
Challenges and Opportunities for Software Testing in Virtual Reality
Application Development

Qing Liu*

School of Computer Science
University of Waterloo

Gustavo Alves †

Unity Technologies
Jian Zhao‡

School of Computer Science
University of Waterloo

ABSTRACT

Testing is a core process for the development of Virtual Reality
(VR) software, which could ensure the delivery of high-quality VR
products and experiences. As VR applications have become more
popular in different fields, more challenges and difficulties have been
raised during the testing phase. However, few studies have explored
the challenges of software testing in VR development in detail. This
paper aims to fill in the gap through a qualitative interview study
composed of 14 professional VR developers and a survey study with
33 additional participants. As a result, we derived 10 key challenges
that are often confronted by VR developers during software testing.
Our study also sheds light on potential design directions for VR
development tools based on the identified challenges and needs of
the VR developers to alleviate existing issues in testing.

1 INTRODUCTION

Debugging or testing is one of the critical steps in software develop-
ment [29]. The creation of Virtual Reality (VR) applications shares
a similar process to traditional software development and heavily re-
lies on testing to ensure the quality of the final deliverables. However,
VR application testing is more challenging and complex [2, 27] due
to its inherent nature of relying on multiple devices and platforms
including headsets and desktops. For instance, developers need to
put on and take off their VR head-mounted display (HMD) quite fre-
quently during the testing stage, which not only is time-consuming
but also causes motion sickness [20]. In addition, developers do not
always have access to VR HMDs to realistically evaluate the quality
of their creations.

While the human-computer interaction (HCI) community is in-
creasingly focused on researching immersive technologies such
as VR and augmented reality (AR), there is still a lack of thor-
ough studies exploring the challenges as well as opportunities for
software testing in VR development. Various studies have ex-
plored AR/VR applications (e.g., [21,26,37]), interaction techniques
(e.g., [18,25,32,33]), and authoring tools (e.g., [4,7,19]). Some have
provided insights into the challenges and opportunities of AR/VR
from the development perspective to better understand the needs of
professional AR/VR developers [2, 11, 14, 22, 27]. However, little
attention has been paid to the challenges of the testing phase in
VR development, despite developers having confronted numerous
difficulties as introduced above.

In this research, we aimed to fill in the gap by exploring the chal-
lenges and needs of VR developers during their testing phase and
identifying promising directions to overcome or resolve these chal-
lenges. We first conducted a comprehensive interview study with 14
professional VR developers (11 from industry and 3 from academia)
who have diverse backgrounds and different levels of experience

*e-mail: qing.liu@uwaterloo.ca
†e-mail: gustavo.alves@unity3d.com
‡e-mail: jianzhao@uwaterloo.ca

and skill sets in VR development. We then performed a thematic
analysis of the interview data and identified 10 key challenges for
software testing in VR development. Our results confirmed that VR
developers face significant challenges during the testing phase of
VR development. Despite employing workarounds, our participants
found them to be ad-hoc, requiring manual intervention, and prone to
errors. We organized the key challenges into three distinct categories
(see Table 2): hardware-related challenges (C1-4), software-related
challenges (C5-8), and comprehensive challenges (C9-10).

To verify the identified challenges with a broader audience, we
further conducted a confirmation survey with 33 VR developers by
distributing the survey to various related Slack channels. In the
survey, we asked participants to rank the importance of the 10 chal-
lenges on a 7-point Likert scale as well as select the most and least
important ones. From the survey results, all the identified challenges
exhibit reasonable ratings without any outliers, substantiating the
validity of our findings.

Additionally, we discuss the future opportunities for testing VR
applications based on the identified challenges, which can provide
guidance to VR developer tool makers and researchers for enhancing
the current functionalities of VR development tools and introducing
new features. Our study extends the findings of Ashtari et al. [2],
Nebeling and Speicher [27], and Krauß et al. [22], which benefits
specifically to the testing phase of VR development. In summary,
our contributions in this paper include:

• Empirical interview and survey studies that examined and vali-
dated key challenges in the testing phase of VR development;

• The results of 10 key challenges in VR testing faced by devel-
opers as well as several promising future design directions.

2 RELATED WORK

Our research is related to the existing techniques of VR development
and authoring tools, practices in VR development, as well as studies
on VR testing and general software testing.

2.1 Development and Authoring Tools for VR
Development tools for VR assist creators with varying expertise
levels in producing VR software. VR development tools encompass
3D game engines (e.g., Unity, Unreal, Godot) and development
toolkits/frameworks (e.g., MRTK, A-Frame). These tools empower
VR developers and researchers to create versatile VR applications.

Based on these tools, several research studies [4, 6, 10, 13, 19, 39]
have proposed VR authoring tools to satisfy the customized needs
of the end-users. These tools focus on satisfying some specialized
needs of the end users. Some systems (e.g., VREX [4], Xr360 [19],
Genesys [10]) are designed to lower the threshold of VR develop-
ment and speed up the process. Some other studies help the users
meet specialized needs such as creating interactive scenes [39], mak-
ing experiential learning courses [6], and authoring VR games for
physical space [13].

An existing study [9] shows that VR authoring tools could help
facilitate the creation of different VR features. Despite the availabil-
ity of the existing authoring tools, there has been a limited number
of tools created and researched to ease the VR testing practices for
developers. Additionally, with the recent explosion in VR systems



and applications in different fields (e.g., [21, 26, 37]), it is important
to understand the needs of VR developers during the development
process, which has motivated our study. Our study provides empir-
ical insights into the testing of VR development, highlighting the
challenges faced by VR developers with some future directions for
the creation of new tools that could facilitate VR testing.

2.2 VR Development Practices
To better understand the challenges and needs in the testing phase
of VR development, our study aims to investigate the current de-
velopment practices of VR developers. Unity and Unreal engines
are the common development tools used by VR developers. An
explanatory study by Ghrairi et al. [15] discovered that the majority
of VR projects on GitHub are currently small to medium-sized, with
JavaScript (used for web) and C# (used in Unity) being the most
popular programming languages. Unity has emerged as the preferred
game engine for VR development and is the most frequently dis-
cussed topic on Stack Overflow. In addition to Unity, Unreal Engine
is also utilized by VR developers and researchers for creating VR
content [5, 8] Unity is preferred for its ease of use, asset store, and
support for various platforms, while Unreal Engine is favoured for its
advanced graphics capabilities and visual scripting [34]. Numerous
customized tools, such as Unity XR Interaction Toolkit and MRTK,
have been developed to streamline and support the VR development
process in Unity or Unreal Engine.

On the other hand, the field of web-based VR development, par-
ticularly through the implementation of WebXR, has experienced
significant growth in recent years. WebXR, an API that enables the
creation and integration of immersive experiences directly within
web browsers, has emerged as a popular alternative for the indus-
try. By allowing developers to create platform-agnostic VR expe-
riences [23], WebXR fosters accessibility and reduces the need for
specialized hardware or software. As a result, researchers are in-
creasingly exploring the potential of web-based VR development for
a wide range of applications, such as education [16, 26, 28], health-
care [1], and entertainment [17]. The growing interest in WebXR
also highlights the importance of developing new tools, frameworks,
and best practices to support the unique challenges and opportunities
associated with web-based VR development [40].

Cross-platform VR development has also been promoted these
years by organizations like Khronos Group and its open standard
OpenXR. However, significant challenges still remain for developers.
They face a multitude of issues when working with different VR
hardware, software, and application programming interfaces (APIs).
Heterogeneous specifications, input mechanisms, and performance
capabilities can lead to compatibility and optimization difficulties,
requiring developers to adapt their applications to each unique plat-
form. Additionally, the varying degrees of support for industry
standards and the rapid evolution of VR technology further compli-
cate cross-platform development. VR development practices have
made considerable advancements, thanks to the widespread adoption
of game engines like Unity and Unreal, the emergence of web-based
VR development through WebXR, and the push for cross-platform
development by organizations like Khronos Group. These improve-
ments have resulted in more efficient development processes and the
creation of customized tools and frameworks. However, challenges
persist in the realm of VR development, including compatibility and
optimization issues across diverse hardware, software, and APIs, as
well as the rapid evolution of VR technology and varying support for
industry standards [2, 11,22]. To ensure the continued growth and
success of the VR industry, it is essential to address these challenges,
foster collaboration among developers, and researchers, and con-
tinue exploring new methods and best practices to improve the VR
development process and enhance the user experience, where our
study aims to contribute to the understanding the specific challenges
in the testing phase of VR development process.

2.3 Testing Practices in Software Development
Software testing, which is an essential step in the whole software de-
velopment workflow [12], has been researched to ensure the quality
of the software delivery [3, 35, 38]. While testing in VR software de-
velopment has not been studied comprehensively, general software
testing could still enlighten the directions of VR software testing in
different ways.

Automated testing, as an important practice of software testing,
has been implemented and applied to the software industry broadly.
Automated testing has significantly impacted the testing process,
with many software tests now being performed using automation
tools [35]. These tools reduce the number of people involved and the
likelihood of human errors. Automated testing involves test cases
that simplify the process of capturing different scenarios and storing
them. For example, automated tests have been explored to reduce
the errors in software GUI [24].

Manual testing is also an important practice of software test-
ing and has been researched in comparison with automated test-
ing [30, 31, 36]. Manual testing always involves human efforts from
testing teams such as Quality Assurance testers and Software Devel-
opers who are responsible for creating and running tests. Manual
testing is a time-consuming process that demands specific qualities
in a tester, such as patience, observance, creativity, open-mindedness,
and skill [31]. When applied to large software applications or those
with extensive datasets, repetitive manual testing can become chal-
lenging to execute effectively. This limitation underscores the need
for alternative methods, such as automated testing, to improve ef-
ficiency and accuracy in software testing processes. However, due
to the nature of VR applications, manual testing is still inevitable
as VR software relies on human work to ensure the quality of the
products such as the visual presentation of the contents and graphics
performance in the VR headsets.

While the above studies have explored the needs in general soft-
ware testing and have proposed tools to address the issues, VR
testing can be particularly challenging because of its unique devel-
opment environment with the HMDs. Different software testing
techniques might be customized and applied to VR testing to ensure
the delivery of VR software; however, no studies have adequately
investigated scenarios of VR testing. Thus, our research specifically
aims to get insights into the challenges and opportunities in the
testing phase of VR development.

3 INTERVIEW STUDY

To investigate the current practices and challenges in VR application
testing faced by developers in-depth, we employed a qualitative
approach by conducting semi-structured interviews with VR devel-
opers with diverse backgrounds. In this section, we describe the
setup of the interview study and report the results in the next section.

3.1 Participants
In order to gain a comprehensive understanding of VR development
testing practices, we sought out participants with experience in the
field, from both academia and industry. We reached out to local
HCI research groups as well as VR-related software companies. Our
goal was to create a diverse cohort of participants, with varying
backgrounds and project experience. We ultimately recruited 14 par-
ticipants (11 males, 2 females, and 1 non-binary/third gender; aged
19–54), including user experience designers, gaming enthusiasts,
and academic researchers, as detailed in Table 1. Their experience
ranged from 0–2 years to 10+ years; and the cohort covered a variety
of popular VR hardware (HMD) on the market, including Oculus
Quest 1/2, Oculus Rift, HTC Vive, Meta Quest Pro, etc. In addi-
tion, our participants use various VR development software (e.g.,
Unity, Unreal, and Godot) for their work. Based on their experi-
ences and roles in VR development, we grouped them as junior
developers (JD), experienced developers (ED), and VR development



Table 1: Participants recruited in our interview study.

ID Role Experience Software Used Hardware (HMD) Used

Junior Developers (JD)

P1 Software Developer 0 - 2 years Godot Oculus Quest 1/2

P2 Student Researcher 0 - 2 years Unity Oculus Quest 1/2

P7 Software Developer 0 - 2 years Unity Oculus Quest 1/2, Oculus Rift, HTC Vive, Google Cardboard

P10 Product Designer 0 - 2 years Unity Oculus Quest 1/2

Experienced Developers (ED)

P3 Student Researcher 6 - 10 years Unity Oculus Rift, HTC Vive

P4 Architectural Designer 3 - 5 years Unity, Unreal Oculus Quest 1/2, Oculus Rift

P5 Software Developer 3 - 5 years Unity Oculus Quest 1/2, Oculus Rift, HP Reverb, Meta Quest Pro

P6 Software Developer 3 - 5 years Unity, Unreal Oculus Quest 1/2, Oculus Rift, HTC Vive, Varjo VR1/2/3

P8 Software Developer 10 + years Unity Oculus Quest 1/2, Oculus Rift, HTC Vive, Google Cardboard, Valve Index, HP
Reverb, Pico, Focus 3, and other Windows enterprise headsets

P9 Software Development Manager 3 - 5 years Unity Oculus Rift, HTC Vive

VR Development Tools Developers (VDTD)

P11 Software Development Manager, XR
Foundation

3 - 5 years Unity, Unreal, Self-
build engine

Oculus Quest 1/2, Google Cardboard, HP Reverb, Meta Quest Pro

P12 VR Development Tools Designer 10 + years Unity Oculus Quest 1/2, Oculus Rift, HTC Vive, Google Cardboard

P13 VR Development Tools Developer 6 - 10 years Unity, Unreal Oculus Quest 1/2, Oculus Rift, HTC Vive

P14 VR Development Tools Developer 3 - 5 years Unity Oculus Quest 1/2, Oculus Rift, HTC Vive, Valve Index

tools developers (VDTD). The diversity in these aspects could pro-
vide valuable insights into the testing phase of VR development on
different perspectives.

3.2 Interview Procedure
All the interviews were conducted remotely via Zoom. Prior to
the interview, participants were asked to sign the consent form and
filled in a pre-study questionnaire regarding their demographic in-
formation. During the interview, we began by asking participants
to describe their current or recent VR projects and let them walk
through the VR development workflow on the projects they dis-
cussed. We then inquired about the testing techniques they used
and the main challenges or frustrations of their current testing and
debugging process. Our questions were around the following themes
during the interviews:

1. Would you briefly introduce one of the interesting VR experi-
ences you had?

2. Could you walk through your VR development workflow on
the project you’ve talked about or another specific example
with us?

3. In the walk-through you just shared with us, what were the
testing techniques you use?

4. What are the main challenges or frustrations about your current
testing workflow?

5. What are your current solutions for the challenges you just
mentioned?

6. What could be the ideal VR testing workflow in your mind? It
could be a whole workflow, a new tool or some features.

In the end, participants were asked to brainstorm the future direc-
tions of VR development tools that could better serve the testing
purpose of VR development. The whole interview session was audio
recorded and lasted around 60 minutes for each participant. This in-
terview study was approved by the University of Waterloo Research
Ethics Board.

3.3 Data Analysis
We transcribed the audio recordings of the interview sessions using
Otter.ai and manually checked the places that might not be precise
due to the limitation of the transcription software. We employed
an inductive approach and generated affinity diagrams in Figma to
explore the themes related to the main challenges that our partici-
pants faced. Initially, one member of our research team conducted
an open-coding pass to generate a list of potential codes. We then
refined and consolidated these codes through discussions and the use
of affinity diagrams, resulting in a final coding scheme. Throughout
the coding process, we focused on understanding the challenges and
needs of VR developers in their testing practices of VR development.

4 CHALLENGES IN VR TESTING

Based on our analysis of the interview data, we consolidated the
following 10 key challenges in testing VR applications which are
grouped into three categories (Table 2).

4.1 Hardware-related Challenges
Hardware-related challenges often arise during the testing phase,
posing significant obstacles for developers. These challenges include
cumbersome VR equipment (C1), motion sickness (C2), difficult
equipment setup (C3), and performance issues (C4). Addressing
these hardware-related challenges is essential for streamlining the
testing process and ensuring the successful development of VR
applications.

C1: Cumbersome VR Equipment. Cumbersome VR headsets
are a burden for the developers in the testing phase. First, they
may suffer from frequently putting on and taking off the headsets,
which is not only time-wasting but also triggers feelings of unease
or sickness:

When I’m using the headset, I have to like, put it on, and then,
do stuff, and then put it off, put it away and look at my console,
so on and so forth. If there is a perfect simulator I can use to



Table 2: Summary of challenges in the testing phase of VR development.

Hardware-related Challenges

C1 Cumbersome VR Equipment Developers may suffer from the inconvenience of the VR headsets. For example, developers may experience taking on
and off the VR headsets in a high frequency, the sickness caused by the heavy weight of the headsets, or the burden of
the eyeglasses and long hair.

C2 Motion Sickness Developers may suffer from motion sickness caused by the VR environment and equipment. The motion sickness might
be caused by, for instance, the long time spent in VR environments or the low quality (low frame rate, low picture
quality) of VR application during the prototyping/testing phase

C3 Difficult Equipment Set Up Developers may suffer from the difficult and time-wasting equipment set-ups during the testing phase. For example,
developers need to recalibrate the VR equipment every time when they use it. It also has a strict demand on an open,
decent-size and obstacle-free physical space when developers want to do some trials in VR environments.

C4 Performance Issues Developers may suffer from performance issues during the testing phase. Issues such as long build/loading/rendering
time, the discrepancy between hardware’s performance (in most cases, the simulator environments like the PC and
laptop have better hardware performance than the VR equipment and low frame rate.

Software-related Challenges

C5 Missing Testing Information Developers may suffer from the lack of testing information. Many developers reported that they cannot monitor program
changes (variables, hardware usage) in VR environments and it is hard to integrate debug information (e.g. logs) for
VR applications.

C6 Difficulty in Finding/Reproducing bugs Developers may find it hard to find or reproduce bugs. For example, the large 3D immersive environment of VR makes
it hard to find details/small glitches. It is also difficult to reproduce bugs since it’s hard to track and reproduce the same
actions in VR environments.

C7 Lack of Automated Testing Developers may suffer from the inconvenience of immature automated testing support. The lack of automated/unit tests
in VR makes it hard to reduce manual/repetitive testing work.

C8 Inconvenient Collaboration of VR Testing Developers may find it hard to do collaborative debugging/testing with other developers. For example, developers may
find it hard to achieve remote testing/debugging and headset sharing with other developers.

Comprehensive Challenges

C9 Lack of Standards Developers may suffer from the capability issues. Many developers find there are no common standards (e.g. different
APIs) between different VR development tools and software (e.g. Unity, Unreal), hardware (e.g VR HMD like Oculus
Quest and HTC Vive).

C10 Few VR-specific Testing Support Developers may suffer from the little VR-specific testing support from the community and industry. There are issues
such as low-number of existing toolkits, tutorials, documentation or no collaboration/integration between different
tools/solutions.

test most of the features, it will definitely make debugging a
lot easier for me. (P2-JD)

From time to time, I got a headache after putting on and off
the VR headset to figure out some tricky bugs. (P5-ED)

Additionally, with the cumbersome HMDs, wearing eyeglasses
or having long hair can add to the difficulty experienced during use:

Having long hair just makes it harder to put on and off the VR
headset. (P1-JD)

So I don’t buy glasses that are wider than that. So that limits
my frame choices. (P8-ED)

One of the VR tool developers expressed concern that this issue
might not be resolved in the near future:

The equipment being cumbersome is like, the sort of issues for
which the industry does not have a solution yet, and it might
take some time until we find one. (P13-VDTD)

C2: Motion Sickness. Motion sickness caused by VR environ-
ments and equipment has been mentioned in a high frequency in the
interviews (10/14). This discomfort could be a result of spending
extended periods of time in VR environments and encountering low-
quality VR applications during the prototyping/testing phase, which
may exhibit poor picture quality or low frame rates:

I used to have a really bad sketch of my project and the whole
horizon in VR was shaking with a very low frame rate, and it
caused huge dizziness. (P2-JD)

The issue of cumbersome VR Equipment also further exacerbates
the situation:

If you have to wear glasses, put them on. And you know, it’s
already like a burden for you. And if you like, do the very
frequently, you will have a lot of like headaches and motion
sickness. (P7-JD)

Some VR applications with specific features such as frequent
locomotion also contribute to motion sickness:

One thing to notice is about the locomotion in VR: a lot of
them give you motion sickness. (P3-ED)

Motion sickness could heavily postpone the testing progress of the
VR development and may cause the production delay:

It was difficult for first-time users, I need to adjust things
slower for them. (P5-ED)

But if your participants or even the developer, start experi-
encing physical discomfort due to motion sickness, you won’t
probably be able to have a sustained session on the headset,
and therefore, it really impacts what you can get out of the
testing. (P12-VDTD)

C3: Difficult Equipment Set Up. Developers may struggle
with time-consuming and challenging equipment setups during the
testing phase. For instance, they are required to recalibrate or even
reboot the VR equipment because the existing calibration was easy
to break.



I need to recalibrate my headsets a lot of time during the
testing, sometimes even rebooting the machine, because some-
times the responding calibration was okay, and then the next
time the calibration was not good anymore. We have to recali-
brate and install things. (P6-ED)

Additionally, there is a stringent need for a spacious, open, and
obstruction-free physical area when developers wish to conduct trials
within VR environments:

I need to clean up the physical space around me every time
before some intensive VR testing, being able to fake a physical
system in which you don’t need to really move to test would
save my time a lot. (P3-ED)

C4: Performance Issues. During the testing phase, developers
may encounter performance-related challenges. Such challenges can
involve prolonged build, loading, and rendering times, leading many
participants to invest additional time in testing their VR projects.

Long build, loading or rendering time extended the testing phase
of VR development:

When I checked in many changes to a big VR project, more
than half of the hour was waiting for the build. (P5-ED)
Rebooting the machine took a lot of time since it’s not only
rebooting the machine itself but sometimes you have to rebuild
and reload the project. (P6-ED)

The disparities in the performance of hardware components also
pose difficulty to the testing. Typically, simulator environments
such as PCs and laptops have superior performance compared to VR
equipment. As a result, simulators cannot substitute VR equipment
when it comes to testing the performance of VR projects.

When testing performance, the simulator gives you nothing,
you have to build on the VR headset to know if the app runs
well (P5-ED)
We had a project on Oculus Quest...because it is an Android
app and has a big resolution, we needed to cut many features
to accommodate the performance limitation. (P5)
It is hard to check the performance issue without running it
on headsets. (P6-ED)

The low frame rate, which has been raised by 6 participants, can
also be caused by low performance, which would cause motion
sickness (C2) as discussed before and uncertainty to the projects:

If the frame rate sucks, motion sickness would probably come.
(P7-JD)
The different frame rates give different glitches all the time.
(P6-ED)

4.2 Software-related Challenges
Other than hardware-related challenges, developers often face a va-
riety of software-related challenges that impact the testing phase
of VR development. These challenges include a lack of testing
information (C5), difficulty in finding and reproducing bugs (C6),
lack of automated testing (C7), and inconvenient collaboration of
VR testing (C8). From software developers’ perspective, software-
related challenges are relatively easier to mitigate. Addressing these
software-related challenges is crucial for optimizing the VR develop-
ment process and ensuring the creation of high-quality applications.

C5: Missing Testing Information. Developers might face dif-
ficulties due to a lack of adequate testing information. Many de-
velopers, especially junior developers, have indicated that tracking
program changes, including variables and hardware usage, within
VR environments poses a challenge, and incorporating debug in-
formation, such as logs, into VR applications also proves to be
problematic.

Some of this can be really frustrating, because, it’s sometimes
very hard to see, like the internal state of the system, which
you kind of need for debugging. (P2-JD)

Ideally, if there is some log, or debugging options to track
those variables, that would be ideal. (P1-JD)

Furthermore, some more experienced participants suggested that
VR development tools could even do more than just show the basic
testing information. For example, for Unity developers, an integrated
Unity inspector in the VR environment has been raised as a missing
component for VR testing:

I would love to see in headset authoring. So be able to like,
you know, put on the headset, and basically be able to see the
scene hierarchy and have control over your inspector at least
for some parts, you know, basically like an engine within the
headset. (P12-VDTD)

C6: Difficulty in Finding/Reproducing bugs. Developers can
face challenges when trying to identify or reproduce issues in VR
applications. The vast 3D immersive environment can make pin-
pointing minute details or minor inconsistencies difficult:

Sometimes, I needed to go back frame by frame to check the
bug I saw. (P1-JD)

It’s tedious to reproduce bugs. It may not be actually chal-
lenging It’s just umm, you just need to take time to reproduce
it. (P3-ED)

Additionally, recreating bugs can prove to be troublesome, as
retracing and replicating the precise actions within VR settings can
be a complex task compared to reproducing them in the simulator:

You might be testing your experience in the editor, even with a
simulator, but you might not encounter the same issue as you
were wearing the headset. (P12-VDTD)

C7: Lack of Automated Testing. Developers may face chal-
lenges due to the underdeveloped nature of automated testing support
in VR. The scarcity of automated or unit tests in VR makes it dif-
ficult to minimize manual or repetitive testing tasks. In addition,
automated tests are not easy to implement for VR applications by
nature. As there is no existing tool in the markets to map the inputs
(e.g., user log-in, button presses on the controller, and head move-
ment) in VR to the tests. This phenomenon has been reported by all
three groups of participants:

It’s not really easy to automate like testing with scripts. (P2-
JD)

Even basic things like a 2d traditional UI, testing every button
and every combination is a labor-intensive process there. I
haven’t seen a good way around it. (P8-ED)

I think there’s certainly more that we could do as engineers
in the industry to set up examples of how to apply the tools
that exist today to do some automated tests. (P12-VDTD)

Manual tests are unavoidable in VR testing. However, some of
the manual tests can be replaced with automated tests to decrease
the labour work and accelerate the development process:

An ideal version of testing includes, you know, as much auto-
mated testing as possible...And when you find something that
is actually broken, if you can automate it, you automate it, and
write the automation tests for it. And if you can’t automate it,
you have to actually work with QA to say, Okay, now how do
we actually build a proper smoke test to actually go through
and have a manual test for this? (P11-VDTD)



C8: Inconvenient Collaboration of VR Testing. Developers
might confront obstacles when engaging in collaborative debug-
ging or testing with their colleagues. The issue of collaboration has
been explored by Krauß et al. [22]. In their study, the three main
challenges faced by collaborative development are: (1) misconcep-
tions about the medium, (2) lack of tool support and (3) missing a
common language and shared concepts. Our interviews confirmed
and complemented their findings by two aspects in collaborative
VR testing: (1) difficult remote debugging and (2) difficult headset
sharing.

Remote testing and debugging within a development team remain
a critical issue, especially with the adoption of remote work mode in
recent years:

That was a pain by calling and telling the person to change
this and that. In order to debug something, I need to tell the
person the specific things to do, and the person needs to tell
me the result either through screenshot or recording. (P1-JD)

When I was helping people debugging, I always cannot see
what they saw. It could be ideal to have a mapping between
what they do (e.g. click, move) to our aspect. (P4-ED)

Headset sharing could be an issue since not everyone in the
development team has access to the limited number of VR headsets:

Some people working at home, and do not have VR headsets
there. Then they don’t have ways to test some VR-specific
problems like the performance issues. (P6-ED)

Even with developers located in the same physical space, collabora-
tive debugging between different developers could be challenging.
One of the prominent issues is that the headset sharing between
developers need more labour work such as recalibration and com-
munication than developer assumed:

A teammate head off the headset, then handed me a used VR
headset and I put it on, I lost the calibration and was trapped
in the box. (P1-JD)

Even though I told the other developers what they should do,
they started doing other things than you thought. There is a
high demand for communication here when you debug with
someone else. (P4-ED)

4.3 Comprehensive Challenges
Comprehensive challenges are these challenges beyond the hard-
ware and software limitations. In our study, a lack of standards (C9)
and few VR-specific testing support (C10) have been raised. Over-
coming these obstacles requires the collective efforts of the entire
VR community, as they go beyond the capabilities of individual
developers or organizations.

C9: Lack of Standards. Developers might grapple with difficul-
ties stemming from an absence of standardized practices. Numerous
developers have pointed out the lack of shared standards, such as
varying APIs, among diverse VR development tools and software
(e.g., Unity and Unreal) as well as hardware (like VR HMDs such
as Oculus Quest and HTC Vive).

I need to use two totally different SDKs for Quest 2 and Vive
development, which means I have to double my development
work by learning and coding two things. (P6-ED)

I think a good driver for this, specifically around standards.
I mean, I think of openXR, you know, that’s a good industry-
inclusive initiative that is trying to get behind alignment for
standards, so that everyone follows similar patterns, etc. And
they can deploy to as many devices as it is supported within.
(P12-VDTD)

Even though participant feedback from our study suggests that sig-
nificant progress is still required before developers can fully benefit
from the convenience, efficiency, and adaptability that standardiza-
tion brings to VR development. Organizations like OpenVR strive
to address standardization challenges in VR development, which
could ultimately benefit many developers:

I enjoy being able to work on openXR and the really unsexy
open standards that are not going to sell front page, you know,
news, but ultimately, is really going to benefit developers
and the community at large by having open interoperable
standards that we as an industry can use. (P12-VDTD)

C10: Few VR-specific Testing Support. Developers might
face challenges due to the few VR-specific testing provided by the
community and industry. This insufficient support can be evident
in multiple forms, such as a limited range of toolkits, tutorials, and
documentation, or insufficient cooperation and integration among
different tools and solutions:

I hope to see more samples from the community, and proper
documentation, currently they are not straightforward. (P7-
JD)

Looking for documentation sometimes is still very challenging
(P2-JD)

Some of the VR development frameworks I use do not have
enough information about their technical details. Their inter-
nal logic is unknown and unchangeable and I feel like it’s a
black box. (P6-ED)

I’m thinking about the nature of like, VR departments still
have a small population compared to trending fields like AI, it
doesn’t have large community support. (P8-ED)

However, one of the tool providers found that community support
is getting better for VR development:

There’s also the Unity learn portal where there are tutorials
and, you know, for all levels, beginning, advanced and pro-
fessional. So, I believe that there’s enough documentation
from unity and the tools and packages that we provide to the
community that is pretty comprehensive. (P12-VDTD)

5 SURVEY STUDY

To validate and enhance the reliability of our qualitative interview
results, we carried out a survey targeting a wider group of VR
developers. This approach aimed to triangulate and substantiate our
identified challenges.

5.1 Study Design
Our survey consisted of three parts. Part 1 contained some demo-
graphic questions regarding respondents’ years of experience in VR
development, the VR development tools they utilized, and the VR
headsets they employed. Part 2 was respondents’ assessment of
each challenge identified during the interview study using a 7-point
Likert scale: “Not at all important”, “Low importance”, “Slightly
important”, “Neutral”, “Moderately important”, “Very important”,
and “Extremely important”. To ascertain the validity of the chal-
lenges discovered through the interviews, in Part 3 of the survey, we
asked respondents to indicate, out of the 10 challenges, the top three
challenges they think are most important and relevant to VR testing
as well as the top three challenges they think are least important and
irrelevant to VR testing.

We recruited participants for our survey through Slack channels
of several HCI research communities, VR-related industry com-
munities, as well as a large IT company making VR development
software. Additionally, we encourage respondents to share the sur-
vey with other VR developers, if feasible. The survey was conducted



Figure 1: Respondents’ ratings on the importance of each challenge
on a 7-point Likert scale (1=“not at all important”, 7=“extremely
important”; sorted by average ratings).

online via Qualtrics without being supervised by a researcher. No
compensation was provided for completing the survey.

5.2 Results
A total of 33 VR developers (23 males, 9 females, and 1 non-
binary/third gender; aged 23–52) from various organizations partici-
pated in our survey, after excluding 4 invalid responses where the
respondents do not have enough VR experiences. Among the valid
respondents, 16 had 0–2 years of VR development experience, 10
had 3–5 years, and 7 had 6–10 years. All of the participants (33/33)
utilized Unity as their VR development tool, while 6 had experience
with Unreal, and 1 had used a custom engine for VR development.
The most popular headset among respondents was Oculus Quest 1/2,
with 26 out of 33 developers have used it. Additionally, 19 respon-
dents had experience with Oculus Rift(s) and 18 with HTC Vive.
Furthermore, 13 developers had worked with Google Cardboard,
and a few others (≤ 5) had used headsets such as Meta Quest Pro,
Varjo XR3, and Valve Index etc. separately.

Figure 1 summarizes the survey responses for the ratings of all
identified challenges, including mean values and standard errors. It
is evident that all identified challenges have a mean value greater
than 4 (neutral), confirming the validity of the challenges. In par-
ticular, certain challenges (C1: Cumbersome VR Equipment, C5:
Missing Testing Information, and C9: Lack of Standards) exhibit
higher mean values, indicating that respondents are more concerned
about these issues. C10: Few VR-specific Testing Support has the
lowest mean value (4.15). A potential explanation for this could be
the recent growth of the VR community due to the popular topic of
the Metaverse, which has drawn more developers to the VR commu-
nity and encouraged organizations and individuals to offer support to
developers. C7: Lack of Automated Testing receives the second low-
est average rating (4.21). This may be because manual testing cannot
be avoided in VR development because of the nature of the software,
which requires human labour to check features such as graphics
quality and running performance. However, it is also noticeable that
8 of the respondents rated this challenge as “very important” and 1
rated this as “extremely important”, which means this challenge still
remains prominent among some of the VR developers.

Furthermore, we computed the proportion of each challenge se-
lected as most important and relevant (Figure 2a) as well as that
considered least important and irrelevant (Figure 2b). From Fig-
ure 2a, we can see that all the challenges have their voters, with C1:
Cumbersome VR Equipment (15.15%), C3: Difficult Equipment
Set-up (13.13%) and C4: Performance Issues (13.13%) having the
most respondents’ concern. Notably, we can see that all C1, C3, and
C4 are hardware-related challenges, which indicates that the VR
development community still has big worries about VR hardware
and there is a big growing space for VR hardware. From Figure 2b,
we can see that C2: Motion Sickness (13.13%), C4: Performance

Issues (13.13%), and C7: Lack of Automated Testing (13.13%) are
the challenges that the respondents are least worried about. Motion
sickness, as mentioned by one of the experienced developers in
the interviews, could be overcome by the time people develop VR
applications and gradually get used to it: “I am generally immune
to motion sickness after spending a lot of time in the VR industry.”
(P5-ED)

In summary, all the challenges exhibit reasonable ratings without
any outliers, further substantiating the validity of our findings from
the interview study.

6 FUTURE OPPORTUNITIES

In addition to identifying and verifying the challenges that develop-
ers are facing in VR testing, we aimed to explore the opportunities
to improve the current state-of-the-art. During the open discussion
stage of the interviews, we asked our participants about their ideal
VR testing tools or VR testing features. We thus identified sev-
eral promising avenues that may help with the design of future VR
testing tools for both academic and industrial settings.

Improving hardware design for convenient VR testing:
Hardware-related issues, as pointed out in both interviews and sur-
veys, still remain prominent in VR development communities. De-
velopers suggested some features that could potentially mitigate
hardware-related issues in the future. For example, the quick flip
on-and-off features would help people switch faster between the VR
environment and computer monitor during the testing:

I wish there will be a VR headset that I could just wear, flip it
off when I need to take a look at my monitor, and flip it back
when I need to go back to VR. (P14-VDTD)

What I also really like, is the HoloLens 2 has the visor that
can, you know, flip down and flip up... My dream headset,
combines this feature in it. (P13-VDTD)

Enabling headset-based authoring and testing in VR. Headset
authoring and testing in VR environments were raised a lot during
the discussion. First, participants want to see a dedicated debugging
mode in VR environments with more flexibility to make some code
changes just in VR, without going back to the keyboard:

Some functionalities like pre-setting some variables that you
will be able to tweak in VR, for example, the width or the
height of an object in VR, could save a lot of time of going
back and forth. (P3-ED)

I would love to see in headset authoring. So be able to like,
put on the headset, and basically have control over your scene
hierarchy and inspector. Basically like an engine within the
headset, where you’re able to edit parameters, move things
around (P12-VDTD)

In addition, participants hoped to see the debugging mode in VR
with better testing information visualization:

There will be some windows inside the VR to help you see the
performance and variables. (P6-ED)

Being able to see different viewpoints, for example, switching
between different cameras will help me debug some compli-
cated scenes easily. (P3-ED)

Meta has even some really cool features where you can only
have passed through in some areas like you know, the keyboard
tracking features are pretty cool, right? I can see my real-
world keyboards keep that my real world keyboard so I know
where to put my fingers when I am testing in VR (P12-VDTD)

Generally, participants wanted to have a smooth combination
between editing and testing in VR development. One of the tool
developers commented:



(a) (b)

Figure 2: Distribution of the three MOST (a) and LEAST (b) important challenges chosen by respondents (sorted by the number of votes).

Finally, there should be some unification of editing and test-
ing so that people don’t feel a separation in the whole VR
development process. (P14-VDTD)

Designing collaborative tools for VR testing. More convenient
collaboration in VR development could improve the productivity of
the whole VR development team. Communication and collaboration
in VR testing can be enhanced with more dedicated VR collaborative
tools:

I do agree that the sort of real-time over a Zoom meeting, and
maybe the answer is that Zoom is ultimately not going to be
the best platform for real-time VR-related calls. But I think
there is sort of a gap there in terms of like, Could we have
a zoom alternative in VR where we can load the experience
together between developers? (P13-VDTD)

Creating automated testing frameworks for VR. The challenge
of automated testing could be mitigated with specialized software
frameworks or libraries with functionalities such as button mapping,
testing video generation and breaking, playing back, and playing
forward some testing timelines.

It is possible to develop some kind of testing framework, in
which you can map some actions from the VR controller to
the code to help developers automate some tests. (P9-ED)

It is ideal to be able to see the video of the tests and be able to
highlight something or catch the model change. (P13-VDTD)

It would be helpful to have some systems in place to automate
tests and developers could playback or play forward some of
the tests in the simulator instead of putting on the VR headset.
(P14-VDTD)

From the hardware perspective, one tool developer also pointed
out that other tools like robotic arms could help with automated
tests:

You can have some additional robotic testing, where you can
actually say, Okay, what happens when I turn my head this
way, what happens when I turn my head this way inside of the
headset? (P11-VDTD)

Lowering the barrier for junior developers and non-tech users.
On the social level, we could help with the testing difficulties con-
fronted by junior developers by making VR development more
accessible, smoothing some steps in the process, and integrating the
learning experience into the VR development tools such as Unity
engine:

Most of these headsets are making the VR development not
very accessible for a lot of people, whether they have vision

disabilities or mobility disabilities, you know, they’re very
able-bodied devices so far. So I hope that as we move forward,
with new devices, and new technologies, all of those things
begin to bubble up towards the front and become banners that
we carry, and we really, really push forward. (P12-VDTD)

Setting up the initial building blocks for a starting project
could allow someone without coding knowledge to quickly set
up a scene. (P12-VDTD)

But also try to make all of the learning happen within the
engine so that we can hopefully cut the dependency between a
browser-based experience like the learning resource and have
that integrated into one of the sample builds. (P12-VDTD)

Reducing the barriers to entry for VR development could not only
draw more developers into the VR community but also significantly
contribute to the overall growth and flourishing of the industry.

7 LIMITATIONS AND FUTURE WORK

There still exist several limitations in our study that we want to
highlight to inform future research. First, as shown in Table 1, a
majority of our participants in the interview study uses Unity as
the primary VR development tool. This might have biased the
challenges we identified, as different development tools may have
very different features. Thus a more diverse sample of interviewees
could be recruited to further enhance and validate our results.

Second, while our survey study results have confirmed and sub-
stantiated the challenges derived from our interview study, more
participants could be recruited to better support our insights. How-
ever, we do recognize the challenges of getting VR developers as
the respondents, not ordinary VR users. Therefore, future studies
can be carried out to re-confirm or extend the set of challenges.

Third, we primarily employed a qualitative approach to identify
the key challenges for VR testing in our study; while we attempted to
use a quantitative method in the survey study to verify the interview
results, an even more quantitative way might be appreciated. For
example, some logging mechanisms can be implemented in VR
development tools to examine the behaviors of VR developers during
testing, thus complementing our qualitative results. In deriving the
future directions for VR testing tools, prototypes can be built to allow
VR developers to actually try different features and then provide
their feedback, which could generate richer observations.

Fourth, in our study, we focus on the challenges associated with
the testing phase of VR software development; however, there are
other challenges that remain prominent in the whole process of de-
velopment. For instance, the large dependence on game engines such
as Unity and Unreal makes VR development especially cumbersome
because of the heavy weight of these engines. Also, different ver-
sions of game engines and software development tools are updated



almost on a daily basis, which can also be troublesome to the devel-
opment. These create additional challenges for VR testing that are
associated with the software-related and comprehensive challenges
we identified (especially C8, C9, and C10). Thus, future investiga-
tions regarding the whole development process of VR software can
be carried out to nail down other challenges and opportunities that
developers may face.

In summary, several future efforts should be made to continue
this line of research, and our study has opened doors to a wide range
of development and investigation opportunities for VR testing.

8 CONCLUSION

In this paper, we aimed to fill in the gap in the literature by exploring
the challenges, needs, and future opportunities of software testing
in VR development. During the interviews, participants expressed
various difficulties encountered during the VR development testing
phase, which we then consolidated into a list of challenges. More-
over, we explored future directions for VR testing and presented the
outcomes that may shed light on the research and technology devel-
opment. We confirmed the challenges through a survey, analyzing
the ratings given for each challenge. Our findings highlight multiple
design opportunities for both academic and industrial stakeholders
to alleviate these VR testing challenges. By addressing these issues
and following our results, we believe that future development can
enhance the utility, productivity, and overall development experience
for VR developers during the testing phase.

ACKNOWLEDGMENTS

We wish to thank all the participants for their effort and feedback.
We especially thank Alan Liwei Wu (University of Waterloo) as well
as Valerio Ortenzi and Monika Underwood (Unity Technologies) for
their valuable input on this project. This research is supported in
part by the Mitacs Accelerate program via collaboration with Unity
Technologies.

REFERENCES

[1] I. A. Al Hafidz, S. Sukaridhoto, M. U. H. Al Rasyid, R. P. N. Budi-
arti, R. R. Mardhotillah, R. Amalia, E. D. Fajrianti, and N. A. Satrio.
Design of collaborative webxr for medical learning platform. In 2021
International Electronics Symposium (IES), pp. 499–504. IEEE, 2021.

[2] N. Ashtari, A. Bunt, J. McGrenere, M. Nebeling, and P. K. Chilana.
Creating Augmented and Virtual Reality Applications: Current Prac-
tices, Challenges, and Opportunities. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pp. 1–13. ACM,
Honolulu HI USA, Apr. 2020. doi: 10.1145/3313831.3376722

[3] A. Bertolino. Software Testing Research: Achievements, Challenges,
Dreams. In Future of Software Engineering (FOSE ’07), pp. 85–103,
May 2007. doi: 10.1109/FOSE.2007.25

[4] R. Blonna, M. S. Tan, V. Tan, A. P. Mora, and R. Atienza. Vrex: A
framework for immersive virtual reality experiences. In 2018 IEEE
Region Ten Symposium (Tensymp), pp. 118–123, 2018. doi: 10.1109/
TENCONSpring.2018.8692018

[5] M. Bock and A. Schreiber. Visualization of neural networks in virtual
reality using unreal engine. In Proceedings of the 24th ACM symposium
on virtual reality software and technology, pp. 1–2, 2018.

[6] F. Cassola, M. Pinto, D. Mendes, L. Morgado, A. Coelho, and H. Pare-
des. A novel tool for immersive authoring of experiential learning in
virtual reality. In 2021 IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW), pp. 44–49, 2021. doi:
10.1109/VRW52623.2021.00014

[7] D. L. Chen, R. Balakrishnan, and T. Grossman. Disambiguation tech-
niques for freehand object manipulations in virtual reality. In 2020
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.
285–292, 2020. doi: 10.1109/VR46266.2020.00048

[8] X. Chen, M. Wang, and Q. Wu. Research and development of virtual
reality game based on unreal engine 4. In 2017 4th International
Conference on Systems and Informatics (ICSAI), pp. 1388–1393. IEEE,
2017.

[9] H. Coelho, P. Monteiro, G. Gonçalves, M. Melo, and M. Bessa. Au-
thoring tools for virtual reality experiences: a systematic review. Multi-
media Tools and Applications, 81(19):28037–28060, Aug. 2022. doi:
10.1007/s11042-022-12829-9

[10] J. D. O. De Leon, R. P. Tavas, R. A. Aranzanso, and R. O. Atienza.
Genesys: A virtual reality scene builder. In 2016 IEEE Region 10
Conference (TENCON), pp. 3708–3711, 2016. doi: 10.1109/TENCON
.2016.7848751

[11] B. Ens, B. Bach, M. Cordeil, U. Engelke, M. Serrano, W. Willett,
A. Prouzeau, C. Anthes, W. Büschel, C. Dunne, T. Dwyer, J. Gru-
bert, J. H. Haga, N. Kirshenbaum, D. Kobayashi, T. Lin, M. Olaose-
bikan, F. Pointecker, D. Saffo, N. Saquib, D. Schmalstieg, D. A. Szafir,
M. Whitlock, and Y. Yang. Grand Challenges in Immersive Analytics.
In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–17. ACM, Yokohama Japan, May 2021. doi:
10.1145/3411764.3446866

[12] G. D. Everett and R. McLeod Jr. Software testing. Testing Across the
Entire, 2007.

[13] W. Gai, C. Yang, Y. Bian, C. Shen, X. Meng, L. Wang, J. Liu, M. Dong,
C. Niu, and C. Lin. Supporting easy physical-to-virtual creation of
mobile vr maze games: A new genre. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI ’17,
p. 5016–5028. Association for Computing Machinery, New York, NY,
USA, 2017. doi: 10.1145/3025453.3025494

[14] M. Gandy and B. MacIntyre. Designer’s augmented reality toolkit, ten
years later: Implications for new media authoring tools. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and
Technology, UIST ’14, p. 627–636. Association for Computing Ma-
chinery, New York, NY, USA, 2014. doi: 10.1145/2642918.2647369

[15] N. Ghrairi, S. Kpodjedo, A. Barrak, F. Petrillo, and F. Khomh. The state
of practice on virtual reality (vr) applications: An exploratory study on
github and stack overflow. In 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pp. 356–366, 2018.
doi: 10.1109/QRS.2018.00048

[16] X. Guo and I. Mogra. Using web 3d and webxr game to enhance
engagement in primary school learning. In 2022 IEEE International
Symposium on Multimedia (ISM), pp. 181–184. IEEE, 2022.

[17] H. Hadjar, P. McKevitt, and M. Hemmje. Home-based immersive web
rehabilitation gaming with audiovisual sensors. In Proceedings of the
33rd European Conference on Cognitive Ergonomics, pp. 1–7, 2022.

[18] R. Henrikson, T. Grossman, S. Trowbridge, D. Wigdor, and H. Benko.
Head-coupled kinematic template matching: A prediction model for
ray pointing in vr. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI ’20, p. 1–14. Association
for Computing Machinery, New York, NY, USA, 2020. doi: 10.1145/
3313831.3376489

[19] A. Karakottas, N. Zioulis, A. Doumanglou, V. Sterzentsenko, V. Gk-
itsas, D. Zarpalas, and P. Daras. Xr360: A toolkit for mixed 360 and
3d productions. In 2020 IEEE International Conference on Multi-
media and Expo Workshops (ICMEW), pp. 1–6, 2020. doi: 10.1109/
ICMEW46912.2020.9105984

[20] H. K. Kim, J. Park, Y. Choi, and M. Choe. Virtual reality sickness
questionnaire (vrsq): Motion sickness measurement index in a virtual
reality environment. Applied ergonomics, 69:66–73, 2018.

[21] R. Konrad, D. G. Dansereau, A. Masood, and G. Wetzstein. SpinVR:
towards live-streaming 3D virtual reality video. ACM Transactions
on Graphics, 36(6):209:1–209:12, Nov. 2017. doi: 10.1145/3130800.
3130836

[22] V. Krauß, A. Boden, L. Oppermann, and R. Reiners. Current practices,
challenges, and design implications for collaborative ar/vr applica-
tion development. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, CHI ’21. Association for Com-
puting Machinery, New York, NY, USA, 2021. doi: 10.1145/3411764.
3445335

[23] B. Maclntyre and T. F. Smith. Thoughts on the future of webxr and
the immersive web. In 2018 IEEE international symposium on mixed
and augmented reality adjunct (ISMAR-Adjunct), pp. 338–342. IEEE,
2018.



[24] A. M. Memon and M. B. Cohen. Automated testing of gui applications:
models, tools, and controlling flakiness. In 2013 35th International
Conference on Software Engineering (ICSE), pp. 1479–1480. IEEE,
2013.

[25] D. Navarre, P. Palanque, R. Bastide, A. Schyn, M. Winckler, L. P. Nedel,
and C. M. Freitas. A formal description of multimodal interaction tech-
niques for immersive virtual reality applications. In Human-Computer
Interaction-INTERACT 2005: IFIP TC13 International Conference,
Rome, Italy, September 12-16, 2005. Proceedings 10, pp. 170–183.
Springer, 2005.

[26] M. Nebeling, S. Rajaram, L. Wu, Y. Cheng, and J. Herskovitz. XRStu-
dio: A Virtual Production and Live Streaming System for Immersive
Instructional Experiences. In Proceedings of the 2021 CHI Confer-
ence on Human Factors in Computing Systems, number 107, pp. 1–12.
Association for Computing Machinery, New York, NY, USA, May
2021.

[27] M. Nebeling and M. Speicher. The trouble with augmented real-
ity/virtual reality authoring tools. In 2018 IEEE International Sympo-
sium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp.
333–337, 2018. doi: 10.1109/ISMAR-Adjunct.2018.00098

[28] F. C. Rodrı́guez, M. Dal Peraro, and L. A. Abriata. Democratizing
interactive, immersive experiences for science education with webxr.
Nature Computational Science, 1(10):631–632, 2021.

[29] S. S. A Study of Software Development Life Cycle Process Models,
June 2017. doi: 10.2139/ssrn.2988291

[30] M. Sánchez-Gordón, L. Rijal, and R. Colomo-Palacios. Beyond tech-
nical skills in software testing: Automated versus manual testing. In
Proceedings of the IEEE/ACM 42nd International Conference on Soft-
ware Engineering Workshops, pp. 161–164, 2020.

[31] R. Sharma. Quantitative analysis of automation and manual testing.
International journal of engineering and innovative technology, 4(1),
2014.

[32] L. Sidenmark, C. Clarke, X. Zhang, J. Phu, and H. Gellersen. Outline
pursuits: Gaze-assisted selection of occluded objects in virtual real-
ity. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, CHI ’20, p. 1–13. Association for Comput-
ing Machinery, New York, NY, USA, 2020. doi: 10.1145/3313831.

3376438
[33] L. Sidenmark, D. Potts, B. Bapisch, and H. Gellersen. Radi-eye:

Hands-free radial interfaces for 3d interaction using gaze-activated
head-crossing. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI ’21. Association for Comput-
ing Machinery, New York, NY, USA, 2021. doi: 10.1145/3411764.
3445697

[34] A. Šmı́d. Comparison of unity and unreal engine. Czech Technical
University in Prague, pp. 41–61, 2017.

[35] K. Sneha and G. M. Malle. Research on software testing techniques
and software automation testing tools. In 2017 International Confer-
ence on Energy, Communication, Data Analytics and Soft Computing
(ICECDS), pp. 77–81, 2017. doi: 10.1109/ICECDS.2017.8389562

[36] O. Taipale, J. Kasurinen, K. Karhu, and K. Smolander. Trade-off
between automated and manual software testing. International Journal
of System Assurance Engineering and Management, 2:114–125, 2011.

[37] B. Thoravi Kumaravel, F. Anderson, G. Fitzmaurice, B. Hartmann,
and T. Grossman. Loki: Facilitating Remote Instruction of Physical
Tasks Using Bi-Directional Mixed-Reality Telepresence. In Proceed-
ings of the 32nd Annual ACM Symposium on User Interface Software
and Technology, UIST ’19, pp. 161–174. Association for Computing
Machinery, New York, NY, USA, Oct. 2019. doi: 10.1145/3332165.
3347872

[38] M. A. Umar and C. Zhanfang. A study of automated software testing:
Automation tools and frameworks. International Journal of Computer
Science Engineering (IJCSE), 6:217–225, 2019.

[39] L. Zhang and S. Oney. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology,
UIST ’20, p. 342–353. Association for Computing Machinery, New
York, NY, USA, 2020. doi: 10.1145/3379337.3415824

[40] M. Zubair and N. Anyameluhor. How long do you want to maintain
this thing? understanding the challenges faced by webxr creators. In
The 26th International Conference on 3D Web Technology, Web3D ’21.
Association for Computing Machinery, New York, NY, USA, 2021.
doi: 10.1145/3485444.3495181


	Introduction
	Related Work
	Development and Authoring Tools for VR
	VR Development Practices
	Testing Practices in Software Development

	Interview Study
	Participants
	Interview Procedure
	Data Analysis

	Challenges in VR Testing
	Hardware-related Challenges
	Software-related Challenges
	Comprehensive Challenges

	Survey Study
	Study Design
	Results

	Future Opportunities
	Limitations and Future Work
	Conclusion

