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Abstract

Recent advancements in Large Language Models (LLMs) have led
programmers to increasingly turn to them for code optimization
and evaluation. However, programmers need to frequently switch
between code evaluation and prompt authoring because there is
a lack of understanding of the underlying code. Yet, current LLM-
driven code assistants do not provide sufficient transparency to help
programmers track their code based on the intended evaluation
metrics, a crucial step before aligning these evaluations with their
optimization goals. To address this gap, we adopted an iterative,
user-centered design process by first conducting a formative study
and a large-scale code analysis. Based on the findings, we then
developed MACEDON, a system that supports multi-dimensional
code evaluation in real time, direct code segment optimization,
as well as shareable report displays. We evaluated MACEDON
through a controlled lab study with 24 novice programmers and
two real-world case studies. The results show that MACEDON
significantly improved users’ ability to identify code issues, apply
effective optimizations, and understand their code’s evolving state.
Our findings suggest that multi-dimensional evaluation, combined
with interactive, segment-specific guidance, empowers users to
perform more structured and confident code optimization. The
code for this paper can be found in <link-TBD>.

CCS Concepts

« Human-centered computing — User interface program-
ming; Natural language interfaces.

Keywords

Code Evaluation and Optimization, Code Generation, Programming
Interface, Large Language Models.

1 Introduction

The advent of Large Language Models (LLMs) has led to a paradigm
shift in Al-driven code assistants [13, 20, 30, 61, 64] and brought
transformative changes to programmers’ workflow. Due to the lack
of expertise, novice programmers heavily rely on LLM-driven code
assistants in their workflow to generate or optimize sophisticated
code from natural language (NL) prompts [23, 35, 53]. Instead of
manually reviewing their code, programmers can now declaratively
express their optimization goals to LLMs. However, this approach
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inadvertently overlooks the need for programmers to understand

their code in depth or to conduct direction-oriented strategies for

optimization, which could be challenging for novices when evalu-
ating the quality of their generated code.

Recent research on programmers’ interaction with LLM-driven
code assistants has reflected these challenges for novice program-
mers. Specifically, uncertainty in generated code can lead to effi-
ciency problems during the development process, as programmers
are left to mentally anticipate possible outcomes until the code is
generated, often requiring them to repeatedly refine their prompts
until the desired result is achieved [6, 31, 49, 53]. While understand-
ing the current state of code is crucial for crafting optimization
prompts, a significant gap remains in supporting the complex pro-
cess of forming optimization intentions. Therefore, our paper aims
to explore designs that support the iterative process of LLM-driven
code evaluation and optimization.

To address this gap, we first conducted a formative study involv-
ing six programmers with varying experience levels who regularly
use LLM-based tools for code optimization. Our goal was to in-
vestigate how programmers assess their code and formulate opti-
mization strategies in their existing workflows and the challenges
they encounter. The study revealed a consistent need for structured,
multi-dimensional code evaluation that surfaces aspects such as
clarity, redundancy, documentation, time efficiency, and space effi-
ciency. Participants noted that they often overlooked space usage
or documentation quality unless specifically prompted. They also
expressed the need to selectively optimize individual code segments
without losing control over the broader codebase.

Building on insights from the formative study, we focus on ex-
ploring the practice and design of LLM-assisted code optimization
and evaluation around the following research questions:

RQ1 - Evaluation & Strategy. What evaluation dimensions and
optimization strategies do programmers adopt when working
with LLM-based assistants?

RQ2 - Tool Design & Effectiveness. How can we design effective
tools that support multi-dimensional code optimization, and to
what extent are they useful for real-world programming tasks?

ROQ3 - Generalizability. Can such tools extend beyond novice pro-
grammers and remain effective in more diverse programming
scenarios?
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To answer these RQs, we began by analyzing a large dataset
of over 70,000 real-world code examples from the Performance-
Improving Edits (PIE) dataset to identify five measurable dimen-
sions for code optimization. This analysis provided a foundation
for understanding how programmers evaluate and improve their
code, answering RQ1. To explore effective designs for code opti-
mization (RQ2), we developed MACEDON, a Visual Studio Code
extension that supports multi-dimensional code evaluation and
targeted, segment-specific suggestions. The tool was built based on
three derived design goals: 1) helping users assess their code across
the five dimensions using interpretable scores, 2) offering specific
suggestions such as improving loop efficiency or renaming unclear
variables, and 3) enabling users to apply changes consistently with
minimal manual effort. To further examine whether this design is
effective for real programming tasks (RQ2), we conducted a user
study with 24 novice programmers. The results show that MACE-
DON helped participants evaluate their code easily and make more
effective improvements. Specifically, compared to existing LLM
code assistants, participants completed tasks more efficiently and
produced code with higher expert ratings in clarity, maintainability,
and performance. Furthermore, to explore whether MACEDON
is useful beyond novice programmers (RQ3), we conducted two
case studies in which participants applied the tool to real program-
ming tasks. The case studies show that MACEDON supported users’
goals, helped them organize their codebase, and remained effective
in broader programming contexts.

In summary, our contribution is threefold:

o A formative study and a comprehensive data analysis of optimiza-
tion behaviors and needs when using LLMs for code evaluation
and optimization.

e An interactive tool, MACEDON, developed as a Visual Studio
Code Extension, that supports segment-specific code optimiza-
tions in multiple dimensions, minimizing rework and improving
efficiency.

e A user study and two case studies for assessing MACEDON,
demonstrating its effectiveness in improving code quality and
user experience compared to conventional LLM-based assistants.

2 Related Work
2.1 Generating and Optimizing Code with LLMs

Recent programming workflows have shifted towards leveraging
LLMs for both generating and optimizing code. LLMs like GPT [1],
Codex [13], CodeGen [40], and InCoder [19] can interpret natural
language instructions and produce corresponding code snippets
[17,42, 46]. These models allow developers to specify high-level gen-
eration and optimization goals through natural language prompts,
reducing the time spent on manual adjustments. For example, tools
like GitHub Copilot utilize LLMs to assist developers in code com-
pletion and optimization by understanding the surrounding code
context and generating suggestions [6, 39].

Other LLM-based frameworks have also been developed to ad-
dress different challenges in code generation and optimization. For
instance, ClarifyGPT [36] enhances the code generation process by
identifying ambiguities in user prompts and seeking clarifications,
ensuring that generated code aligns closely with user intentions.
Similarly, the use of reinforcement learning in conjunction with
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LLMs has enabled models to adaptively improve code based on
feedback from test cases, further refining the generated outputs
[15]. CodePlan [5] addresses the challenge of complex repository-
level tasks by using a task-agnostic, neuro-symbolic framework
that frames coding as a planning problem, synthesizing a multi-
step chain of edits through dependency analysis, change impact
analysis, and adaptive planning with neural LLMs. Additionally,
methodologies combining program analysis with LLMs, such as
leveraging GPT-4 for identifying inconsistencies between code com-
ments and their implementation, have shown success in automating
code documentation maintenance and reducing developer effort
[63]. SBLLM [21] combines LLMs with search techniques for it-
erative code optimization, using representative sample selection,
adaptive pattern retrieval, and genetic operator-inspired prompting
to achieve code efficiency improvements. CoLadder [58] provides a
hierarchical structure for decomposing programming tasks, allow-
ing programmers to better align their problem-solving intentions
with LLM-generated code, thus improving the optimization and
modification of code across various abstraction levels.

While prior research has explored the use of LLMs for coding
tasks, as well as frameworks that address ambiguity in prompts and
complex repository-level tasks, our work focuses on the iterative
nature of the code evaluation and optimization process in natural
language programming. Unlike search-based optimization [21] or
task decomposition [58], our approach emphasizes providing pro-
grammers with real-time insights into their code’s status through
a structured interface that facilitates direct, segment-specific op-
timizations. MACEDON uniquely combines visualization of code
state with targeted recommendations, enabling programmers to
efficiently track and improve code quality through a seamless inte-
gration into their workflow. Additionally, our work fills a crucial
gap in supporting programmers’ understanding of their code before
crafting optimization prompts, thereby offering a more comprehen-
sive solution for iterative LLM-driven code optimization.

2.2 Evaluation of LLM-based Code Assistants

Evaluating the correctness and quality of code generated by LLMs
is crucial for understanding their effectiveness in software develop-
ment tasks. Traditionally, benchmarks like HUMANEVAL [13] have
been used to measure functional correctness by running predefined
test cases against generated Python functions. Similarly, MBPP [4]
provides a set of crowd-sourced programming problems with cor-
responding test cases, allowing for a broader evaluation of LLMs’
code generation capabilities. Expanding this to multiple languages,
MultiPL-E [11] and HumanEval-X [65] translate these benchmarks
to multiple other coding languages, enabling cross-language evalua-
tions for models like Codex and CodeGen. For competitive program-
ming, AlphaCode [30] uses complex challenges from Codeforces to
test problem-solving capabilities, while Spider [59] assesses text-
to-SQL conversion tasks. These benchmarks focus on determining
whether the generated code meets specific functional requirements.
EvalPlus [32] addresses the limitations of traditional benchmarks
by generating a larger set of test cases through automatic test input
generation, significantly expanding the scope of testing. Beyond
isolated function synthesis, other benchmarks such as SWE-bench
[25] focus on real-world software engineering tasks, where LLMs
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must resolve issues in complex codebases involving multiple files
and components. SWE-bench evaluates LLMs by providing them
with GitHub issues and corresponding codebases, requiring models
to generate code patches that resolve the issues while passing the
associated test cases.

Our work differs from these approaches by emphasizing the
integration of real-time feedback and iterative evaluation during
the code optimization process. While traditional benchmarks fo-
cus on assessing functional correctness through static test cases,
our system, MACEDON, offers a dynamic, user-centered approach,
allowing programmers to evaluate their code’s state across mul-
tiple dimensions and refine it interactively with the support of
LLM-driven recommendations. This approach bridges the gap be-
tween one-off code generation and the ongoing process of code
refinement, offering a more practical solution for real-world pro-
gramming tasks.

2.3 Traditional Code Analysis and Optimization
Tools

Traditional approaches to code improvement have evolved through
systematic analysis and transformation methodologies, encompass-
ing both performance optimization and code refactoring techniques.
Performance analysis tools like HPCToolkit [2] and Speedoo [14]
collect runtime data to identify bottlenecks and prioritize opti-
mization opportunities, while automatic performance regression
detection systems [27] help maintain code efficiency over time.
These tools provide valuable insights into execution characteristics
but operate as separate analysis phases, requiring programmers
to compile, execute, and analyze their code outside of the devel-
opment workflow. Similarly, static analysis and refactoring tools,
including ESLint [60], JDeodorant [52], and IDE-integrated capa-
bilities in IntelliJ [22], offer automated code transformations and
style enforcement based on predefined rules and patterns. While
these tools excel at maintaining code consistency and applying
well-established refactoring patterns [37, 41], they lack the con-
textual understanding and adaptive guidance needed for complex,
domain-specific optimization tasks that require understanding of
programmer intent and code semantics.

Recent advances in machine learning for code analysis have
introduced new capabilities for automated code improvement. Neu-
ral program repair systems [54] and learning-based performance
optimization [48] demonstrate Al-driven code enhancement. Mixed-
initiative IDE research like Grounded Copilot [6] and in-IDE code
generation [56] explore Al assistance in development environments.
These approaches focus on code generation rather than evaluation
and optimization workflows. Programmers still need real-time in-
sights into their code’s state across multiple dimensions. The chal-
lenge remains in providing programmers with real-time insights
into their code’s current state across multiple dimensions before
they can effectively craft optimization strategies, as highlighted by
quantitative assessments of development techniques [43].

Our work addresses these gaps by combining real-time, multi-
dimensional code evaluation with interactive optimization. Unlike
performance tools that require separate analysis phases, MACE-
DON provides immediate feedback during programming. While
static refactoring tools use predefined rules, MACEDON uses LLM

capabilities for context-aware optimizations. This integration of
evaluation and optimization in one interface advances beyond tools
that treat these as separate processes.

3 Design Process & Goals

We conducted an iterative user-centered design process to create
MACEDON. The design process included three key stages: 1) Under-
standing & Ideation—involving an interview study with experienced
programmers to uncover challenges and strategies in code opti-
mization using LLM-driven tools; 2) Prototype & Walkthrough—the
design and development of MACEDON, informed by the insights
gained, followed by a cognitive walkthrough for feedback and iter-
ative refinements; 3) Deploy & Evaluate—a user study to assess how
programmers interact with the system and its perceived usefulness
in streamlining code optimization. In this section, we describe the
first stage of our design process, outlining the strategies and design
goals that guided the development of MACEDON.

3.1 Interview Process

We recruited six participants (4 males, 2 females; ages 20 — 27, M =
23.5,5D = 1.2) with different levels of programming experiences
through purposive sampling [16] for our interviews. Our goal was
to engage participants who were both experienced in programming
and familiar with LLM-driven code optimization tools. During the
recruitment process, we conducted a pre-test survey to screen for
eligibility, measuring programming experience on a 5-point scale
[1: very inexperienced; 5: very experienced], years of programming
experience, and self-reported familiarity with code optimization
tools driven by LLMs. Three participants are novice programmers
with only around one year of programming experience while the
other two have at least five years.

They were all familiar with programming (score M = 4.17,SD =
0.41), and regularly used LLM for code optimization purpose (M =
7.5,SD = 2.10 times/week). Participants gave consent and were
compensated 20 CAD for a 60-minute study session.

Before the study, participants were asked to share their recent
examples of ChatGPT usage for optimizing the code to nudge them
to reflect their optimization strategies with LLM-code optimization
tools. During the session, we interviewed participants to explore
their challenges in understanding and evaluating the state of their
code, translating them to optimize the code further, and their strate-
gies for addressing these challenges and their needs. All interviews
were audio-recorded and transcribed. We then performed thematic
analysis [50] using both inductive and deductive approaches. Based
on our analysis, we identified and categorized key themes and
strategies employed by participants. Any disagreements were re-
solved through discussion, leading to final themes after a second
iteration of analysis.

3.2 Interview Results

Here, we present our findings on the workflows that participants
adopted during the code optimization process and the challenges
they encountered.

3.2.1 Multi-Dimensional Code Evaluation. We observed that par-
ticipants’ approach to optimizing code involved two key aspects.
First, programmers needed to assess the current state of their code



across multiple dimensions, such as clarity, efficiency, and readabil-
ity, which was crucial to determine “where the code falls short and
what needs to be improved.” -P2 Second, they had to explore how
to implement optimizations in a way that addressed those specific
shortcomings. However, participants encountered challenges with
the lack of transparency in optimization recommendations, which
made it difficult to understand how certain changes impacted their
code. P4 noted, “It’s hard to know if the optimization is improving
performance or just adding complexity”. To alleviate cognitive load,
every participant adopted a similar strategy to break down the
optimization process into smaller, manageable steps.

Six participants suggested that having a structured approach to
multiple dimensions would make the optimization process more
efficient. P4 emphasized, ‘T usually start with time efficiency, then
clarity and documentation to ensure everything is readable and well-
organized.” Additionally, two participants mentioned that they
would easily overlook space usage and redundant code, which
could affect others’ ability to read the code efficiently. For example,
P2 noted, “Tdon’t always think about space efficiency unless flagged.”
P6 added, “It’s only after someone struggles with reading my code
that I realize how important reducing redundancy is.” Thus, a multi-
dimensional code evaluation approach is needed to optimize code
in a systematic and organized manner.

3.2.2  Facilitating Direct Code Segment Optimization. Participants
expressed challenges in managing large amounts of code, leading
to a sense of control loss over the optimization process, where
participants expressed the desire to “optimize the code dimension
by dimension”-P2. Some (4/6) participants expressed frustration
with the system applying changes across the entire code at once.
Participants preferred direct manipulation of individual code seg-
ments based on specific priorities, such as time performance or
clarity improvements. P5 explained, ‘I prefer to fix one section at a
time; it helps me see exactly what’s being changed and why.” Partici-
pants (4/6) reported frequently using an alternative strategy where
they optimized self-contained code segments independently before
integrating them into the broader codebase. P4 noted, ‘T prefer op-
timizing each part separately and then merging them so I can see
the overall improvements gradually.” Another common approach
involved selecting and optimizing specific segments of code based
on previous runs, enabling programmers to refine code in targeted
areas without affecting other sections. However, P5 also outlined
this tedious process of preserving and comparing the newly opti-
mized code and original code, ‘T have to keep track of which parts
are optimized and ensure they don’t conflict with the rest of the code.”

3.2.3 Real-Time Feedback for Iterative Code Optimization. All par-
ticipants expressed frustration with the constant switching between
evaluating their code and applying optimizations, which often led
to cognitive overload. P2 shared, “Sometimes I need to stop and evalu-
ate if the optimization worked; it breaks my flow and makes the whole
process slower.” P5 agreed and mentioned that it was “frustrating
to go back and forth between evaluation and deciding whether to
make changes.” However, we observed that participants preferred
real-time feedback during the process, which helps them quickly
verify “whether the code change is accurate” -P4. Some participants
even described the benefits of iterative code optimization for each
small code segment. P4 noted, ‘T often focus on the areas that require
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the most attention first and do iterative prompting until it works.” The
iterative method of refining individual sections allowed participants
to remain in control of the process, avoiding broad changes that
might affect the entire codebase and ensuring each adjustment was
aligned with their optimization goals.

3.3 Design Guidelines

Based on the interview results, we derived the following design
guidelines to drive the development of MACEDON.

DG1: Providing Multi-Dimensional Feedback for Code Eval-
uation. A lack of comprehensive evaluation across different met-
rics can prevent programmers from fully understanding the state
of their code. The system should offer multi-dimensional feedback,
such as performance, readability, and clarity, to help users better
understand the strengths and weaknesses of their code. This evalu-
ation should be presented in a structured and organized manner,
allowing programmers to externalize their thought processes and
refine specific areas of the code based on the feedback. Flexible feed-
back options should reflect the various dimensions programmers
need for code optimization.

DG2: Facilitating Direct Code Segment Optimization. Pro-
grammers often feel a loss of control when working with large
amounts of code that require detailed optimization. The system
should support direct manipulation of specific code segments, en-
abling users to select and modify areas for improvement based on
their priorities. It should also allow programmers to reorganize or
refine their code incrementally, providing the ability to test and
apply optimization recommendations to one segment at a time,
instead of overwhelming them with global code changes.

DG3: Integrating Real-Time and Interative Code Evalua-
tion with Optimization Suggestions. Programmers often face
cognitive overload due to the constant need to switch between code
evaluation and applying optimizations. The system should integrate
real-time feedback with iterative suggestions, allowing program-
mers to continuously assess their code and apply optimizations
without disrupting their workflow. By providing timely, contextual
feedback during the optimization process, the system can guide
users in refining their code in a smooth, iterative manner.

4 Define Code Evaluation Method

The insights of our formative study led to the investigation of our
RQ1 regarding evaluation dimensions and optimization strategies
that programmers normally use. As indicated by DG1, we decided
to evaluate the C++ code on five key metrics: redundancy, docu-
mentation, clarity, time efficiency, and space efficiency.

4.1 Data Collection

We utilize the Performance-Improving Edits (PIE) dataset [48] con-
taining human-programmer optimizations from competitive pro-
gramming tasks in CodeNet [44]. We selected C++ as our target
language due to its prevalence in performance-critical applications
and compatibility with benchmarking tools like the Gem5 simulator.
C++ submissions typically emphasize fine-grained optimizations,
making them ideal for analyzing time and space efficiency metrics.
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Figure 1: Distributions of key metrics: clarity, redundancy, time efficiency, space efficiency, and documentation in PIE dataset.

To ensure data quality, we filtered submissions to include only
C++ programs that passed all test cases and met runtime constraints.
Each program was paired with its performance-improved version,
enabling comparative analysis. We used the Gem5 simulator to nor-
malize execution times, eliminating inconsistencies in raw runtime
data. The resulting dataset contains 77,967 pairs of functionally
correct programs across diverse problem domains.

4.2 Data Analysis and Results

4.2.1 High-Quality Code Characteristics. We began the analysis
by describing the general characteristics of these C++ codes and
deciding what parameters needed to be used in a five-dimensional
framework. Programs in the PIE dataset demonstrate strong per-
formance across all five optimization dimensions (Figure 1). Most
programs exhibit high clarity (fewer than 10 issues per file) and
low redundancy (fewer than 5 redundant constructs), indicating
well-structured and efficient code. Space and time efficiency met-
rics cluster around optimal values, while documentation scores fall
within moderate ranges (0.1-0.3).

4.2.2  Multi-Dimensional Code Quality Analysis. Table 1 presents
our analysis of five key metrics across the PIE dataset. The results
reveal distinct patterns:

Clarity: 58.65% of files contain fewer than 10 clarity-related
issues, indicating generally well-structured code.

Redundancy: 32.36% of files show moderate to high levels of
redundant constructs, suggesting optimization opportunities.

Space Efficiency: 19.19% of files consume significantly more
memory than average, highlighting areas for memory optimization.

Documentation: 6.30% of files demonstrate high semantic align-
ment between code and documentation, while 5.60% show minimal
documentation efforts.

Time Efficiency: 1.41% of files achieve exceptional performance,
representing solutions that excel across all metrics.

4.2.3 Evaluation Strategies Align with the evaluation framework. In-
spired by recent prompting strategies [62] and offline reinforcement
learning(offline-rl) techniques [12], we introduced performance
tags to evaluate C++ programs. This tagging scheme enables us to
track how programmers adjust their optimization strategies over
time. For time efficiency, we assigned tags by associating each “fast”
program with an indicator of its optimal achievable performance
across all solutions in the dataset. Specifically, the tag represents
how close a program is to peak performance on a binned scale from
1 to 10, with the top 10% of optimized solutions for a given task
labelled as “10/10,” the next 10% as “9/10,” and so on. Similarly, for
space efficiency, tags are assigned based on memory usage during
execution, with the top 10% of most memory-efficient solutions
labeled “10/10.” the next 10% as “9/10.” and so on. This reflects how
efficiently a solution uses resources.

As shown in Table 1, for other metrics (clarity, redundancy, and
documentation), which lack direct quantitative parameters, five
members of the research team analyzed the code files to identify
specific evaluation parameters within each category. For clarity,
we assess magic literals, naming consistency, and statement length
based on static analysis. For documentation, the distribution was
calculated embedding- based semantic similarity between code and
documentation. Redundancy detection identifies duplicate code
constructs and unnecessary operations(e.g., code constructs re-
dundancy, dead code, and unused code). These thresholds follow
established methods in code quality evaluation [14, 47], ensuring
our scoring framework aligns with industry standards. Each fac-
tor is converted to its percentile rank in the training set, with
lower-is-better measures (runtime, memory, redundant lines) in-
verted (see Table 1 for formulas and before/after examples). These
percentiles are combined with predefined weights and then rounded
up to a 1-to-10 scale by computing [10 X perc].

The final step applies the same ten-group scale: the top 10%
for any metric score 10, the next 10% score 9, and so forth. This
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Table 1: Evaluation methods, formulas, and optimization examples for each dimension. Notation: perc(-) returns a training-set
percentile rank in [0, 1]; Texec is execution time; Mysqqe is peak memory usage; Redundant;;p.; counts duplicate/dead lines. For
clarity, f; are style factors with weights w; (3); w; = 1). For documentation, S, is the cosine similarity between a code segment
and its accompanying natural-language documentation (e.g., CodeBERT embeddings). The ceiling operator [-] maps the 0—1

value onto the common 1-10 rubric (top 10% receive 10).

Metric Formula Evaluation Method Examples (Original — Opti-
mized)
Time Efficiency  Score = |—10 . (1 - perc(Texec))] Algorithmic complexity and runtime be- pow(x, 2)
havior — X * X
Space Efficiency Score = |—10 (1= perc(Musage))] Memory footprint and data structure us- vector<vector<int>>
age mat(n, vector<int>(n, 0))
— vector<int> mat(n * n,
0)
Clarity Score = [10 . (1 -2 Wi perc(ﬁ))-‘ Magic literals, naming consistency, and int a = 9;
statement length — int sum = 0;
Descriptive names and magic number int f(int x);
avoidance — int computeSquare(int
x);
Documentation  Score = [10 - perc(Ssim) | Embedding-based semantic similarity // calculate result
between code and documentation — //  Computes  total
revenue from all entries
Redundancy Score = |—10 . (1 - perc(Redundantli"es))] Duplicate code and dead code detection for (...) print(x);

for (...) print(x);
— for (...) print(x);

common rubric keeps all five metrics on a comparable 1-10 scale
and aligns them with industry standards.

5 MACEDON: Design and Implementation

The results of our formative study and data analysis confirmed the
need for multi-dimensional code evaluation and optimization. This
led us to design and develop MACEDON, addressing the first part of
RQ2, which aimed at assisting novice programmers in improving
their code efficiency, readability, and maintainability via the multi-
dimensional framework.

5.1 System Architecture

The MACEDON system consists of two main components: 1) a
client-side UL, implemented as a Visual Studio Code (VS Code)
extension using TypeScript, and 2) a server-side backend, developed
in Python and Flask.

The client-side program is responsible for rendering the UI and
tracking user interactions with the code editor. The client-side
component is responsible for rendering the optimization dashboard
and tracking user interactions within the code editor. When a user
modifies a code segment, MACEDON sends the updated content to
the server-side program via HTTP requests for real-time evaluation.

The server-side processes the code using a multi-dimensional
analysis framework that evaluates performance, readability, redun-
dancy, and documentation quality. For performance optimization,
the server utilizes benchmark-based profiling and heuristic-guided
transformations to suggest improvements. For readability and re-
dundancy detection, MACEDON employs a static analysis pipeline
to identify redundant constructs and enhance clarity. Additionally,

for documentation generation, MACEDON integrates natural lan-
guage processing (NLP) techniques, extracting context from the
code and generating inline explanations. The system also supports
cascading updates, ensuring that optimization changes propagate
across dependent code segments for consistency.

5.2 User Interface Design

Figure 2 shows the Ul of MACEDON as a VS Code Extension, which
comprises two main Ul components.

The Evaluation Dashboard presents a multi-dimensional analysis
of the code in real time, covering key dimensions including time
efficiency, space efficiency, clarity, redundancy, and documentation
(Figure 2.A). Each dimension is visualized with a unique color (red
for time efficiency, purple for documentation, blue for clarity, green
for space efficiency, and pink for redundancy), enabling users to
quickly identify which aspects of the code require attention.

The Optimization Dashboard provides a prioritized list of ac-
tionable suggestions based on the real-time evaluation results (Fig-
ure 2.C). Suggestions are grouped by dimension and ranked by
impact, offering users a clear entry point for making improvements.
When a user clicks on a suggestion, an optimization panel appears,
showing the original code, the proposed change, and the rationale
behind it (Figure 2.C). Users can accept changes with a single click
or further customize them. For example, they may rename a vari-
able to enhance clarity or replace a nested loop for improved time
efficiency.
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Figure 2: MACEDON is an extension of the Visual Studio Code. It provides three basic dashboards: (A) Evaluation Dashboard
provides the current score of their code in five dimensions(clarity, documentation, redundancy, time efficiency, and space
efficiency); (B) a button for user to trigger Optimization Dashboard; (C) Optimization Dashboard provides a prioritized list of
actionable suggestions based on the real-time evaluation results in each dimension.

5.3 Approach for Multi-Dimensional Code
Evaluation and Optimization

5.3.1 Code Evaluation. Our formative study suggests that the sys-
tem should support structured, multi-dimensional code evaluation,
covering key aspects such as performance, readability, redundancy,
space efficiency, and documentation quality to provide program-
mers with a comprehensive understanding of their code.

Some types of code evaluation can be directly derived from static
analysis, allowing for automated assessments. For example, clarity
can be analyzed using Clang-based static analysis, identifying areas
where variable naming, indentation, or code structure could be
improved for better readability. Similarly, time efficiency and space
efficiency can be assessed through runtime profiling, where CPU
execution time and memory consumption are monitored to detect
performance bottlenecks and inefficient memory usage.

Other types, including redundancy and documentation quality,
require deep learning-based approaches to capture more abstract
patterns. MACEDON leverages embedding-based similarity analy-
sis to detect redundant code structures by comparing functionally
similar but structurally different code blocks. For documentation
evaluation, MACEDON uses a semantic similarity model to analyze
the alignment between existing code comments and the correspond-
ing implementation, identifying areas where documentation is in-
complete or inconsistent. Through this hybrid evaluation approach,
MACEDON provides targeted optimization recommendations while

maintaining a balance between automated insights and user-driven
refinements.

Deep Learning Approach: We propose a deep learning ap-
proach to detect code redundancy and evaluate documentation
quality. For redundancy detection, our method leverages a hybrid
embedding model that captures both syntax and semantics by pro-
cessing Abstract Syntax Trees (ASTs) alongside tokenized code. This
multi-level analysis enables the detection of identical fragments as
well as functionally similar yet structurally diverse code. We trained
a Graph2Seq [57] model on 8,500 manually- and automatically-
labeled code pairs using contrastive loss over 120 epochs on an
H100 GPU cluster. Our approach achieved an F1-score of 87.3%,
outperforming traditional token-based (72.5%, e.g., CCFinder [26])
and AST-based (81.2%, e.g., Deckard [24]) methods.

For documentation quality evaluation, a transformer-based model
(e.g., CodeBERT) was fine-tuned on 12,000 code-comment pairs,
including synthetic paraphrased data. This model assesses whether
inline comments and docstrings adequately explain the correspond-
ing code. Evaluated with BLEU, METEOR, and BERTScore metrics,
the model achieved a BERTScore of 0.84, demonstrating its ability
to capture semantic relevance even when lexical differences exist.

A qualitative analysis on 50 random code snippets indicated that
while our model occasionally overestimates redundancy in boiler-
plate code and under-scores concise but sufficient documentation,
it generally distinguishes between necessary repetitions and truly



redundant patterns, as well as highlights missing explanations for
complex logic.

Statistic Anaysis Approach: Our formative study shows that
key aspects of code quality—clarity, time complexity, and space com-
plexity—can be effectively evaluated using static analysis without
deep learning.

We use Clang-based static analysis to identify readability is-
sues such as inconsistent naming, deeply nested loops, hardcoded
values, ambiguous function names, and poor indentation. Clang’s
AST parsing also detects complex control structures and suggests
refactoring strategies.

Time complexity is estimated by profiling loop structures and
function calls. By analyzing the AST, our system extracts nested
loops, recursion, and dependencies to approximate computational
complexity based on known algorithm patterns. A cost-modeling
approach further estimates execution time from static operation
counts, eliminating the need for runtime profiling.

Space complexity is assessed by examining memory allocations.
Our analysis tracks variable sizes, pointer usage, and dynamic allo-
cations through Clang’s type analysis, distinguishing between heap
and stack usage. Redundant copying and memory leaks are flagged,
with recommendations for optimizations such as pass-by-reference
or in-place modifications.

This integrated static analysis framework offers a lightweight yet
effective method for evaluating code quality and can be extended
to other programming languages by adapting AST parsing and
memory tracking techniques.

5.3.2  Code Optimization. We fine-tuned a transformer-based model,
Qwen-Coder!, for multi-dimensional code optimization using a tar-

geted dataset rather than large-scale data. Instead of relying on

intuitive few-shot in-context learning, we adopt a prefix-tuning

supervised approach by clearly stating the desired optimization

dimension (e.g., “Clarity:”, “TimeEfficiency:”) in the prompt.

For data preparation, we curated approximately 500-800 code
edits from public GitHub commits. Each commit was filtered using
heuristic keywords (e.g., “refactor,” “speed up,” “optimize memory,”
“remove duplication,” “improve docs”) and manually validated to
ensure the edits reflected genuine improvements across five di-
mensions: clarity, time efficiency, space efficiency, redundancy, and
documentation.

We fine-tuned a single multi-task model over 60 epochs (batch
size 16) with early stopping on a single H100 GPU. The unified
model learns dimension-aware code transformations, allowing users
to steer the optimization by specifying the target dimension in
the prompt during inference. This design supports local, iterative
deployment, where developers receive real-time, tailored code im-
provement suggestions.

Evaluations were conducted using both quantitative and qualita-
tive metrics. For clarity, the Maintainability Index (MI) increased
from 68.2 to 81.7, while Cyclomatic Complexity (CC) dropped from
4.6 t0 3.1 on a test set of 100 samples. Time efficiency improvements
included an average 1.82x speedup, with 63% of cases showing re-
duced algorithmic complexity (e.g., from O(n?) to O(n log n)). Mem-
ory profiling revealed an average reduction of 27.4% in memory
usage. Redundancy metrics showed a 42.5% decrease in redundant

!https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
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code lines, and documentation quality, measured using a fine-tuned
CodeBERTScore model, improved to a BERTScore of 0.842, outper-
forming standard models.

The MACEDON dashboard integrates these metrics—performance,
clarity, and redundancy—allowing programmers to visualize and
directly manipulate their code quality assessments.

5.3.3 Facilitating Code-Optimization Correspondence. MACEDON
offers features that enable programmers to navigate various code
optimization suggestions while maintaining alignment between
the code and its corresponding feedback blocks (DG3).

Showing Corresponding Code. The code editor highlights rel-
evant code segments based on the selected optimization suggestion.
Each optimization dimension, such as performance, readability, or
space efliciency, is represented with a distinct color. For example,
clarity issues may be highlighted in blue, while space efficiency
suggestions appear in purple. This ensures that programmers can
quickly identify which part of the code relates to a specific opti-
mization, with other code sections folded to reduce visual clutter.

Dependency Highlight and Updates. When code segments
are modified, Macedon triggers related updates across dependent
code sections, ensuring consistency. These dependent code seg-
ments are highlighted in distinct colors based on the type of update,
with opacity indicating the relevance of each segment to the orig-
inal suggestion. For example, renaming a variable will not only
update that specific segment but will also highlight related usages
throughout the code, with clearer visibility on more relevant in-
stances. This helps the programmer track how a single change
impacts the rest of the code, maintaining consistency across the
entire codebase.

6 User Evaluation

To further investigate RQ2 regarding MACEDON’s effectiveness,
we conducted a within-subject controlled experiment which aimed
at understanding (1) how well it facilitates code optimization across
multiple dimensions and (2) how programmers perceive the multi-
dimensional optimization strategy.

6.1 Participants

We recruited 24 novice programmers (16 males, 8 females; MD = 20,
SD = 3.54) to participate an in-lab user study evaluating the MACE-
DON. All participants had less than one year of programming expe-
rience and C++ proficiency scores of 2 or lower on a 5-point scale
(MD = 1.42,SD = 0.51). To ensure familiarity with LLM-based code
assistants (e.g., GitHub Copilot), we screened participants using a
self-assessed 5-point Likert scale measuring familiarity (MD = 4,
SD = 0.74) and required prior experience with code generation us-
ing such tools, which participants reported using regularly (MD = 8
times/week, SD = 2.56). We used a snowball sampling approach
to recruit participants, where we sent recruitment messages to
friends, colleagues, and various university mailing lists. We then
asked participants to refer their friends and colleagues. Following
the tests, we conducted semi-structured interviews and distributed
questionnaires to gather user feedback.

6.2 Study Protocol
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A within-subject design was employed. Participants’ task was to
evaluate and optimize a C++ code given by us. The task focused
on evaluating MACEDON’s core feature—multi-dimensional code
optimization. Without being explicitly provided with guidance on
editing, participants were asked to improve their code until all
five quality scores (clarity, documentation, redundancy, time effi-
ciency, and space efficiency) reached > 8. This setup avoids bias and
preserves open-ended exploration while ensuring comprehensive
evaluation across all dimensions. To simulate a realistic develop-
ment context, participants were told that they were optimizing the
code for the purpose of sharing code for their professor or inter-
viewer who needs to evaluate their code and give them scores. Each
participant is asked to finish two sessions, one with the MACE-
DON support and one with Copilot. We prepared two draft C++
codes, one for each session. The two experimental C++ code are
adapted from Github. The two C++ codes have a similar length and
a similar level of difficulty. To counterbalance the order effect, we
randomized the order of the Copilot condition and the MACEDON
condition for each participant, so some participants encountered
MACEDON in their first session, and some others experienced it in
their second session. This way, we could investigate the capabilities
of MACEDON from multiple perspectives more thoroughly.

Each session was limited to 30 minutes to finish one session. We
conducted three pilot runs in which all pilot participants were able
to complete the tasks within 20 minutes, with MACEDON or with
Copilot. Prior to the MACEDON condition session, participants
were given a 2-minute quick demo of MACEDON ’s interface and
features. All study sessions were conducted remotely over a video
conferencing tool. We asked participants to share their screens
and we video recorded the entire session with their permission.
After completing both sessions, we conducted a post-study semi-
structured interview to gather qualitative feedback. Participants
were asked questions such as “How did MACEDON ’s evaluation
and optimization compare with the baseline tool in helping you
improve code?” and “Which optimization dimensions did you find
most useful or challenging?” Additionally, participants were encour-
aged to share their reflections on system usability, tell their stories,
and experience outside these structured questions. The interview
sections of the video recordings were transcripted into text.

6.3 Data Collection and Measurement

We collected three types of data sources: the screen recordings and
observational notes for each session, the final optimized code arti-
facts from each session, and the post-task questionnaire responses
and interview transcripts.

Our first group of measurements focuses on behavioral data ex-
tracted from session recordings. For each session, we recorded the
task completion time (in seconds). In the condition with MACEDON
support, we also counted: how many times a participant triggered
MACEDON (e.g., clicked on a specific optimization tag); how many
times the participant adopted a suggestion generated by MACE-
DON (code lines directly modified using system suggestions); how
many times the participant ignored the system-generated recom-
mendation and manually edited the code (manual optimizations);
and how many times the final version of the C++ code is co-created
by users and MACEDON.

Second, to evaluate the quality of the final C++ Code artifact, we
define our second group of measurements by counting: the number
of lines changed and the total number of tokens changed by MACE-
DON or Copilot, the total number of tokens changed by humans,
as these three are indicators of the quantity and effort each partici-
pant spent on the C++ Code. In addition, we asked participants to
rate their own satisfaction with the final optimized code for each
condition using a 5-point Likert scale (-2 to 2). To objectively assess
optimization quality, we asked two C++ experts (C++ Program-
ming Years: MD = 10.1 years, SD = 2.34) to rate the C++ code-level
quality using a 3-dimensional rubric measuring improvements in
readability, maintainability, and performance. Each dimension was
scored on a scale from -2 to 2. Two experts iteratively discussed
and evaluated the C++ code until the independent ratings achieved
an agreement (Krippendorft’s alpha: @ = 0.76). The result of this
analysis is reported in Table 2.

Finally, we asked the participants to finish a post-experiment
survey (5-point Likert Scale, -2 as strongly disagree to 2 as strongly
agree) to assess participant perceptions of MACEDON across mul-
tiple factors, including usability, accuracy, trust, satisfaction, and
adoption propensity based on [55]. These survey results are sum-
marized in Figure 3. For the interview transcripts, three researchers
of this project conducted an iterative open coding method to get
the code, theme, and representative quotes as another group of data.
They each independently coded a subset of interview transcripts
and discussed the codes together. Through iterative discussion and
re-coding, we applied the codes and themes to their assigned code
samples. Some examples of the identified themes include: pros and
cons of MACEDON, experiences with specific optimization dimen-
sions, preference of the multi-dimensional code evaluation and
optimization approaches, expectations for future adoption, and sug-
gestions for system design improvement. These qualitative insights
are reported with quantitative findings to provide a comprehensive
view of user experience with MACEDON.

6.4 Results

In this section, we present the results of our user study, focusing on
how MACEDON improves participants’ performance on the task,
how participants perceived the multi-dimensional code evaluation
and optimization methods in MACEDON, and how participants
described the usability and effectiveness of MACEDON.

6.4.1 MACEDON Supports Participants to Easily Optimize the Code.
Our study shows that MACEDON improved participants’ code
optimization performance by reducing task completion time and
enhancing the satisfaction of the final code.

We conducted a two-way repeated measures ANOVA to ex-
amine the effect of tool usage (with MACEDON or with Copilot)
on task completion time. As shown in Table 2, participants com-
pleted the optimization tasks significantly faster with MACEDON
(M =421.17, SD = 112.45) compared to the condition using Copilot
(M = 548.33, SD = 108.61). Besides, there was not significant effect
of codes was found on task completion time.

The post-experiment survey result further supported our find-
ings. Most participants agreed that MACEDON helped them finish
the task with MACEDON’s help (23 out of 24 rated agree or higher),
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Table 2: Performance data in two conditions (M: mean, SD: standard deviation): the task completion time (secs), participants’
satisfaction with the final code artifact (from -2 to 2), code quality, number of line, and number of tokens. In particular,
participants spent less time to complete the task in the MACEDON condition than the Copilot condition (p = .001); participants
were more satisfied with the final Code in the MACEDON condition than the Copilot condition (p = .001).

Condition M SD

MACEDON  20.54 1.41

Number of Line changes

Copilot

17.21 2.90

MACEDON  85.57 8.89

Number of token changed by tools

Copilot

92.26 10.24

MACEDON  35.62 17.81

Number of tokens human changes

Copilot

57.32 29.64

MACEDON  421.17  112.45

Task Completion Time (secs)

Copilot

548.33 108.61 0 100 200 300 400 500 600 700

MACEDON 0.99 0.49

Satisfaction with the Final C++ Code (-2 to 2)

Copilot

0.62 0.77

~
|
o

MACEDON 1.72 0.41

Expert Rating: Readability (-2 to 2)

Copilot

1.66 0.48

MACEDON 0.86 0.38

Expert Rating: Maintainability (-2 to 2)

Copilot

0.75 0.69

MACEDON 0.78 0.71

Expert Rating: Performance (-2 to 2)

Copilot

0.67 0.48

|
~
|
-
o
-
~

as shown in the Figure 3. Participants also found the code eval-
uation and were accurate (19 out of 24). Participants noted that
the integration into VS Code and the dimension-tagged interface
enabled them to optimize specific code segments directly, thus it
was easier for them to start optimizing the code: “It’s not just about
fixing bugs, it shows me where things can improve — like this loop
can be faster.” -P4

6.4.2 Multi-dimensional Code Evaluation in MACEDON Yields Bet-
ter Quality of Code and Improves Accuracy and Readability. Through
coding the video recordings for two sessions, we were able to exam-
ine the following questions: While the MACEDON was available,
how did the participants use it, especially multi-dimensional code
evaluation during code optimization? Did they check the evaluation
scores from MACEDON when optimizing the code? Did they actu-
ally use those code recommendations under different dimensions
when optimizing the code? Did they adopt them directly, or did
they revise them for their specific needs?

Based on our findings, when MACEDON was available, most
participants (83.3%) viewed evaluation scores at first by clicking on
the MACEDON extension in the Visual Studio setting. Most partic-
ipants (91.7%) not only checked these scores, but also opened the
recommendation panel linked to the evaluated dimension generated
by MACEDON.

We also found that each participant triggered recommendations
(M = 14.2, SD = 4.1), directly adopted suggestions without mod-
ification (M = 8.9, SD = 3.6), ignored those deemed unhelpful

(M =3.2,SD = 2.5), and co-created solutions by modifying sugges-
tions before accepting them (M = 2.1, SD = 1.4). Overall, 62.5% of
final edits were adopted directly from MACEDON’s suggestions,
demonstrating strong reliance on system-generated feedback. As
P7 described, ‘Tt gave me a starting point, like changing a loop, but
then I tweaked the logic to better fit my approach.” An interesting
pattern emerged regarding participants’ optimization workflows.
While individual preferences varied, most participants followed
a structured sequence when applying improvements. Specifically,
15 out of 24 participants began with either redundancy or clarity,
followed by space and time efficiency, and ended with documen-
tation. The three most common sequences were: (1) redundancy
— clarity — space efficiency — time efficiency — documentation
(9/24), (2) clarity — redundancy — space efficiency — time effi-
ciency — documentation (6/24), and (3) time efficiency — space
efficiency — redundancy — clarity — documentation (6/24). (4)
space efficiency — time efficiency — redundancy — clarity —
documentation (6/24).

In order to explore the differences between workflows that start
with redundancy/clarity versus those that start with space/time
efficiency, start from documentation, we conducted a code-level
expert rating along the dimension of readability, maintainability,
and performance. Each expert needs to rate 48 code samples gener-
ated from Copilot and MACEDON. Specifically, readability is the
extent of which a human reader can understand the purpose, con-
trol flow, and structure of the code. Maintainability describes how
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The extension was difficult to use.

It was easier to accomplish this task with the extension.

The evaluation panel is useful, | would use it before the editing.

| trust the extension's optimization recommendation.

The extension's recommendations are accurate.

| was confused by the extension’s recommendations. -

If the extension is public available, | would use it in the future.

If the extension is public available, | would recommend it to others.
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Figure 3: Results of the post-task questionnaire. The numbers indicate the counts of participants on corresponding scales.

easy it is to understand, modify, extend, and fix the code over time.
Performance describes the code’s efficiency in terms of runtime
speed and memory usage. We also calculated the token count of the
code. We performed a one-way ANOVA to examine the differences
among the three groups. As shown in Table 2, participants who
optimize the code starting with redundancy or clarity yielded signif-
icantly higher ratings in both readability (F = 8.48,p < 0.001) and
maintainability (F = 1.25, p < 0.001), while for performance, there
are no significant differences across the three groups. Our posthoc
analysis also suggested that no significant differences were found
between code optimized starting from space/time efficiency and
documentation only along all dimensions (including readability,
maintainability, and performance).

6.4.3 MACEDON increases participants’ satisfaction. The post-task
questionnaire revealed that participants were significantly more
satisfied with the code optimization experience when using MACE-

DON condition compared to the condition with Copilot (F = 3.46, p <

.001 (Figure 3). P3 mentioned that the dimension-based optimiza-
tion recommendation helped them feel more in control: T have an
overview of what to change. This actually gave me a checklist, which
made things easier.”

Some participants also highlighted that MACEDON reduced their
thinking load during optimization. Instead of needing to decide
where to start or what to fix first, MACEDON reminds them to edit
the code that they may ignore. ‘It’s like having a to-do list built into
the code. I didn’t feel lost.” -P8

Moreover, participants believed that MACEDON can help them
form a better optimizing code practice in the long term: ‘It is use-
ful to remind me which aspects of the code I usually overlook in
a timely manner.” Even though the quality scores for final code
artifacts rated by two expert reviewers across four dimensions
(clarity, time efficiency, redundancy, documentation) were not sig-
nificantly different between the MACEDON and Copilot. (Figure 3),
participants(P11-14) reported a smoother and more confident ex-
perience using MACEDON. As P11 noted, “T’ve had a much better

experience with MACEDON. Most of the time, its optimization sug-
gestions are accurate. What I really like is that it can update all the
related code in one go with just a click. Even though sometimes I
didn’t fully agree with one recommendation, it still made me think,
which I found really helpful” In some cases, we believe that while
MACEDON improves programmers’ productivity during code eval-
uation and optimization, it may not always produce code that aligns
perfectly with individual coding styles or domain-specific practices.
Thus, programmers may still prefer to revise or refine the naming
conventions, formatting, and logic structure to ensure the final code
fits their own standards and the broader context of their project.

In summary, while our experiment show that MACEDON im-
proves the perceived usability and satisfaction of the code opti-
mization process. By offering real-time, multi-dimensional code
evaluation and optimization, MACEDON also enhances produc-
tivity and supports a more reflective and satisfying development
workflow.

6.4.4 The multi-dimensional optimization strategies in MACEDON
are suitable for different user goals and expertise levels. In this sec-
tion, we examine how participants perceived the different dimen-
sions that MACEDON supports during code optimization. During
the post-experiment interviews, we introduced the design behind
each dimension and asked participants which dimensions they
preferred, and in what contexts they found them most useful.
Participants commonly reported that the clarity and redundancy
dimensions were useful entry points, especially when first encoun-
tering unfamiliar code. These suggestions helped them clean up
structure and naming conventions, which improved overall read-
ability. As P6 noted, ‘T always start with clarity or redundancy. If I
don’t understand or forgot my own code, performance won’t matter.”
The time efficiency and space efficiency dimensions were consid-
ered as more technical and goal-specific from participants. Several
participants (P1-3, P7-9 P17-18) appreciated the performance pro-
filing features, but only used them when optimizing for speed or
handling large data. ‘T only look at time when I know performance



matters. Otherwise I just skip it since sometimes I'm familiar with
high-level algorithm and I'm not sure whether it is correct.” -P8 Many
participants prefer optimizing the code in clarity and redundancy
first compared to simply improve the space and time efficiency. P10
mentioned, ‘T liked that I could ignore performance stuff at first and
Jjust focus on cleanup. Later, I switched to the time efficiency tab to
improve it.”

The documentation dimension had different reactions from our
post-experiment interview. Some participants(P6, P22-23) said they
rarely used it since they preferred to document in their own words.
Others felt it was helpful to maintain consistency across their code:
“It’s a nice reminder, but sometimes I prefer to rewriting it in my
way.” -P2

These findings suggest that different dimensions in MACEDON
cater to different goals: clarity and redundancy help with code
understanding and onboarding, while performance dimensions are
more aligned with production-quality code. In particular, novice
programmers benefited from a structure that guided them from
readable to efficient code in a step-by-step way.

Participants (P11-13, P20-24) also highlighted that their opti-
mization strategies depended on different scenarios. When writing
code for themselves, they focused more on clarity. When sharing
or submitting the code, they paid more attention to performance
and documentation. As P11 summarized, T care if it works and is
readable for my own stuff. I care about speed and explaining it better
if I need to share with my friends or teachers.”

These insights indicate that future versions of MACEDON could
personalize workflows based on user preferences or experience
level. For example, a scenario-aware mode could prioritize read-
ability and clarity during individual or exploratory coding, while
switching emphasis on performance and documentation when the
code is intended for collaboration or submission.

6.4.5 Summary of the Results. In summary, our study shows that
MACEDON significantly improves task efficiency and user satis-
faction during code evaluation and optimization tasks. Participants
actively engaged with the system’s feedback in multiple dimensions.
Expert evaluation data further suggest that MACEDON helped them
produce higher-quality code across multiple dimensions. Overall,
participants enjoyed using MACEDON and perceived MACEDON
as a valuable assistant for both learning and real-world develop-
ment workflows, particularly for tasks that require balancing per-
formance and maintainability.

7 Case Studies

To further examine how MACEDON generalizes to real-world usage
scenarios (RQ3), we conducted an in-depth review of two program-
ming cases by inviting two participants to use the system based
on their real-life needs in two one-hour hands-on sessions. These
two cases span diverse settings, including early-stage programming
task and code interview programming. We intend to: (1) illustrate
how MACEDON adapts to different user needs and workflows
and (2) contextualize the MACEDON framework through practical
examples.

Liu et al.

7.1 Early-Stage Programming Task

To learn how MACEDON can be used in early-stage learning, we re-
cruited a first-year undergraduate student (S1) who had completed
only an introductory programming course. As part of her daily
assignment for the programming course, she needed to ensure her
code had great clarity and great time efficiency when submitting to
the teacher, as she wanted to get a good score for this class. The
example is shown in Figure 4.

Exploring Optimization Dimensions. S1 launched MACE-
DON from the Visual Studio Code extension interface and began
reviewing her assignment code, a sorting algorithm that she had
written in a previous lab. She was immediately drawn to the Op-
timization Dashboard, which highlighted areas of concern using
color-coded scores across clarity, redundancy, time efficiency, space
efficiency, and documentation.

S1 quickly noticed the code had low scores in clarity and re-
dundancy. She clicked into these sections and received immediate
feedback, including suggestions to rename variable names like tmp1
and remove duplicated branches in conditionals. She commented:
“Ididn’t think tmp1’ was a problem, but now that I see it flagged, T
agree it looks messy.” She then accepted the renaming suggestion
and applied a small logic refactor suggested by the tool.

She also explored the time efficiency section, which recom-
mended replacing a nested loop with a more optimized standard
library call. S1 was unfamiliar with the suggested function and used
the built-in explanation panel to understand its purpose. ‘T’ve never
used that function before, but the explanation helped. I can tell this
will run faster for big inputs.”

Customizing Optimization Suggestions and Learning Via
Edits. Once S1 became comfortable with the interface, he began
interacting more deeply with the suggestions offered by MACE-
DON. For each dimension, the system displayed not only suggested
edits but also brief rationales and potential trade-offs. In the time
efficiency category, MACEDON flagged a linear search loop and
suggested using a set for faster lookup. S1 hesitated, and mentioned:
‘T've never used a set in C++... won’t that make it more complicated?”
The explanation tooltip clarified that using a set would improve
performance for large inputs, and provided a short code example.

Motivated by this explanation, S1 attempted to rewrite the loop
using the std::unordered_set structure. Although he initially strug-
gled with the syntax, he used the integrated documentation feature
within MACEDON to reference an example. After some trial and
error, he got the revised code to compile and work correctly. “This
is the first time I used a set. I probably wouldn’t have tried it if the
tool didn’t suggest it.” This moment was significant—it illustrated
how MACEDON not only suggested improvements but also acted
as a learning scaffold, empowering the student to try out unfamiliar
constructs.

S1 also customized a few suggestions that he felt were too generic.
For example, when MACEDON proposed replacing a loop with a
built-in function, P1 opted to preserve the loop but renamed vari-
ables and added comments for clarity. This show emerging con-
fidence in balancing tool guidance with personal judgment. The
ability to selectively adopt, adapt, or reject suggestions made MACE-
DON feel less like a rigid evaluator and more like a collaborative
assistant.
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#include <iostream>
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#include <vectors #include <iostream>

#include <vector>

. y #include ith
void sortNumbers(std::vector<int>& arr) { AnCLIde SR

int tmpl;
for (int i = 0; i < arr.size(); i++) {
for (int j = i + 1; j < arr.size(); j++)
if (arr[i] > arr[j]) {
tmpl = arr[il;

// Sorts the given list of integers in ascending order.
// This function modifies the input vector directly.
void sortNumbers(std::vector<int>& numbers) {
// Uses the C++ standard library's efficient quicksort implementation.

= std::sort(numbers.begin(), numbers.end());

arr[i]l = arrl[jl; }
arr[j] = tmpl;

} else if (arr[i]l == arr[j]) { int main() {
// do nothing —_— std::vector<int> data = {5, 2, 8, 3, 1};

}

} // Sort the numbers in-place.
} sortNumbers(data);

}

// Print the sorted numbers to the console.
for (int number : data) {
std::cout << number << " ";

int main() {
std::vector<int> data = {5, 2, 8, 3, 1};
sortNumbers(data);
for (int i = @; i < data.size(); i++) {

std::cout << datali] << " ";

Y }
std::cout << std::endl; :
return 0;

}
std::cout << std::endl;

return 0;

}

Figure 4: Optimized version of a student’s sorting algorithm with improvements guided by MACEDON. Detailed optimization
by dimension: (1) Clarity: Variable names such as arr and tmp1 were replaced with more descriptive names like numbers and
number, improving readability. The loop to print sorted values was changed to a range-based for loop for more concise and
clearer iteration. (2) Time Efficiency: The original nested loop sorting algorithm with time complexity O(n®) was replaced by the
C++ standard library function std: : sort, which uses an optimized quicksort algorithm, improving the sorting time to O(n log
n). (3) Space Efficiency: Unnecessary temporary variables (e.g., tmp1) and redundant conditional checks (e.g., arr[i]l == arr[j])
were removed. The space overhead was reduced as no extra memory was used for the sorting process. (4) Documentation:
Added comments explaining the function’s purpose, the choice of sorting algorithm, and the logic of the iteration and output
steps. These comments make the code easier to understand for beginners and future developers. (5) Redundancy: A redundant
conditional branch else if (arr[i] == arr[j]) was removed because it had no functional effect, simplifying the logic and
reducing unnecessary operations.

Reflecting on Learning and Building Confidence. At the out. Having something like this—it doesn’t just fix your code, it shows
end of the session, we asked P1 to reflect on his overall experience you how to think about it differently.” The case study demonstrates
with MACEDON. He emphasized that the most helpful part was how MACEDON can serve not only as a productivity enhancer, but
seeing specific suggestions categorized by dimension: ‘It’s differ- also as an educational ally, shaping how novice programmers learn
ent from getting a bunch of corrections at once. I can focus on one to reason about quality in code.
thing at a time—first make it cleaner, then think about speed.” This
multi-dimensional recommendation helped him develop a more 7.2 Programming Evaluation During the
systematic approach to refining code, which was previously absent Interview

from his workflow.

S1 also appreciated that MACEDON gave him the freedom to
make the final call. He said: “T¢’s not like the tool is telling me I'm
wrong. It’s more like: here’s something you might not have thought
about.” He expressed a willingness to use MACEDON in future
assignments, particularly for reviewing his code before submission.
He also noted that seeing his own improvements logged in the
history panel boosted his confidence: “It’s cool to see all the changes
I made. Feels like I'm actually getting better.”

Finally, S1 mentioned that he would recommend MACEDON to
his classmates, especially those who struggle with identifying what
to improve in their code. He concluded: “We’re all still figuring things

To assess MACEDON’s utility for experienced developers, we in-
vited a senior software engineer (S2) who had 10+ years of ex-
perience in backend systems and frequently conducted technical
interviews. As part of her work, she had to evaluate the C++ code
written by interview candidates.

Rapid Multi-Dimensional Evaluation. S2 began by pasting
a recent candidate’s C++ submission into the Visual Studio and
launched MACEDON to evaluate the code’s quality. He immediately
noted the dimension-based feedback provided by the Optimization
Dashboard. Color-coded bars surfaced low-performing dimensions,



particularly redundancy and clarity. He appreciated that each sug-
gestion was paired with a concise explanation and visual highlights
in the editor: “This kind of feedback is exactly what I usually provide
during interviews, but it’s great to see it automatically structured like
this.”

He found the breakdown by dimension particularly useful in
identifying overlooked issues. For example, MACEDON pointed out
a duplicated loop construct and variable names like res1 and temp2
that reduced readability. He noted that “These are things I'd catch
manually, but having the tool flag them saves time. It’s like a second
pair of eyes.” He also mentioned that the time and space efficiency
scores helped him quickly understand whether the solution was
over-engineered or underperforming—without running the code.
“Just looking at complexity isn’t enough. These metrics back that up
with context.”

Comparing Candidate Submissions. Next, S2 opened a sec-
ond candidate solution for the same problem to compare the two
implementations side-by-side. He find the evaluation panel is very
intuitive for him to directly know the performance of the current
code in four dimensions. He can easily take the screenshot to com-
pare the current candidate’s submission to the previous submission
by other candidates. He mentioned: “In interviews, I'm often review-
ing 10+ candidates for the same problem. Being able to rank and
compare by dimension is incredibly useful.”

S2 used the Optimization Panel to review the candidate’s code
weakness, which could help him streamline hiring decisions, es-
pecially in situations where multiple reviewers assess the same
submission. “This gives me a structured way to explain why one
solution is stronger than another. It adds consistency to the evaluation
process.”

He also experimented with editing the weaker submission di-
rectly in MACEDON using its built-in suggestions. He found that
small improvements in naming and redundant logic removal quickly
raised the clarity score. ‘It’s a good teaching tool too. I could use this
during live interviews to show candidates how to improve their code.”

Mentorship and Continuous Use. Finally, S2 reflected on how
MACEDON could support not only hiring but also mentorship. He
envisioned using it during onboarding to help junior engineers
understand code quality standards within the team. ‘T could see
using this in code reviews—not as a replacement, but to catch common
issues and free me up to focus on architecture and logic.”

He appreciated that MACEDON did not enforce a rigid style but
provided adaptive, dimension-based guidance. ‘Tt doesn’t tell you
‘this is wrong, it says ‘here’s what could be clearer or faster, which fits
well with how I coach junior devs.” When asked whether he would
use MACEDON in the future, S2 responded affirmatively, especially
for repetitive review tasks and mentoring sessions.

In summary, the case study shows that MACEDON offers tan-
gible value for experienced engineers engaged in code review and
technical interviews. Its structured evaluation, real-time guidance,
and comparison tools can streamline both hiring decisions and
educational feedback, supporting quality and efficiency across pro-
fessional workflows.

Liu et al.

8 Discussion

8.1 Automated Code Review Practices in
Software Engineering

While automated code review systems in software engineering
largely operate under the assumption of well-structured, production-
ready codebases, our experiment with MACEDON reveals that pro-
fessional programmers operate across a more diverse and context-
sensitive spectrum of goals. Through our session with an expert
software engineer, we observed that code review in real-world set-
tings often requires balancing trade-offs between clarity, maintain-
ability, and performance, none of which can be linearly optimized.
For instance, as our case study and lab experiment show, partic-
ipants frequently prioritized clarity and redundancy first before
addressing performance dimensions, especially when reviewing
code authored by junior developers. This mirrors findings in prior
studies that emphasize the human judgment required in triaging
automated suggestions [45] and customizing review based on code
ownership and complexity [7].

In contrast to many existing tools that provide a flat list of sugges-
tions or flag violations against static rulesets [10, 33], MACEDON’s
dimension-based feedback model encourages structured decision-
making across clarity, redundancy, time efficiency, space efficiency,
and documentation. Our quantitative analysis demonstrates that
when users began optimization workflows with structural dimen-
sions like clarity or redundancy, their final code artifacts achieved
significantly higher accuracy and readability ratings, aligning with
goals typically emphasized during onboarding and mentoring. This
diverges from code review workflows that are primarily focused
on defect detection and performance bugs [33, 51].

Furthermore, our observations resonate with recent discussions
in the HCI and software engineering communities that advocate
for more context-aware, human-centered design in Al-powered
developer tools [38]. For example, research on mixed-initiative
review systems suggests that trust and user control are critical to
adoption [29]. MACEDON supports this by allowing participants
to selectively apply, edit, or ignore system suggestions based on
their understanding and review goals. This interaction pattern,
especially prevalent among expert users in our study, highlights
the value of adaptable, goal-driven review interfaces that go beyond
one-size-fits-all automation.

Overall, these findings suggest that while Al-assisted review
tools have advanced the automation frontier, their practical ef-
fectiveness hinges on aligning with developer intentions, review
contexts, and team conventions. MACEDON contributes to this on-
going effort by offering a dimensionally scaffolded review process
that reflects how real developers reason about and communicate
code quality.

8.2 Code Optimization in Programming Differs
from Traditional Software Refactoring

Code optimization in programming tasks, especially in practical

workflows, differs significantly from traditional software refactor-

ing practices. While traditional refactoring typically emphasizes
systematic transformation of code structure, including improving
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modularity, reducing duplication, or renaming for better readabil-
ity [18], we found that optimization in real-world scenarios is often
goal-driven, non-linear, and context-specific.

In our study, participants did not treat optimization as a purely
structural clean-up task. Instead, they strategically selected which
aspects to prioritize based on their goals. For instance, our experi-
mental data and expert case study revealed a recurring workflow
pattern where participants first optimized for clarity and redun-
dancy before focusing on time and space efficiency. This sequential
approach highlights a key distinction from refactoring guidelines
that typically apply rule-based transformations uniformly [34]. One
participant noted: “If the code isn’t understandable, then optimizing
for speed won’t help. Clarity comes first.” Such remarks reinforce
that optimization is not merely mechanical improvement, but an
iterative and interpretative process.

Moreover, optimization decisions were often informed by the
intended audience or use case. When participants optimized code
for instructional or peer-review scenarios, they focused heavily on
clarity and documentation. In contrast, when optimizing for deploy-
ment or performance benchmarks, participants shifted attention to
low-level algorithmic improvements. This context-aware behavior
is rarely supported by traditional refactoring tools, which assume a
fixed notion of “better” code, often guided by style guides or design
patterns [3].

MACEDON was designed to support this flexible optimization
process by providing dimension-specific feedback across five key
aspects: clarity, redundancy, time efficiency, space efficiency, and
documentation. Rather than enforcing uniform refactoring tem-
plates, the system allowed users to select dimensions that aligned
with their intent. Our evaluation showed that workflows beginning
with structural dimensions (clarity/redundancy) produced code
with higher accuracy and readability scores, echoing similar calls
for context-sensitive tooling in modern IDEs [8].

These findings suggest that programming optimization work-
flows are not simply micro-refactorings; they are inherently inter-
pretive, shaped by the programmer’s goals, audience, and timing.
This also has implications for tool design: systems should move
beyond static rules and instead scaffold decision-making with con-
textual and composable suggestions, much like MACEDON does
through its multi-dimensional design.

Furthermore, our observations speak to broader discussions in
software engineering and HCI about adaptive support for complex
workflows [9, 28]. As programming becomes increasingly collabora-
tive and domain-specific, future tooling should reflect the diversity
of optimization goals rather than converge on one-size-fits-all mod-
els. Supporting exploration, decision tracking, and even divergent
optimization strategies may ultimately prove more useful than
enforcing consistency alone.

Beyond these workflow-focused observations, we observed a mis-
match between objective performance numbers and participants’
feelings of improvement. Experts found many optimized versions
produced with MACEDON only slightly faster or lighter in memory,
yet participants still felt they had made meaningful progress. We
think this mismatch is partly due to MACEDON’s real-time scoring
interface, which shows separate scores for each dimension after
every edit. Even small score increases gave users quick feedback,
reinforcing their sense of control. Such timely cues can amplify the

perceived value of minor gains and should be integral to future
optimization tool design. In summary, our study reveals that code
optimization in real-world programming differs substantially from
traditional software refactoring in both structure and intent. Tools
like MACEDON, which account for the multiplicity of goals and
adapt to the workflow at hand, are better suited to support modern
programming practices.

8.3 Limitations and Future Work

Our study has several limitations. First, we focused on novice
programmers and short C++ snippets, which may limit general-
izability to professional developers or real-world software reposi-
tories. Future work should investigate MACEDON’s effectiveness
on professional-scale codebases and in team-based development
settings.

Second, while we evaluated five optimization dimensions, our
system currently performs single-objective optimizations. Explor-
ing multi-objective tradeoffs and dynamic prioritization remains
an important next step. In real-world scenarios, programmers of-
ten need to balance competing goals such as improving perfor-
mance without sacrificing clarity. Future work could incorporate
interactive mechanisms that allow users to define or adjust their
optimization priorities based on context or task-specific constraints.

Additionally, while our system surfaces explainable suggestions
through structured Ul, we did not explore deeper explainability
techniques. Future research could investigate how to visualize rea-
soning behind recommendations or simulate “what-if” scenarios
(e.g., “what happens if I accept this suggestion?”) This would in-
crease trust and educational value, particularly in classroom or
mentoring settings

Finally, although our study revealed interaction-level behaviors,
we did not assess long-term learning effects. Future longitudinal
studies could examine whether MACEDON helps users internalize
optimization principles or risks inducing over-reliance. These di-
rections are critical for advancing MACEDON’s educational and
practical impact.

9 Conclusion

We presented MACEDON, a Visual Studio Code extension designed
to support professional programmers in code optimization tasks
through real-time, multi-dimensional feedback. The system serves
as both a practical tool and a research probe for understanding how
developers make trade-offs across different dimensions of code qual-
ity including clarity, redundancy, time efficiency, space efficiency,
and documentation. The design of MACEDON was guided by a
formative study involving six programmers with varying levels
of experience, along with a data-driven analysis on a C++ code
benchmark. Our controlled user study and two case studies show
that MACEDON significantly reduced task completion time while
maintaining or enhancing the accuracy, readability, and satisfaction
of the final code.
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