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More Like Vis, Less Like Vis: Comparing
Interactions for Integrating User Preferences into

Partial Specification Recommenders
Grace Guo, Subhajit Das, Jian Zhao, and Alex Endert

Abstract—Visualization recommendation systems make data exploration less tedious by automating the process of visualization
generation. They are particularly helpful for non-expert users who may not be familiar with a data set or the process of visualization
specification. These systems allow users to input their preferences in the form of partial specifications to steer the recommendations
made. However, the interaction approaches for partial specification input and their trade-offs have not been explored in prior work. In
this paper, we compare three different combinations of interaction approaches and granularities for users to indicate a preferred partial
specification: 1) manual input, 2) inferring preferred partial specifications from binary like/dislike ratings for a visualization as a whole,
or 3) inferring preferred partial specifications from binary like/dislike ratings for granular components of a visualization specification. In a
between-subjects study, participants were assigned to one of three conditions and asked to complete a data exploration task. Our
results indicate that manual input led to a greater coverage of data dimensions, while like/dislike ratings led to a greater diversity of
marks and channels used. Qualitative participant feedback also reveals differences in user strategy and visualization comprehension
across the three interaction conditions. Finally, we conclude with a discussion on implications for multiplicity and visualization
comprehension during visual data exploration.
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F

1 INTRODUCTION

V ISUAL data exploration is an early-stage analysis task
where analysts explore new data sets, update mental

models, and form new hypotheses for subsequent test-
ing [1], [2], [3], [4], [5], [6]. To create visualizations for
data exploration, analysts must decide which chart types,
variables, and encodings to use, a process that involves
choosing from a large number of possible options. Visual-
ization recommendation systems (e.g., [7], [8]) were thus
developed to support data exploration by suggesting visu-
alizations that analysts may be interested in. Users can steer
recommendations by inputting their preferences as a set
of constraints, also called partial specifications [9], [10], [11],
[12]. The system solves for these constraints, thus generating
recommendations that satisfy user preferences. This process
helps to account for individual differences [13] and ensures
that recommendations are meaningful and relevant.

Partial specifications have been widely adopted in vi-
sualization recommendation systems. Tools such as Com-
passQL [9], Draco [10], [14], and Dziban [15] allow users
to input partial specifications in the syntax of their respec-
tive query languages. Other systems such as Voyager [11]
and Tableau’s Show Me [16] have developed graphical
user interfaces where users manually click and drag menu
options to create partial specifications. Collectively, these
tools adopt a manual input interaction. Prior visualization
surveys have also referred to them as “knowledge-based
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automated visualization design techniques, which use a
series of user-defined constraints and visualization design
constraints to guide aesthetic and expressive visualization
recommendations” [17], [18].

Manual inputs are not the only method by which users
can steer machine learning models according to their pref-
erences. In some training and fine-tuning approaches, for
example, users may be asked to rate or rank multiple
outputs (e.g. [19], [20], [21], [22]), or judge a single output
based on an explicit set of criteria provided by researchers
(e.g. [19], [23]). More recently, binary like/dislike ratings
have also gained popularity as they are “more abundant,
cheaper, and faster to collect” [24] and “produced by users
at a much larger scale” [25]. In visualization research, binary
interaction methods have been successfully adopted in rec-
ommendation systems. VizDeck [26] and VizAssist [7], for
example, are two systems that use like/dislike interactions
to recommend visualizations for exploration. However, un-
like our work, VizDeck and VizAssist focus on learning
user preferences for data statistics and analysis tasks over
preferences for visual characteristics.

Taken together, these prior systems demonstrate the
different ways interactive human feedback can be used to
align model outputs to human expectations. However, few
visualization studies have explored the tradeoffs between
different interaction methods for inputting or adjusting par-
tial specifications in recommendation systems. Manual in-
put, as commonly seen in knowledge-based recommenders,
grants analysts a high degree of control over the visualiza-
tions recommended, particularly when focusing on specific
questions [11]. To effectively work with manual input rec-
ommenders, users must have sufficient domain knowledge
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Fig. 1: An overview of partial specification-style visualiza-
tion recommenders, adapted from [10]. In this paper, we
compare different interaction methods (manual input/holistic
binary feedback/granular binary feedback) by which users
can input preferred partial specifications into the system.

to specify their preferences as a set of constraints [27].
In contrast, binary like/dislike interactions do not have a
similar requirement. This makes for easier feedback collec-
tion [24], [25], but also comes at a trade-off since such sys-
tems suffer from the “cold-start” problem (i.e. insufficient
initial likes/dislikes leading to inaccurate recommendations
at the start) and specialization (i.e. recommendations are too
similar and new items are not discovered) [27], [28].

In this paper, we present a comparative study of inter-
action methods for integrating user preferences into visual-
ization recommendation systems. We use Draco [10], [14] for
recommendation generation. Draco accepts user preferences
as partial specifications, which are then solved to create
complete specifications of Vega-lite visualizations [29]. We
explore three interaction methods for partial specification:
manual input, inferring preferred partial specifications from
holistic binary judgments, and inferring preferred partial
specifications from granular binary judgments (see Fig-
ure 1). The manual input recommender system asks users
to create partial specifications using drag-and-drop interac-
tions. In the holistic system, users provide binary like/dislike
judgments for each visualization as a whole, while the
granular system asks users to like/dislike parts of each
visualization separately. In both the holistic and granular
conditions, like/dislike ratings are used as labels to infer
users’ preferred partial specifications. Over many rounds of
feedback, the system learns the partial specification(s) that
best align with user preferences. These are then solved to
generate more relevant recommendations.

We conducted a user study to compare the three interac-
tion conditions. The study focused on non-expert users, who
may be less familiar with the process of visualization speci-
fication and may thus benefit more from automated recom-
mendations. Participants completed a data exploration task
using one of the recommenders. Our hypotheses are:
H1: The manual input recommender would lead to less

specialization, helping users explore a wider diversity
of visualizations. Participants use a greater number
of data dimensions, mark types, and encoding channels
on average than participants who use the holistic and
granular recommenders.

H2: The granularity of binary like/dislike feedback will not
affect exploration outcomes. Participants who use the
holistic and granular recommenders will explore a simi-
lar number of data dimensions, mark types, and encoding
channels on average.

A quantitative analysis of study results found that manual
input led to increased data dimension coverage, but like/dis-
like interactions led to greater encoding diversity (mark
types and channels), thus rejecting H1. We also found that
there was overlap between the holistic and granular recom-
menders in terms of average number of data dimensions, mark
types, and encoding channels explored, which is insufficient
to reject H2. However, qualitative feedback revealed dif-
ferences in user strategy, visualization comprehension, and
system learnability across all three interaction conditions.
We also found that lack of familiarity was a key contributor
to the smaller diversity of mark types and encoding chan-
nels explored in the manual input recommender.

In sum, our contributions are: 1) a comparative user
study of interaction methods for partial specification in
visualization recommendation systems, 2) a characterization
of how interaction methods affect data exploration and the
associated trade-offs, and 3) a discussion of the implications
for exploration multiplicity and visualization comprehen-
sion during visual data exploration.

2 RELATED WORK

Visualization recommendation systems formalize visual-
ization guidelines and graphical perception knowledge as
rules/constraints to help users design effective visualiza-
tions that are built on established best practices [9], [10],
[14], graphical perception studies [12], and domain knowl-
edge [30]. Of these, some systems are purely data-driven
or rule-driven, recommending visualizations based on char-
acteristics of the data set with little to no user input [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40] (see [17] for
an overview). However, most visualization recommenders
are interactive systems that also learn constraints based
on user preferences. Users interact with recommendation
systems using one of two mechanisms – explicit or implicit
feedback. Explicit feedback is input provided by the user for
the purpose of indicating their preferences, while implicit
feedback infers user preferences from other user behavior
and interactions [41], [42], [43]. Although a few visualization
recommendation systems have been designed to make use
of implicit feedback ( [44], [45], [46]), the majority require
some form of explicit user feedback to constrain the recom-
mended visualizations.

2.1 Manual Input Recommenders

The most common types of explicit feedback mecha-
nisms are manual input interactions. In visualization tools,
they have also been referred to as knowledge-based tech-
niques [17], which require explicitly defined constraints.
Constraints are rules that a system tries to satisfy that are
derived from visualization best practices or user prefer-
ences [7], [10], [11], [16]. Users can interact with a menu
or control panel to select their preferred encodings, data,
or tasks, which are then interpreted by the system as
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constraints for recommendation generation. For example,
Tableau’s Show Me feature allows users to select data di-
mension(s) of interest [16], while DIVE [47] and TaskVis [48]
help users explore visualizations based on their tasks. The
system then generates recommendations by enumerating
through possible visualization specifications [10], [49] and
ranking them based on how well various constraints are
satisfied. By interactively specifying and updating well-
defined constraints, users can steer visualization recommen-
dation systems based on their preferences.

Also of note are visualization recommendation systems
that explore interaction modalities beyond code-based or
graphical user interfaces. NL4DV [50] and DracoGPT [51],
for example, allow users to query a data set using natural
language. For an overview of natural language interfaces,
please see [52]. In addition to text, images have also been
accepted as user input. In work by Chen et al. [37], users
uploaded bitmap visualizations similar to their preferences
to steer recommendations.

Our work draws inspiration from partial specification
recommenders, such as Voyager [8], [11], Draco [10], [14],
Dziban [15], and CompassQL [9]. In these systems, users
manually input their preferences as partial specifications,
which are interpreted by the systems as constraints to gen-
erate new recommendations.

2.2 Binary Feedback Recommenders

Compared to the prominence of manual input recom-
menders, there have been relatively few visualization rec-
ommenders that make use of binary feedback mechanisms.
Binary feedback recommenders learn user preferences based
on interactive feedback such as like/dislike ratings.

VizAssist [7] is one example of a visualization recom-
mendation system that utilizes like/dislike feedback. The
tool uses an interactive genetic algorithm and like/dislike
feedback to generate recommended visualizations. How-
ever, like manual input recommenders, it requires users to
explicitly define their tasks and data analysis goals, which
assumes a high level of expertise from users.

VizDeck [26] is another system where users can interac-
tively provide feedback by clicking on a recommended vi-
sualization to ‘promote’ or ‘discard’. The system learns user
preferences and sorts the recommendations to prioritize vi-
sualizations that users may be more interested in. However,
unlike our work, VizDeck focuses primarily on learning
user preferences for data statistics such as the number of
distinct values of an attribute, its coefficient of variation,
and others. In contrast, preferences for visual characteristics
(e.g., encoding channels used, and xy-axis mappings) are de-
emphasized. Furthermore, VizDeck doesn’t support partial
specification queries or generate new visualizations – its
suggestions are limited to a predefined set.

Our work adapts the binary feedback mechanism ex-
plored in these studies to partial specification recom-
menders. Partial specifications are user preferences ex-
pressed as constraints that are ‘solved’ by the system to gen-
erate recommended visualizations [10], [14]. Using binary
feedback mechanisms, we compare how partial specifica-
tions of user preferences can be inferred from like/dislike
ratings instead of manual input interactions.

2.3 Visualization Embedding Spaces
The problem of visualization recommendation has previ-
ously been described as a problem of navigating a visual-
ization design space [49], [53]. This design space has been
used implicitly in a number of ML-based visualization rec-
ommendation systems, such as Data2Vis [36], VisGNN [54],
and VizML [33], that convert visualizations into a feature-
based or vector-based representation that is then used to
make new recommendations. Other systems, such as Chart-
seer [55], have been developed that explicitly support the
interactive exploration of a visualization embedding space.
Users request recommendations by clicking on a position in
the visualized embedding space. This allows them to iden-
tify previously unexplored parts of the embedding space.
Recent work by Zeng et al. [49] has gone further to propose
a framework that characterizes recommendation algorithms
based on their coverage of the visualization design space.

Our work builds on these prior studies by combining
an underlying embedding space with binary feedback pro-
vided by users. Since it is impractical for users to inter-
actively rate all possible visualizations, we use an embed-
ding space to identify partial specifications that are nearest
neighbors of specifications that were previously “liked”
by users (subsection 3.3 and subsection 3.4). Furthermore,
while Chartseer remained data agnostic (data dimensions
are not included in the embedding space), the systems
used in our study learn user-preferred data dimensions in
addition to visual characteristics.

3 INTERACTIVE PARTIAL SPECIFICATION

Partial specification-style visualization recommenders com-
bine user preferences with visualization best practices to
generate recommendations that support user analyses while
also incorporating visualization design knowledge (Fig-
ure 1, adapted from [10]). Visualization best practices are
represented internally as system constraints. When users
input their preferences as a partial specification, this input
is interpreted as additional query constraints. Combining
query constraints and internal constraints, the system solves
for visualizations that satisfy all constraints. These solutions
are then output as recommendations.

This paper focuses on query constraints. We are interested
in how users interactively input their preferences as partial
specification queries, which are interpreted by the system
as query constraints. Other papers have studied the internal
system constraints built into Draco (also called hard and
soft constraints). For example, Dziban [15] incrementally
improves visualization recommendations by anchoring soft
constraints from previous rounds of recommendation. Zeng
et al. [12] have gone further to integrate findings from
graphical perception studies into Draco by updating soft
constraint weights. Readers interested in internal system
constraints may refer to these prior studies.

3.1 Interaction Technique and Interaction Granularity
In this paper, we focus on three different ways by which
users might interactively input their preferences as partial
specifications. To evaluate the effectiveness of the different
interaction conditions, we built three visualization recom-
mendation systems—a manual input system, a holistic binary
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specification values

mark types bar, line, point, rect, tick, area
channels x, y, color, size, shape
aggregates bin, min, max, mean, median, sum
dimensions quantitative, categorical, and all dimensions in dataset

TABLE 1: Mark types, channels, aggregates, and data di-
mension values that can make up a partial specification in
the manual input, holistic, and granular recommenders.

feedback system, and a granular binary feedback system—to
use in a comparative study (Fig. Figure 1). The manual input
system uses the manual input interaction technique, similar
to visualization tools such as Voyager [8], [11] and Tableau’s
Show Me [16]. Users click and drag variables in a control
panel to create partial specifications.

We compare this manual input system to two binary
feedback recommenders that implement like/dislike inter-
actions at different granularities. The holistic recommender
asks users to rate prior recommendations by interactively
selecting like or dislike. However, there exists a possible
confounding factor of interaction granularity between the
manual input and holistic conditions – the manual input con-
dition asks users to manipulate each encoding of the partial
specification separately, but the holistic condition hides these
encodings from the user. As such, to better distinguish the
effect of interaction granularity from interaction technique,
we implemented a second granular recommender that asks
users to provide feedback by rating like or dislike on
each encoding separately. For both the holistic and granular
recommenders, the system uses the like/dislike rating to
incrementally infer the partial specifications users are likely
to be interested in. Over many rounds of feedback, the
system learns the partial specification(s) that best align with
user preferences. These partial specifications are solved to
generate more relevant recommendations.

3.2 Systems Implementation
Characteristics of the manual input, holistic, and granular
systems are summarised in Figure 2. All systems are im-
plemented in JavaScript, using the Svelte framework. Vega-
lite [29] is used to render the Draco recommendations. The
back-end server is implemented with Flask, and ML models
are deployed using the Scikit Learn library [56].

To control for differences in user interface design, we
chose not to use an existing visualization recommenda-
tion GUI in this study. However, to ensure consistency in
the constraint-solving process and the recommendations
generated, we adopted the Draco formal language as our
recommendation generator [10] in all three recommenders
(Figure 1, (3)). Draco generates visualizations based on the
partial specification query. Queries can include constraints
such as mark type, channels, aggregates, and data dimen-
sions. We limit the possible values that can be included
in the partial specifications to those listed in Table 1. In
cases where Draco recommends visualizations that include
more complex encodings (such as the row channel for
trellis plots), we render the recommendation to users as-
is. However, participants in the manual input system will
not be able to input such encodings. Similarly, the prototype
systems will not learn user preferences for these encodings.

This ensures that the space of possible visualization recom-
mendations is consistent and that the systems differ only in
how users input their preferences as partial specifications.

1 "mark": "line",
2 "encoding": {
3 "x": {
4 "type": "quantitative",
5 "field": "rating",
6 "bin": true},
7 "y": {
8 "type": "quantitative",
9 "aggregate": "count",

10 "scale": { "zero": true } } }

Syntax 1: Part of a Vega-lite specification of a line chart. Only
mark type and encoding information are used in our study.

1 { "label":1, "mark_line":1,
2 "x.type_quantitative":1, "x.field_minutes":0,
3 "x.field_rating":1, "x.bin_True":1,
4 "y.type_quantitative":1, "y.aggregate_count":1 }

Syntax 2: Vector representation of the same Vega-lite chart
with user-provided label (1 indicates a ‘liked’ visualization).
These are the user preferences learned by the system.

1 mark(line).
2
3 % ====== Query constraints ======
4 encoding(e0).:- not channel(e0, x).:- not type(e0,

quantitative).:- not field(e0, rating).:- not
bin(e0, 10).

5
6 encoding(e1).:- not channel(e1, y).:- not type(e1,

quantitative).:- not aggregate(e1, count).

Syntax 3: The vector representation can be converted to an
equivalent Draco query that includes the same information.

3.3 Holistic Binary Feedback Condition
The holistic system is a binary feedback recommender that
allows users to interactively provide feedback for a visual-
ization using binary More like this and Less like this ratings.

3.3.1 User Interface
The interface of the holistic system is divided into the main
sections as shown in Figure 2. The leftmost section is the
Data and Preferences panel (Figure 2A). The Data panel
displays information about the data set being analyzed, in-
cluding data set and dimension names. Dimension descrip-
tions can be viewed when hovering on the information icon.
The Preferences panel displays preferences learned by the
system. Preferences are divided into two categories: mark
preferences and encoding preferences. The opacity of the
preference indicates the weight assigned to that preference
by the system (i.e., how much the system thinks the user
likes that preference). In the Recommendations view, four
recommendations are displayed to the user (Figure 2B).

3.3.2 Interactions
Each visualization recommendation in the holistic prototype
system has three buttons: More Like This, Less Like This, and
a Pin icon. Users can indicate whether they like or dislike
a visualization using the More Like This and Less Like This
buttons. Visualizations can be saved using the Pin icon.
Users can view all their pins at any time using the Pinned
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Fig. 2: Sections A, B, and C, indicated on the manual input system, make up the general layout of all three systems. A)
The Data panel displays information about the data set, while the Encodings panel displays the encodings specified by
the user. In the holistic and granular systems, the Encodings panel is replaced by the Preferences panel, which displays
the preferences learned by the system. B) The Recommendations view displays four visualization recommendations per
update. C) Users can view their pinned visualizations any time using the Pinned button along the top menu.

button along the top menu. They can also unpin visualiza-
tions if they change their mind about saved visualizations
later in the exploration process. After viewing visualizations
and providing their feedback (if any), users can refresh the
recommendations using the Update Recommendations button.

3.3.3 Preference Learning & Recommendation Generation
Visualizations in Vega-lite JSON specification are converted
into vectors by first extracting the mark and encoding features
from each visualization specification (Syntax 1). We then
flatten the encoding sub-fields and perform one-hot encod-
ing on all the extracted visualization features (Syntax 2). We
drop any features that are not included in our table of partial
specification values (Table 1). Note that each visualization
vector can then be converted into an equivalent Draco con-
straint query, which can then be used to generate additional
instances of similar visualizations (Syntax 3).

To address the cold-start problem, the holistic system in-
cludes 50 pre-generated visualization vectors. These vectors
include a range of standard visualizations, such as scatter-
plots, bar charts, area charts, line charts, and heatmaps. They
are data set agnostic. On system load, each vector has a
label of Li = 0, and all 50 vectors have an equal probability
of being selected. For the first set of recommendations, the
system selects 4 of these pre-generated vectors, which are
then converted into corresponding Draco queries (one query
per vector). Four visualization solutions are requested per
query (4 queries × 4 solutions = 16 solutions total). One
visualization is selected from each set of 4 solutions and
recommended (4 recommendations total).

For each recommended visualization, users can provide
feedback by clicking the More Like This or Less Like This
buttons. Liked visualizations receive a label of Li = 1.
Disliked visualizations receive a label of Li = −1. Each
visualization that is labeled is converted into a vector and
added to the original set of 50 pre-generated visualization

vectors. Note that these visualization vectors are no longer
data-agnostic (i.e., they also include information about the
data dimensions used). For liked visualizations, we also
add the other three visualizations generated from the same
query to the pool of visualization vectors with a label of
Li = 1. This ensured that the system is quick to learn user
likes, particularly initially, when feedback was sparse.

We use a modified PageRank algorithm to calculate the
expected labels of all the vectors based on user feedback.
We first train a Balltree algorithm [56] on the entire set of
visualization vectors. For each vector, we query the model
for its 10 nearest neighbors (N1, N2..., N10), and calculate its
predicted label as the average of these 10 nearest neighbors:

L̂i =

∑10
n=1 Ln

10

Vectors with a predicted label L̂i > 0 are categorized as
preferred. Vectors with a predicted label L̂i < 0 are catego-
rized as not preferred. Vectors with a predicted label L̂i = 0
are categorized as maybe. We then randomly select 2 preferred
vectors and 2 maybe vectors1. Where possible, we avoid
selecting all 4 vectors from the preferred category in order
to prevent premature fixation during recommendation and
exploration. The selected vectors are once again converted
into equivalent Draco queries and used to generate the next
iteration of recommended visualizations. To ensure that the
holistic system is sensitive to changes in user preferences, the
system only stores the most recent 200 visualization vectors
for which the user provided feedback. Additionally, the user
can clear all their labels using the Reset button to default to
the original 50 pre-generated vectors, all with label Li = 0.

1. In some cases, particularly in the initial rounds of recommenda-
tion, some categories may be empty. In this case, we would select from
the next available category. Categories are always selected in the order
preferred > maybe > not preferred. For implementation details, we refer
you to our code repository.
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3.4 Granular Binary Feedback Condition

The granular system asks users to interactively provide
feedback for different features of the visualization specifi-
cation, then iteratively learns user constraints and refines
recommendations based on this feedback. Since the granular
system is largely similar to the holistic system, we will only
detail the differences in this section.

3.4.1 User Interface
The layout of the granular system is identical to the holistic
system with three main sections: the Data panel, the Prefer-
ences panel, and the Recommendations view.

3.4.2 Interactions
Each recommendation in the granular system has the dif-
ferent features of its Vega-lite specification listed as labels
above the visualization (Figure 2). Participants can click on
a label once to indicate that they ‘like’ the feature, and once
more to indicate that they ‘dislike’ the feature.

3.4.3 Preference Learning & Recommendation Generation
In the granular system, we convert visualizations in Vega-lite
specification into vectors using the same process used in the
holistic system. However, since users provide feedback for
parts of the specification separately, it is possible for users to
like and dislike different features of the same visualization.
As such, when converting visualizations into vectors for
the granular system, we drop features of the specification
if no feedback was indicated, or a different feedback (e.g.,
‘like’ instead of ‘dislike’) was provided. Each visualization
can thus be converted into at most two vectors: one with
features of the specification that were ‘liked’ (labeled 1) and
another with ‘disliked’ features (labeled 0).

The recommendation generation process for the granular
system is largely similar to that of the holistic system,
with one minor adjustment made to the granular system
in terms of prediction thresholds. Vectors with a predicted
label L̂i > 0.2 are categorized as preferred. Vectors with a
predicted label L̂i < −0.2 are categorized as not preferred.
Vectors with a predicted label −0.2 <= L̂i <= 0.2 are
categorized as maybe. Note that these thresholds are slightly
different from those used in the holistic system. We had
originally used 0 as the threshold, identical to the holistic
system. However, one of our pilot participants felt that the
system was not learning from their feedback, and some
recommendations were too irrelevant. This was likely due
to the fact that feedback can be relatively sparse in the
granular system (e.g., a user can ‘like’ only the mark used in
a visualization), which meant that predicted labels tended
to be noisier when values were closer to 0. We thus changed
the thresholds to 0.2 and −0.2 for the preferred and not
preferred categories. Label prediction and recommendation
selection are identical to the holistic prototype system.

3.5 Manual Input Condition

Finally, we also implemented a manual input system in
order to compare binary feedback to manual inputs used
in many existing visualization recommenders. The manual
input system uses a shelf-configuration interaction that has

been implemented in many prior tools such as Voyager [8],
Voyager 2 [11], and Tableau. Users provide partial specifi-
cations that are solved to generate recommendations. We
implemented our own manual input system instead of using
the above tools to ensure that design factors, such as layout
and color scheme, are consistent in all conditions.

3.5.1 User Interface
The interface of the manual input system is divided into the
main sections as shown in Figure 2. The leftmost section is
the Data and Encodings panels. This panel displays infor-
mation about the data being analyzed, including dimension
names. Users can create partial specifications here, which
are converted into a Draco query. Four recommendations
are displayed in the Recommendations view (Figure 2B).

3.5.2 Interactions
In this manual input system, users can create partial speci-
fications by dragging data dimensions from the Data panel
and dropping them into the Encodings panel. They can also
specify mark type and aggregates using the respective drop-
down menus. Aggregates are only available for quantitative
variables. Individual encodings can be deleted using the
Bin icon. Users can also reset all encodings using the Reset
button along the top menu. Changes to the Encodings panel
trigger a dynamic update of the system recommendations.
The design of the Pin button is identical to the other systems.

3.5.3 Recommendation Generation
When changes are made to the Encodings panel, the new
partial specification is converted into a Draco constraints
query. Only four visualization solutions are requested per
query. All four visualizations are then rendered in the
Recommendations panel. For constraints with no returned
solutions, the Recommendations panel will display the de-
fault gray background. Note that the manual input system
takes partial specifications directly as provided by users.
The system does not learn any user preferences.

4 USER STUDY

In order to understand how interaction technique and in-
teraction granularity in the different recommender systems
affect data exploration outcomes, we conducted a between-
subjects user study comparing the holistic and granular sys-
tems against the baseline system.

4.1 Pilot
We first recruited 4 participants for the pilot study from
within the lab and through personal connections: 2 partici-
pants tested the holistic system, 1 tested the granular system,
and 1 tested the manual input system. Feedback was used to
make minor adjustments to the systems and the user study.

One pilot participant who had years of visualization ex-
perience used the holistic system and found it too restrictive
compared to manual tools, revealing how expert users may
find like/dislike-based recommendation systems limiting.
We thus tailored recruitment to students at our university
who were not affiliated with the visualization lab (but could
be students in a visualization course). We expected this
demographic of non-expert participants to better fit the
intended users of like/dislike interactions.
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4.2 Participants
We recruited 20 participants through mailing lists within the
university and by word of mouth. The study was conducted
over video conferencing software. Two participants were
excluded from the final analysis due to consistently unstable
internet conditions. Of the remaining 18 participants (8M,
10F), one participant was aged 35+, the rest were aged
20 to 34. We used a between-subjects study design. All
participants received a $10 gift certificate as compensation.

4.3 Data sets
We used a cereals data set2 for researcher demonstrations
and an IMDB movies data set3 for participant tasks. Differ-
ent data sets were used to avoid priming effects. We chose
the movies data set for the participant task because 1) we
expected the data dimensions to be intuitive to participants,
and 2) the data set was sufficiently complex for an open-
ended exploration task. Due to the size of the movies data
set, we included only English-language movies from the 90s
(1990-1999). Data instances (rows) with missing dimensions
were dropped. The final data set had 37788 rows. For the
cereals data set, 5 dimensions and all 77 rows were used.

4.4 Tasks
Participants were asked to explore the movies data set
and identify 5 interesting trends. For each interesting trend
found, they were asked to pin the corresponding visual-
ization. To ensure that participants fully engaged with the
task, they were asked to describe the trends in all pinned
visualizations at the end. We did not provide guidelines or
requirements for findings because we wanted participants
to approach this as a bona fide data exploration task.

4.5 Procedure
Demonstration (10 mins) The researcher provided a demon-
stration of the system the participant would be working
with. The researcher used a data set about cereals that was
not used by participants. Participants were then given time
to ask questions about the system.
Survey (5 mins) The researcher provided the participant
with a link to the system. The participant was given an ID
and asked to provide some demographic information.
Task Description (5 mins) The researcher gave a description
of the task (described above). Participants were given time
to ask questions about the task after the demonstrations.
Task Completion (30 mins) Participants interacted with the
system to complete the task. They were asked to think aloud
while working. At the end, they were asked to review their
pinned visualizations and describe the trends in each.
Debrief (10 mins) Participants were asked follow-up ques-
tions about their experience, such as “How did you decide
to explore certain data dimensions?”

5 RESULTS

We analyzed trends in pinned visualizations quantitatively
and qualitatively. Note that while timing data was collected,
unstable internet connections made fine-grained compar-
isons unreliable. We thus include no timing data here.

2. https://www.kaggle.com/crawford/80-cereals
3. https://www.imdb.com/interfaces/

5.1 Visualization Variety
Participants in the three conditions were compared in terms
of unique marks pinned, mean number of channels per
visualization, unique channels pinned, and unique data
dimensions pinned. The 95% confidence intervals of the
granular and holistic conditions show more overlap, while
the manual input condition appears more distinct. This sup-
ports H2, which hypothesizes that the granular and holistic
recommenders would be similar since they both use bi-
nary feedback. However, when we look at each measure
separately, we reject H1. The manual input system resulted
in lower mean mark types and encoding channels, which
suggests that some specialization has occurred.

Fig. 3: Mean and 95% confidence intervals of unique marks
pinned per participant. Simulation results above.

5.1.1 Unique Mark Types Used
Since each participant pinned five visualizations, the great-
est possible number of unique marks is five – when all vi-
sualizations use a different mark – and the smallest possible
number of unique marks is one – when all visualizations use
the same mark. Participants in the manual input condition
explored the smallest variety of mark types, with only a
mean of 2.83 unique marks in their pinned visualizations
compared to participants in the binary feedback conditions
(holistic=3.33, granular=3.17, Figure 3).

5.1.2 Encoding Channels Per Visualization
In our study, all recommended visualizations used at least
the x and y channels. Additional channels, such as color and
size, could be used to encode more attributes. We analyzed
channel diversity using two measures. The first measure
looked at the mean number of channels used per pinned
visualization. The second measure looked at the number
of unique channels across all visualizations pinned by a
participant (i.e., inter-visualization diversity).

Participants in the manual input condition used the
least number of channels per pinned visualization, with
a mean of 2.53 channels per visualization compared to
participants in the binary feedback conditions (holistic=2.83,
granular=2.80, Figure 4). Similarly, manual input partici-
pants also included the smallest number of unique chan-
nels across all their pinned visualizations, exploring only
3.33 unique channels on average compared to the binary
feedback conditions (holistic=3.5, granular=3.83, Figure 4).

5.1.3 Data Dimension Coverage
Data dimension coverage refers to the number of data
dimensions explored. We found that participants in the
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Fig. 4: Mean and 95% confidence intervals of number of
channels used per visualization and total unique channels
pinned per participant. Simulation results above.

Fig. 5: Mean and 95% confidence intervals of unique data di-
mensions pinned per participant. Simulation results above.

manual input condition included the greatest number of
dimensions in pinned visualizations, exploring a mean of
5.33 unique data dimensions compared to the binary feed-
back conditions (holistic=4.5, granular=4.33, Figure 5). This
is consistent with prior findings that partial specification
input using a shelf configuration interface led to broader
data dimension coverage during exploration [8], [11].

5.2 Random-Input Simulation
To validate that the results are due to user input and not
recommendation system tuning, we also ran simulations
on the holistic and granular systems. Each run simulates
an automated user randomly voting on visualizations. Up
vote, down vote, and no feedback were equally likely. Since
human participants in our study looked at an average
of 32.7 (granular) and 36 (holistic) recommendations, each
simulation run included 9 updates, such that a total of
36 visualizations were recommended and voted on. We
made 10 runs (i.e., users) per system. We see that for
most measures (unique marks, unique channels, and unique
data dimensions), the simulation was more diverse than
user-pinned visualizations. Since simulation results are a
baseline measurement of visualization diversity, these de-
viations align with intuitions that human preferences are
narrower and more specific than random choice. Overall,

this confirms that differences between the three interaction
conditions were due to user input and preferences rather
than specific tuning applied to any one system.

5.3 Embedding Space
To analyze exploration patterns, we visualized the embed-
ding space of pinned visualizations. For each pinned visual-
ization, we took the JSON specification, dropping $schema,
width, height and data.url, then flattened and dummy-
encoded categorical variables. UMAP dimensionality reduc-
tion was used to create a 2D embedding space of all pinned
visualizations (Figure 6).

5.3.1 Encoding Channels Coverage
The most distinct cluster in the embedding space is the
holistic-granular group in the bottom left (Figure 6 V1, V10,
V11, and V12). This cluster includes visualizations that map
categorical variables to the color channel. Notably, there
are no blue points here, suggesting that all participants in
the manual input condition failed to pin visualizations
that map categorical variables to the color channel. This
under-exploration of encoding channels supports our earlier
finding that participants in this condition also used the least
number of channels per visualization.

We also see that the two main clusters of manual in-
put visualizations can be characterized as bar charts about
genre (Figure 6 V3) and point charts about genre (Figure 6
V9). This supports our finding that participants in the
manual input condition explored more data dimensions
than participants who used other systems. The lack of
holistic and granular binary feedback recommenders in these
clusters further indicates that these systems led to an under-
exploration of the genre data dimension in particular.

5.3.2 Mark Type Coverage
Interestingly, Figure 6 did not reveal distinct clusters in
terms of mark type used. Although participants in the
manual input condition explored the smallest mean number
of marks, there is overlap between systems (Figure 3), which
may indicate a smaller difference between them.

6 DISCUSSION

Based on our results and participant feedback, we identified
two trade-offs in how different interaction techniques for
partial specification support different visual data explo-
ration strategies and outcomes. In the following sections,
we discuss these trade-offs in detail.

6.1 Encodings versus Data Dimension Coverage
A recurring finding from our results is the trade-off between
the number of data dimensions and the variety of mark
types and channels used. The holistic and granular conditions
led to more encoding channels and mark types, while the
manual input condition led to more data dimensions used.

Although the difference in mark and channel coverage
could be due to the greater variation in visualizations per
recommendation cycle for users in the holistic and granular
conditions, we found evidence to suggest that using marks
and channels was also more challenging in the manual
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Fig. 6: The embedding space of visualizations pinned by all study participants. Visualizations from the manual input
system are in blue, the holistic system in green, and the granular system in red. Regions in the embedding space are roughly
denoted using dotted lines, and visualizations representative of each region have been highlighted. Visualizations outlined
in gray were explored in more than one system. Interactive figure at https://gracegsy.github.io/VisRecResults/

input condition. Almost all manual input participants tried
changing the mark type in the Encodings panel, but did not
always know how to select from the options available. B4
decided that they were “just going to try everything”, while B5
switched rapidly between multiple different marks “[j]ust to
see if there’s one that worked.” Some participants also avoided
using more channels because they could not predict how the
specification would affect recommendations. For example,
B4 explained that “I do feel like I don’t know size, shape, and
color... I was hesitant to use those features... If you’re a pro, you
probably know what these things are and you know how to get to
what you want.” This sentiment was shared by B1, who said
that “I didn’t [consider using color, size, and shape]. I imagine this
would make things a little more complicated.” Taken together,
their feedback suggests that manual input recommenders
may be better suited to users with the expertise to express
their requirements as relevant queries.

In contrast, since binary feedback recommenders auto-
matically show users a diversity of visualizations without

expecting them to first manually input partial specifications,
participants in the holistic and granular conditions could
explore mark types and encoding channels they were
unfamiliar with. Furthermore, participants in the granular
condition found that the interactive feedback process helped
them learn about partial specifications. G3, for example,
reflected that “It just takes a few seconds to understand... the bin
thing, the field thing, and the type thing.” However, these same
participants in the binary feedback conditions were also less
likely to use diverse data dimensions. In interviews, partici-
pants mentioned being aware of this lack of data dimension
coverage. H1, for example, observed that “it would be cool if
you could see the genre here as well”. H2 went further, saying
that “because of my ‘more like this’ selections, many cool things
were filtered out”. Despite this awareness, participants in
the holistic and granular conditions did not make attempts
to steer recommendations towards under-explored data
dimensions or use the Reset button. Future studies can
explore how trade-offs in data dimension coverage versus

https://gracegsy.github.io/VisRecResults/
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the variety of mark types and channels used might be better
managed in binary feedback recommender systems.

6.2 Exploring Diversity versus Refining Specifications

Participants in our study had two main goals when interact-
ing with the recommendation systems: 1) exploring possible
visualizations, and 2) refining a specification.

Both the holistic and granular conditions helped par-
ticipants explore the diversity of visualizations possible
within a system, particularly in the initial stages when they
may not know the visualizations and trends they wanted
to see. Participants found that this helped them understand
the visualization space, saying that “I like how you have many
options for users to get inspired” (H6) and “It’s like a guided tour
of the data set” (G2). Participants also liked that the binary
feedback recommendation systems helped them learn about
an unfamiliar data set and the partial specification process.
G1 found that “It was a nice starting point in some ways because
there was something already there. Stepping into a data set you’re
not familiar with, it helped me see things I might be interested in
really quickly.” Similarly, G2 agreed that “I feel like because I’m
not very well versed in visualization, getting recommendations
again and again, someone was showing me what I can learn
about the data.” This highlights the advantage of the binary
feedback mechanisms used in the holistic and granular
conditions, which allowed users to steer recommendations
even without extensive domain expertise.

In contrast to exploration, there were also cases where
participants wanted to refine visualizations by making mi-
nor adjustments to the specification. Unsurprisingly, this
was common in the manual input system, since recommen-
dations were dynamically updated after each change to the
partial specification. However, there were similar cases in
the granular system. Most notably, when participant G4 first
pinned a scatterplot (similar to Figure 6 V11), the x-axis
had started at 0. G4 observed that there was overplotting,
commenting that “this graph is very crowded in this corner,
making it very hard to distinguish for the x-axis”. The partic-
ipant then provided feedback before updating the recom-
mendations. In the subsequent set of recommendations, the
same scatterplot was recommended with an adjusted x-axis
(Figure 6 V12). At this point, G4 said “You made progress.
This is the better one. It’s not crowded anymore.” This highlights
the advantage of the manual input and granular systems,
which allowed users to interact with granular components
of each specification separately, such that they can more
precisely indicate their preferences.

The dual tasks of exploration and refinement confirm
findings from prior studies characterizing how "open-
ended tasks may decompose into focused tasks" during
exploratory visual analysis [57]. Here, we supplement this
with participant preferences for using certain interactions
for “open-ended” exploration versus “focused” refinement.
Although the granular system supported both goals, partic-
ipants in this condition found it cumbersome to use the
like/dislike interaction when they knew the exact changes
they wanted. G1, for example, was frustrated that “I can’t
request the variables that I want because I really just want the
rating.” Similarly, G6 felt that “this graph is interesting, but I
want to change one thing.” This suggests that manual input is

the preferred interaction for making specific adjustments,
particularly when users have clear goals. However, by start-
ing with ready-generated recommendations, the granular
and holistic binary feedback conditions were better for
exploring the diversity of possible visualizations and
learning about the partial specification process.

7 LESSONS LEARNED

Finally, we discuss how the interactions affect recommen-
dation multiplicity and comprehension during visual data
exploration. We also discuss the limitations of our study.

7.1 In Search of Multiplicity

Visual data exploration has often been described as a crucial
step in the process of forming questions and hypotheses
about data [1], where “we rely on human pattern-finding abil-
ities to motivate the development of future hypotheses” [5]. Mul-
tiplicity, then, becomes a key concern during exploratory
data analysis [5]. In our study, we saw that participants had
a similar preference for broader coverage when completing
the data exploration task. Participants in the holistic and
granular conditions described how the recommendations
were like “a guided tour”, helping them to “get inspired”,
particularly when they were unfamiliar with the data set
or with partial specification (subsection 6.2).

Perhaps more strikingly, we saw this same desire for
multiplicity in the manual input condition, where partici-
pants in our study did not always input specification de-
tails intentionally. They might, for example, rapidly switch
between multiple mark type options to “try everything” and
find something that works (subsection 6.1). This trial-and-
error behavior appears to be an attempt to obtain a greater
variation of recommendations, suggesting that multiplicity
– maximizing the diversity of visualizations seen – may be
desirable during visual data exploration.

7.2 Enhancing Visualization Comprehension

While both the holistic and granular conditions led to a
greater diversity of marks and channels, it is necessary
to note that this diversity is not always beneficial since it
adds complexity to the visualization and can be confusing,
particularly for non-expert users targeted in this study.
While we aimed to reduce this by asking participants to
state their insight when pinning visualizations, we found
that participants who used the holistic system would still
pin visualizations they later could not interpret (Figure 6
V5 and V10). This indicates that the increased diversity of
mark types and encoding channels seen in the holistic system
did not necessarily correspond to effective use of those
mark types and encoding channels. Furthermore, since none
of these overly-complex (or “meaningless”) visualizations
appeared in the granular and manual input conditions, this
suggests that just the act of interacting with the details
of a visualization specification, regardless of interaction
technique, may be enough to prompt users to think more
deeply about visualization content.
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7.3 Limitations and Future Work
Due to the technical limitations of remote testing, we had
to exclude timing data in our analysis. Furthermore, our
study limited partial specifications to those supported by
the Draco query language. This sufficiently demonstrated
the trade-offs between binary feedback and manual input,
but there exist other types of specifications (such as task
specifications [7], [50]) that remain to be explored. Finally,
the holistic and granular systems in our study are only two
possible implementations of binary feedback recommen-
dation systems. Other implementations varying different
aspects of system design may yet reveal additional trade-
offs and guidelines for visualization recommenders.

8 CONCLUSION

This paper presents a comparative study of how non-expert
users might interactively incorporate their preferences into
partial specifications recommendation systems. We build
and compare three visualization recommendation systems
that compare binary feedback interactions at different in-
teraction granularities to a manual input system. From the
results of our study, we identify differences in data dimen-
sion coverage, mark type variety, and encoding channels
used. We also provide a characterization of trade-offs and
the implications of our findings on visualization multiplicity
and comprehension during visual data exploration.
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