerable variability in user preferences re-

garding how such representations should be presented. Specifically,

Zhang et al.

participants expressed differing needs around the level of granu-
larity (e.g., whether nodes should encapsulate high-level concepts
or detailed operations), the inclusion of domain-specific metadata
(e.g., Python library names), and the spatial layout of task graphs.
The current system adopts a uniform design grounded in formative
study findings, but does not yet support individual customization.
Enabling personalization could further lower the interaction thresh-
old and increase system transparency across diverse skill levels.

To achieve this, adaptive strategies such as active learning of-
fer promising potential [25]. By continuously collecting feedback
from user interactions, such as graph edits, task confirmations, and
exploration behaviors, the system could learn users’ preferred pre-
sentation styles and task framing patterns. Over time, this would
allow the graph interface to evolve toward more user-aligned views,
enhancing usability and interpretability. Future work could explore
fine-grained user modeling and incremental interface adaptation
to realize personalized task understanding at scale.

8.2 Beyond Code: Generalizing the Paradigm

Although this work focuses on code generation, the core concept of
externalizing LLM understanding and aligning it with user intent
can be extended to a wide range of complex reasoning tasks. In
domains such as writing assistance [76], data analysis [65], data
visualization [47], and creative design [44, 45], users often face
similar challenges of intent drift, semantic ambiguity, and nonlinear
task structures. The graph-based intermediate layer proposed in
NeuroSync offers a general mechanism for making LLM reasoning
more accessible and editable, supporting iterative refinement across
diverse contexts.

In addition, for the NLP community, our findings suggest new di-
rections for aligning LLMs with human goals, particularly through
intent-structured feedforward representations and task-aware in-
put conditioning. Rather than optimizing whole output sequences,
users can adjust high-level logic directly through graph manipu-
lation, potentially enabling more efficient feedback collection and
targeted preference learning, such as via RLHF or DPO [61]. In HCI,
this work contributes to the broader conversation on feedforward
mechanisms [31], demonstrating how intermediate representations
can reduce interaction overhead and cognitive burden during co-
creative workflows.

Moreover, the proposed paradigm of direct intent—task matching
holds promise for real-world deployment. Its lightweight, plug-in-
style implementation makes it suitable for integration with major
LLM platforms, providing non-technical users with a more struc-
tured and controllable way to complete tasks. In educational set-
tings such as programming literacy or STEM learning [35], this
paradigm may also help cultivate procedural thinking by shifting
attention from code syntax to task logic, an avenue that merits
further exploration.

8.3 Limitations and Future Work

Limitations. Despite its advantages, NeuroSync also has several
limitations. First, efficiency remains a practical concern. The current
pipeline introduces latency (10-15 seconds) when generating and
updating the understanding graph, which may hinder the fluidity
of interaction. Improving backend processing efficiency through

NeuroSync

caching, incremental updates, or lightweight modeling may help
reduce user wait time and improve responsiveness. Second, Neu-
roSync is effective for single-task alignment, it is less suited to
evolving multi-task scenarios where user goals shift or expand
over time. Thus, complex scenarios, such as large-scale multi-file
projects, were not covered in our user study and require further
investigation. Lastly, we evaluated the quality of the triples gener-
ated by fine-tuned SLMs based on user feedback, which involved
users directly examining the understanding graphs in Panel B and
the user intent and mappings through the simplified graph in Panel
C. While users provided positive feedback on the triples, future
work could include a direct technical assessment of triple quality,
requiring benchmarks and graph evaluation methods.

Future work. First, NeuroSync currently injects the adjusted
LLM understanding as textual descriptions. Future work could in-
vestigate more advanced integration mechanisms, such as incorpo-
rating task representations into model embeddings or prompts via
structured schema or feature vectors, to better preserve semantic
intent. Second, though NeuroSync offers benefits for debugging
and testing, it also introduces some challenges when developing
software without writing code. For example, NeuroSync mainly
focuses on solving task-level bugs while leaving code-level bugs
for users to solve manually; combining different levels of debug-
ging requires further exploration. Additionally, “code without code”
may limit users’ long-term coding skills. NeuroSync could be im-
proved by adding features to help users learn to code and prepare
for debugging in large codebases.

9 Conclusion

We address the problem of bidirectional ambiguity in conversational
LLM programming for non-professional users. To resolve this, we
propose direct intent—task matching, a new paradigm that exter-
nalizes LLM understanding for direct user inspection and editing
before code generation. We realize this approach in NeuroSync,
a system that combines visual representations, graph simplifica-
tion, and distillation-based efficient extraction to support alignment.
Through technical evaluations and a user study, we show that Neu-
roSync improves alignment, reduces cognitive load, and enhances
coding efficiency, offering a promising direction for more transpar-
ent and accessible human-LLM collaboration.

Acknowledgments

The authors would like to thank the reviewers for their constructive
feedback. The authors also wish to thank Liwenhan Xie, Bopei Nie,
Jason Wong, Rui Sheng and Yanna Lin for their advice and support.
This work was supported by the RGC GRF Grant 16218724.

References

[1] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85-111.

[2] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,

Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr

Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large

language models. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 38. 17682-17690.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. 2024. Forest-

of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning. arXiv

preprint arXiv:2412.09078 (2024).

=

[4]

[5]

[10

[11

[12

=
&

(14

[15

[16

[20

[21

[22]

(23]

[24

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge,
Chenfei Wu, Wang You, Ting Song, Yan Xia, et al. 2023. Low-code llm: Visual
programming over llms. arXiv preprint arXiv:2304.08103 2 (2023).

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. 2022. Program
of thoughts prompting: Disentangling computation from reasoning for numerical
reasoning tasks. arXiv preprint arXiv:2211.12588 (2022).

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Execution-guided neural pro-
gram synthesis. In International Conference on Learning Representations.
Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia,
Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234 (2022).

Marlon Dumas and Arthur HM Ter Hofstede. 2001. UML activity diagrams
as a workflow specification language. In International conference on the unified
modeling language. Springer, 76-90.

Kasra Ferdowsi, Ruanqiangian Huang, Michael B James, Nadia Polikarpova, and
Sorin Lerner. 2024. Validating AI-Generated Code with Live Programming. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. 1-8.
Gaél Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. 2023. Large
language models are not strong abstract reasoners. arXiv preprint arXiv:2305.19555
(2023).

Jianping Gou, Baosheng Yu, Stephen] Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021),
1789-1819.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317-330.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317-330.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large
language models. ICLR 1, 2 (2022), 3.

Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, Fan Yang, and Mao Yang. 2024.
Fewer is More: Boosting Math Reasoning with Reinforced Context Pruning. In
Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). ACL,
Miami, Florida, USA, 13674-13695.

Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-
lation interfaces. Human—computer interaction 1, 4 (1985), 311-338.

Pourang Irani, Maureen Tingley, and Colin Ware. 2001. Using perceptual syntax to
enhance semantic content in diagrams. IEEE Computer Graphics and Applications
21, 5 (2001), 76-84.

Alon Jacovi and Yoav Goldberg. 2020. Towards faithfully interpretable NLP
systems: How should we define and evaluate faithfulness? arXiv preprint
arXiv:2004.03685 (2020).

M Juliet and Strauss Corbin. 2015. Basics of qualitative research: Techniques and
procedures for developing grounded theory. SAGE Publications, Incorporated.
Tae Soo Kim, Yoonjoo Lee, Minsuk Chang, and Juho Kim. 2023. Cells, generators,
and lenses: Design framework for object-oriented interaction with large language
models. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology. 1-18.

Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa,
and Sumit Gulwani. 2017. Interactive program synthesis. arXiv preprint
arXiv:1703.03539 (2017).

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa
Sadigh, Sergey Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. 2023. Chain of code:
Reasoning with a language model-augmented code emulator. arXiv preprint
arXiv:2312.04474 (2023).

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa
Sadigh, Sergey Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. 2023. Chain of code:
Reasoning with a language model-augmented code emulator. arXiv preprint
arXiv:2312.04474 (2023).

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu
Okumura. 2024. A survey on deep active learning: Recent advances and new
frontiers. IEEE Transactions on Neural Networks and Learning Systems (2024).
Jia Li, Ge Li, Chongyang Tao, Huangzhao Zhang, Fang Liu, and Zhi Jin. 2023.
Large language model-aware in-context learning for code generation. arXiv
preprint arXiv:2310.09748 (2023).

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. ACL, Barcelona, Spain, 74-81.

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What it wants me to
say”: Bridging the abstraction gap between end-user programmers and code-
generating large language models. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1-31.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

[29]

[30

[31]

[32

[33

[34

[35]

[36]

[37]

[38]

[39

[40

(41

[42]

[43

[44]

[45

[46]

[47]

[50]

[51]

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1-35.

Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2024. Direct-
gpt: A direct manipulation interface to interact with large language models. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. 1-16.
Bryan Min and Haijun Xia. 2025. Feedforward in Generative AI: Opportunities
for a Design Space. arXiv preprint arXiv:2502.14229 (2025).

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024. Reading
between the lines: Modeling user behavior and costs in Al-assisted programming.
In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems.
1-16.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 574-584.
Yang Ouyang, Leixian Shen, Yun Wang, and Quan Li. 2024. NotePlayer: Engaging
Computational Notebooks for Dynamic Presentation of Analytical Processes. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and
Technology. ACM, 1-20.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Pierre
Isabelle, Eugene Charniak, and Dekang Lin (Eds.). Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 311-318.

Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for induc-
tive program synthesis. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
107-126.

Udo W Pooch. 1974. Translation of decision tables. ACM Computing Surveys
(CSUR) 6, 2 (1974), 125-151.

Marko A Rodriguez and Peter Neubauer. 2010. Constructions from dots and lines.
arXiv preprint arXiv:1006.2361 (2010).

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A systematic survey of prompt engineering in large
language models: Techniques and applications. arXiv preprint arXiv:2402.07927
(2024).

Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? arXiv preprint arXiv:2208.06213 (2022).

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. 2023.
Algorithm of thoughts: Enhancing exploration of ideas in large language models.
arXiv preprint arXiv:2308.10379 (2023).

Hua Shen, Tiffany Knearem, Reshmi Ghosh, Kenan Alkiek, Kundan Krishna,
Yachuan Liu, Ziqiao Ma, Savvas Petridis, Yi-Hao Peng, Li Qiwei, et al. 2024.
Towards Bidirectional Human-AI Alignment: A Systematic Review for Clari-
fications, Framework, and Future Directions. arXiv preprint arXiv:2406.09264
(2024).

Leixian Shen, Haotian Li, Yun Wang, Tianqi Luo, Yuyu Luo, and Huamin Qu.
2024. Data Playwright: Authoring Data Videos With Annotated Narration. IEEE
Transactions on Visualization and Computer Graphics (2024), 1-14.

Leixian Shen, Haotian Li, Yun Wang, and Huamin Qu. 2025. Reflecting on
Design Paradigms of Animated Data Video Tools. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems. ACM, 1-21.

Leixian Shen, Haotian Li, Yifang Wang, Xing Xie, and Huamin Qu. 2025. Prompt-
ing Generative Al with Interaction-Augmented Instructions. In Extended Abstracts
of the CHI Conference on Human Factors in Computing Systems, CHI EA "25. ACM,
1-9.

Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2023. Towards Natural Language Inter-
faces for Data Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics 29, 6 (2023), 3121-3144.

Leixian Shen, Zhiwei Tai, Enya Shen, and Jianmin Wang. 2024. Graph Explo-
ration With Embedding-Guided Layouts. IEEE Transactions on Visualization and
Computer Graphics 30, 7 (2024), 3693-3708.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. 2018. Improving neural pro-
gram synthesis with inferred execution traces. Advances in Neural Information
Processing Systems 31 (2018).

M Soegaard and RF Dam. 2007. Gulf of Evaluation and Gulf of Execution. Retrieved
Fune 21 (2007), 2012.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial sketching for finite programs. In Proceedings of the
12th international conference on Architectural support for programming languages

[52

[53

[54

[55

[56

[57

(58]

[59

[60

[61

(62]

[63

[64

[65

=
2

(67

[68

[69

[72

Zhang et al.

and operating systems. 404—415.

Hari Subramonyam, Roy Pea, Christopher Pondoc, Maneesh Agrawala, and
Colleen Seifert. 2024. Bridging the Gulf of Envisioning: Cognitive Challenges in
Prompt Based Interactions with LLMs. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. 1-19.

Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024.
Luminate: Structured Generation and Exploration of Design Space with Large
Language Models for Human-AI Co-Creation. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. 1-26.

Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: En-
abling multilevel exploration and sensemaking with large language models. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology. 1-18.

Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The metacognitive demands and
opportunities of generative Al In Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems. 1-24.

Yuan Tian, Jonathan K Kummerfeld, Toby Jia-Jun Li, and Tianyi Zhang. 2024.
SQLucid: Grounding Natural Language Database Queries with Interactive Ex-
planations. In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology. 1-20.

Wil MP Van der Aalst. 1998. The application of Petri nets to workflow manage-
ment. Journal of circuits, systems, and computers 8, 01 (1998), 21-66.

Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing
the bridge over Norman’s Gulf of Execution: revealing feedforward’s true identity.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1931-1940.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong
Huang, Lifeng Shang, Xin Jiang, and Qun Liu. 2023. Aligning large language
models with human: A survey. arXiv preprint arXiv:2307.12966 (2023).

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri,
Shubham Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. 2024. A comprehensive
survey of LLM alignment techniques: RLHF, RLAIF, PPO, DPO and more. arXiv
preprint arXiv:2407.16216 (2024).

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri,
Shubham Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. 2024. A comprehensive
survey of LLM alignment techniques: RLHF, RLAIF, PPO, DPO and more. arXiv
preprint arXiv:2407.16216 (2024).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824-24837.

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. Promptchainer: Chaining large language
model prompts through visual programming. In CHI Conference on Human Factors
in Computing Systems Extended Abstracts. 1-10.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Ai chains: Transparent
and controllable human-ai interaction by chaining large language model prompts.
In Proceedings of the 2022 CHI conference on human factors in computing systems.
1-22.

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian. 2024.
Waitgpt: Monitoring and steering conversational Ilm agent in data analysis with
on-the-fly code visualization. In Proceedings of the 37th Annual ACM Symposium
on User Interface Software and Technology. 1-14.

Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. 2024. Ivie: Lightweight
anchored explanations of just-generated code. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. 1-15.

Youfu Yan, Yu Hou, Yongkang Xiao, Rui Zhang, and Qianwen Wang. 2024.
Knownet: Guided health information seeking from llms via knowledge graph
integration. IEEE Transactions on Visualization and Computer Graphics (2024).
An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwenz2. 5
technical report. arXiv preprint arXiv:2412.15115 (2024).

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
large language models. Advances in Neural Information Processing Systems 36
(2024).

Ryan Yen and Jian Zhao. 2024. Memolet: Reifying the Reuse of User-AI Conver-
sational Memories. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1-22.

Ryan Yen, Jiawen Stefanie Zhu, Sangho Suh, Haijun Xia, and Jian Zhao. 2024.
CoLadder: Manipulating Code Generation via Multi-Level Blocks. In Proceedings
of the 37th Annual ACM Symposium on User Interface Software and Technology.
1-20.

Vahan Yoghourdjian, Yalong Yang, Tim Dwyer, Lee Lawrence, Michael Wybrow,
and Kim Marriott. 2020. Scalability of network visualisation from a cognitive
load perspective. IEEE transactions on visualization and computer graphics 27, 2
(2020), 1677-1687

NeuroSync

[73]

[74]

[75]

Zishun Yu, Yunzhe Tao, Liyu Chen, Tao Sun, and Hongxia Yang. 2023. B-
Coder: Value-Based Deep Reinforcement Learning for Program Synthesis. ArXiv
abs/2310.03173 (2023). https://api.semanticscholar.org/CorpusID:263671681

Rui Zhang, Ziyao Zhang, Fengliang Zhu, Jiajie Zhou, and Anyi Rao. 2024. Min-
dalogue: LLM-Powered Nonlinear Interaction for Effective Learning and Task
Exploration. arXiv preprint arXiv:2410.10570 (2024).

Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive program synthesis by augmented examples. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 627-648.

[76]

(7]

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology. ACM, New York, NY, USA, 1-30.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-
most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

https://api.semanticscholar.org/CorpusID:263671681

	Abstract
	1 Introduction
	2 Related Work
	2.1 Human–LLM Alignment in Coding
	2.2 Graph-Based Interfaces for LLM Interaction
	2.3 LLM Reasoning and Task Structuring

	3 Formative Study
	3.1 Study 1: Understanding Human-LLM Misalignment
	3.2 Study 2: Exploring Graph-Based Representations for Code Tasks
	3.3 Design Considerations

	4 Direct Intent-Task Matching
	5 NeuroSync
	5.1 Overview
	5.2 Usage Scenario
	5.3 Triple Extractor
	5.4 Graph Simplifier

	6 Technical Evaluation
	6.1 Similarity Between SLM Outputs and the Two-Stage Extractor Outputs
	6.2 Efficiency Gains in SLM Inference Speed

	7 Controlled User Study
	7.1 Methods
	7.2 Quantitative Results
	7.3 Qualitative Insights

	8 Discussion
	8.1 Towards Personalized LLM Task Representations
	8.2 Beyond Code: Generalizing the Paradigm
	8.3 Limitations and Future Work

	9 Conclusion
	Acknowledgments
	References

