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Figure 1. (a) TreeEvo organizes and demonstrates the entire collection of family trees by growth and continuity in a Sankey diagram
like visualization. In this example, Sankey nodes in each row represent all trees with the same depth, which are categorized into three
groups: left-inclined (blue), balanced (white), and right-inclined (red). (b) After the blue Sankey node is selected, detailed composition
of the node, i.e., a set of trees, is displayed in a space-efficient layout. Trees of each specific structure are represented by a rectangle,
of which the color indicates inclination and area encodes the number trees. The node-link structure of family trees is displayed if the
rectangle is large enough. (c) Family trees included in the red Sankey node, which are right-inclined, are displayed upon selection.

Abstract— Whether and how does the structure of family trees differ by ancestral traits over generations? This is a fundamental
question regarding the structural heterogeneity of family trees for the multi-generational transmission research. However, previous
work mostly focuses on parent-child scenarios due to the lack of proper tools to handle the complexity of extending the research
to multi-generational processes. Through an iterative design study with social scientists and historians, we develop TreeEvo that
assists users to generate and test empirical hypotheses for multi-generational research. TreeEvo summarizes and organizes family
trees by structural features in a dynamic manner based on a traditional Sankey diagram. A pixel-based technique is further proposed
to compactly encode trees with complex structures in each Sankey Node. Detailed information of trees is accessible through a
space-efficient visualization with semantic zooming. Moreover, TreeEvo embeds Multinomial Logit Model (MLM) to examine statistical
associations between tree structure and ancestral traits. We demonstrate the effectiveness and usefulness of TreeEvo through an
in-depth case-study with domain experts using a real-world dataset (containing 54,128 family trees of 126,196 individuals).

Index Terms—Quantitative social science, Design study, Multiple tree visualization, Sankey diagram.

1 INTRODUCTION

In social sciences, increasingly available multi-generational datasets en-
able new research opportunities on the transmission of socio-economic
and behavioral traits over generations [25,41,42]. However, due to data
complexity and lack of efficient tools, most previous studies only focus
on the transmission between parents and children and, only recently,
across three generations, leaving one fundamental question unanswered:
whether and how does the structure of family trees differ by ancestral
traits over generations? Because all traits transmit through family trees,
the answer is critical for evaluating and improving the current design
of multi-generational transmission research.

While the two-generational analysis is straightforward in research
design and estimation, extending it to multi-generational processes
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is challenging for three primary reasons. First, given limited prior
knowledge of the multi-generational socio-economic and demographic
processes of human populations, to assume the transmission or influ-
ence of individual traits transmitted in any specific form across multiple
generations is virtually arbitrary without empirical ground. Incorrect
assumptions may introduce biases in research design and statistical
estimation. Thus, it is desirable to have a visual analytics tool to
generate and verify/reject hypotheses based on newly available data.

Second, most statistics tools used in social science, such as SPSS [5],
STATA [1], and R [4], are limited in visual analytics. These tools either
report numeric analytical results with limited graphic options, or require
advanced programming skills to generate desired diagrams, which
hinders experts from understanding and processing the hierarchical
data structure of family trees or other social networks.

Third, due to the large data volume and heterogeneity in family
tree structures, experts have difficulties understanding the link between
the specific structure of each family tree at the micro level and the
general topology of a collection of family trees at the aggregated level.
Although conventional statistical tools may also assist describing and
categorizing family trees by statistics of known variables (e.g., number
of generations), they take little advantage of structural information in
multi-generational data as well as the entire collection of family trees to
help discover important unknown patterns and factors (e.g., inclination;
see Section 3.4).
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To address the above challenges, we conduct a design study with
social demographers and historians to explore visualization designs
for analyzing the associations between individual traits of founding
ancestors (e.g., life span) and the structure of family trees in later
generations. We derive a set of analytical questions based on discus-
sions and interviews with a group of six experts. Guided by these
questions, we develop TreeEvo (Tree+Evolution), an interactive visual
analytics system that supports analysis of the association between
ancestral traits and family tree structures. Based on a traditional Sankey
diagram, TreeEvo employs a dynamic visualization for organizing and
demonstrating a large collection of family trees (in our case, 54,128
family trees) by growth and continuity (Figure 1(a)). Moreover, to
describe structures of family trees, TreeEvo simplifies trees with a
novel pixel-based technique in each Sankey node, and maps structural
features to colors. Detailed information of trees can be further explored
in a multi-scale space-filling representation (Figure 1(b)). In addition,
we employ a Multinomial Logit Model (MLM) [19] to provide quanti-
tative analysis for revealing the association between life history traits,
socio-economic status of male founders and the structure of family
trees. During the entire study, we use the China Multi-Generational
Panel Dataset, Liaoning (see Section 3.2) as a testbed for our design in
realistic scenarios and show that our system enables experts to unveil
multi-generational implications of reproductive strategies, which has
never been studied in relevant domains.

2 RELATED WORK

Our work is related to multi-generational studies done in social
sciences, genealogy visualization, and more generally the visualization
of multiple trees.

2.1 Multi-generational Studies in Social Science
The call for empirical studies at the individual level to examine
socio-economic and demographic processes from a multi-generational
perspective is relatively new. Most existing studies on the intergener-
ational transmission of individual traits and socio-economic status
focus on two generations, i.e., parents and children. Only a few
recent exceptions have started to study three generations, which try to
identify whether grandparental characteristics have a direct influence
on grandchild outcomes [31].

This is not surprising since individual-level data that cover more than
three generations have only become available in recent decades [15]. A
handful of empirical studies moving beyond three generational analysis
is starting to take place [25, 42]. That being said, the current analytical
framework of multi-generational research relies heavily on existing
knowledge and methods of two- and three-generational studies, which
are the simplest cases of multi-generational processes. It may ignore
the complexity of dynamic and confounding effects through various
mechanisms given large kin networks between many kin as well as
multiple generations. In other words, existing knowledge of how to
conduct multi-generational research is very limited.

Our work, therefore, provides new insights on social science and
evolutionary research by investigating the association between life
history traits, socio-economic status of the ancestor, and the structure
of the family tree. TreeEvo and its resulting new findings help
experts generate, verify, and reflect assumptions and methodology to
study multi-generational socio-economic and demographic processes
in human populations.

2.2 Genealogy Visualization
Various visualization techniques have been proposed to demonstrate the
topology and attributes of family trees. We categorize these techniques
into three groups according to their representation; node-based, line-
based, and matrix-based. Note that the terms (e.g., genealogy, lineage,
and pedigree) employed in different studies are often inconsistent but
essentially have the same meaning as family tree in our study.

For node-based visualizations, each individual is presented as a
node [13, 20, 32, 38, 45]. Using similar representations, existing
genealogy software solutions [2, 44] extend the ability of showing
individuals with multiple attributes and complex relationships among

individuals. Some works use a stacked layout, such as Fan charts [16],
to present family trees compactly. Though intuitive, node-based
approaches do not scale well to a large number of individuals [7].

Contrary to node-based methods, line-based approaches present
individuals as lines, which are usually used to convey a sense of time [7].
For example, Priestley [35] presents individuals as horizontal lines, the
length of each line indicates the life span of the corresponding person.
However, relationships between individuals are neglected. To address
this problem, Genelines [3] adds indents for each line segment to
represent descendant relationships. Kim et al. [24] propose TimeNets
that indicates marriage and divorce using converging and diverging
lines. Similar to node-based approaches, the scalability of line-based
approaches is still limited.

Some genealogy visualizations support explorations of large datasets
using matrices, where rows are observations and columns are vari-
ables [2]. However, this representation is not adequate to show an
overview of relationships. More recently, Bezerianos et al. propose
GeneaQuilts [7], which displays layered graphs in a more compact
manner than traditional matrix representations, and has better scalability
compared with node-based and line-based methods.

The above visualizations primarily focus on showing a single family
tree, which cannot be used for the domain problems that we focus on.
Unlike these techniques, TreeEvo provides an overview of over 54,000
family trees with an extended Sankey diagram, which enables experts
to obtain an overall understanding of the growth and continuity of a
collection of family trees.

2.3 Multiple Tree Visualization
Inspired by Graham and Kennedy’s work [22], we categorize prior arts
in multiple tree visualization according to visual presentation, including
small multiples, animation, 3-D representations, agglomeration, and
atomic representations.

Many works use small multiples, sub-dividing the available
screen space into areas and depicting each hierarchical instance with
Treemap [39], icicle plot [27], and node-link diagram [10], etc. in each
area. For example, to visualize the evolution of hierarchical knowledge
domains over time, Kutz et al. [28] present a patent collection with
a sequence of Treemaps against a time line. Chi et al. [10] use a
collection of Disk Trees to present the changing hierarchical structure
of websites over a long period of time. Zhao et al. [48] employ a
tabular layout for tree comparison and encode tree similarity as the
background of a node-link digram.

Animation and 3-D representations are also popular techniques
for demonstrating multiple hierarchies. For example, Card et al.
[9] introduce Timetree, which visualizes changes in a tree structure
between different time points through animation. From a different
perspective, 3-D representations of multiple hierarchies generally
present multiple and distinct tree representations in parallel planes [12,
22]. Relationships between the trees are shown by drawing edges [18,
43] or by coloring [46].

However, small multiples, animation and 3-D based approaches
do not scale well because each tree presentation requires significant
display space [22]. To use screen space effectively, some works use
agglomeration [8, 21], which is visual aggregation of multiple trees
so that correlating nodes in different trees overlay each other [21].
Others employ a river metaphor. For example, Cui et al. [11] design
Roseriver to illustrate the evolution of hierarchical topics across a
number of timestamps. Although slightly improved in scalability, the
aforementioned approaches may still fail at displaying hundreds of trees
or more. To address this issue, some work chose not to show all the trees
at sensible level of details when the number of trees grows extremely
large. For example, Amenta and Klingner [6] use a scatter plot to
visualize a set of trees, where each point represents an individual tree,
and distances between points indicate similarity between the associated
trees. A detailed view of an individual tree is illustrated after the tree
is selected. Unlike the scatter plot approach that displays each tree
separately, TreeEvo, while maintaining scalability, aggregates the entire
collection of family trees with an extended Sankey diagram to illustrate
the general topology of thousands of trees.



a c

b

Figure 2. An early prototype that focuses on exploring individual family
trees. (a) The collection panel visualizes all family trees as a scatter
plot with color mapped to geographic information (blue, green, red, and
orange represent north, central, south central, and south, respectively).
We then use MDS algorithm [26] to locate each point. Two points close
to each other means the two families are similar in three aspects, i.e.,
location, population and number of generations. (b) Experts can filter
trees by different attributes. (c) When a point is selected, detailed
structure of the corresponding family tree is presented in the tree panel.

3 DESIGNING TREEEVO

We follow a typical user-centered iterative design framework [37] to
develop TreeEvo. In this section, we describe the background of this
project and the entire design process.

3.1 Working with Experts
The goal of this study is to support social scientists in conducting
multi-generational analysis. We closely collaborate with six domain
experts through the design, development, and evaluation of TreeEvo.
One expert is a demographer and our internal expert (a co-author of
this paper). He has extensive experience working on multi-generational
datasets of historical populations from East Asia. From the beginning
of our collaboration, he has been actively engaged in this project and
wanted to employ visual analytics to address problems and challenges
in multi-generational research. The other five are external experts (not
co-authors), including one professor and four postgraduate students.
The professor is well-established in the field of historical demography
and sociology, specializing in multi-generational data and analysis
with several major publications. The postgraduate students are all
knowledgeable on social science theory, data, and methodology.

The entire design process includes three phases, each consisting
of at least one formal interview session with all the experts and
several informal discussions with the internal expert. The first phase
(Section 3.3 to 3.5) aims to identify important research questions
in multi-generational analysis and derive analytical tasks for the
visualization. It first involves the development of an early prototype
to just “see” the data. This is because multi-generational analysis is a
relatively new area and our experts need to flesh out research questions
after broadly exploring the dataset. We then work with the experts to
identify opportunities and user tasks for the visualization by analyzing
their traditional workflow of tackling the problem. The second phase
includes the iterative development of TreeEvo based on the experts’
feedback. Details of the resulting system are discussed in Section 4. In
the third phase, we organize several interview sessions with different
experts to evaluate the effectiveness and usefulness of TreeEvo. The
results are reported in Section 5.

3.2 Dataset
Owing to the efforts of social scientists and historians in recent
decades, large-scale household- and individual-level data that cover
populations for many generations have increasingly become available
worldwide [15]. The real-world dataset that we use to ground our study
is CMGPD-LN [29]. It is transcribed from triennial household registers
compiled by the Qing Dynasty (1644-1912) government in Liaoning
Province, Northeast China between 1749 and 1909. The dataset
includes more than 1.5 million records of over 260,000 individuals.

3.3 Identifying Domain Research Questions
At the beginning of the study, our internal expert commented: “Al-
though I have been working on the dataset for three years, I do not know
how each family tree looks like because no straightforward solution to
plot kin networks or family trees is available with STATA [1].”. This
indicated a need for visually exploring the dataset. Therefore, we
follow Shneiderman’s mantra [40] to visualize the tree collection with a
simple visualization shown in Figure 2. Taking the scalability issue into
consideration [6], the family tree collection is displayed with an MDS
layout [26] in the collection panel (Figure 2(a)). Each point represents
a tree, and two points close to each other means that the two families
are similar in three aspects, i.e., location, population, and number of
generations. With the help of filtering (Figure 2(b)), experts are able to
select family trees of interest. Detailed information of a family tree is
displayed after the family is selected (Figure 2(c))

Our experts appreciated the early prototype because it gave them the
ability to interactively and visually study the dataset. More specifically,
they liked the node-link representation of family trees, because it aligns
with the convention in social science. However, merely presenting
an individual tree is not enough. During the exploration, the experts
also triggered, and then raised, questions that cannot be answered
by the prototype, such as “How many family trees grow, or at least
continue, at each generation?” “How many kinds of family trees
exist in the dataset?” and “How is the tree structure associated
with characteristics of the male founders?” One expert further
explained that existing studies focus on transmission of individual
traits and socioeconomic status mostly between parents and children
and rarely beyond three generations. However, prior efforts have not
taken a large kin network into account, which is “definitely not an
easy task.” Therefore, our experts determined to study associations
between the whole family tree structures and characteristics of male
founders, aiming at a fundamental understanding of the shaping of
multi-generational kin networks.

3.4 Understanding Analysis Workflow
After solidifying the research questions, we carry out discussions with
our experts to understand their conventional approaches of solving
the new problem in order to discover the challenges and opportunities
for visualization. During the discussions, we apply both “talking”
and “fly-on-the-wall” protocols [37] to understand how they work in a
real-world context. We characterize the following four stages in their
statistics-based approaches.

Data Cleaning. Our experts choose to focus on patrilineages—
family trees that only consist of a male ancestor and his male decedents.
This is because family reproductive strategies in patriarchal societies,
such as historical China, have focused on the growth and continuity
of male descendants [42]. Thus, the experts first clean and preprocess
the original dataset, with the resulting analytical dataset containing
126,169 males. Each male can be considered a founder of one family
if he has at least one male offspring. There are 54,128 family trees
that consist of at least two generations. In a family tree, each node
represents one male family member and each link means a father-son
relationship. Some family trees last for 8 generations during the 160
years under observation. The size of family trees varies from 2 to 327,
with an average of 6.91.

Hypothesis Generation. Based on the tree structure shown in the
prototype, combined with research experience and intuition, the experts
find that inclination is a valuable structural feature worth investigating,
in addition to common structural features like size and depth. This is
because inclination reflects the tendency of unbalanced development
across generations. It is semantically meaningful for social scientists
because such structural patterns may reveal different reproductive
strategies regarding differential parental and kin investment to offspring.
Our experts hypothesize associations between the inclination of a family
tree and personal traits of the male founder as a first step to study this
important yet unanswered question.

Variable Definition. Before statistical analysis, our experts identify
and select dependent and independent variables. For illustration,
our study currently includes three dependent variables indicating



Figure 3. Plain text analytical results of predicted probabilities generated
by STATA. More specifically, it shows the relationship between one
personal trait (age at first birth, abbreviated as ‘f bir age’) and the
predicted probabilities of one kind of family tree (inclination to the left,
shown as ‘group==1’).

structure of family trees: number of generations, number of male
members, and inclination. Unlike the first two straightforward features,
inclination is newly recognized by experts with the assistance of our
early visualization prototype. By aligning offspring in each generation
by the birth order from left to right, the inclination of a family tree
indicates how unbalanced its branches (i.e., descendant lines) grow.
It reflects the cumulative consequence of survival and reproductive
advantages enjoyed by first-borns over younger siblings, which is
especially true in East Asia [14]. Because no previous empirical
research studies the inclination of family trees, our experts define and
operationalize the measurement as illustrated in Figure 4. Our experts
selected several life history traits and the socio-economic status of male
founders as independent variables based on existing literature [23, 42],
including 1) age at first marriage, 2) age at first birth, 3) age at last birth,
4) number of sons, 5) life span, and 6) socio-economic status measured
by whether they had a salaried official position.

Data Analysis. To find the association between dependent and
independent variables, our experts employ a Multinomial Logit Model
(MLM), which is used to predict the probabilities of different possible
outcomes of a categorically distributed dependent variable, given a set
of independent variables [19]. For example, at one point our internal
expert expressed interest in “how personal traits (e.g., age at first birth)
of male founders affect the tree structure (e.g., inclination) with three
generations,” so he picked all the qualified family trees (number of
generations ≥ 3) and calculated the value of inclination of the first
three generations. To meet the discrete input requirement of MLM,
he labeled each family tree as “left”, “balanced” and “right” based on
inclination. Then, he ran MLM with STATA [1]. The outcome was a
number of tables showing model statistics and estimated coefficients,
which can be transformed to predicted probabilities (Figure 3) and
marginal effects. The predicted probabilities represent the relationship
between a selected independent variable, e.g., age at first birth, and the
probabilities of different family tree groups, e.g., “left”, “balanced” and
“right”. The marginal effects are defined as the slope of the prediction
function at a given value of the independent variable [47]. To have a
quick and informative understanding of the analysis results, statistical
diagrams are usually generated. However, since the STATA graphing
option is not efficient, interactive, or convenient, the experts must make
significant efforts to draw such diagrams.

3.5 Analytical Tasks
From the above study of our experts’ workflow, we consolidate a set
of key analytical tasks that are further classified into two categories:
structure identification and association analysis.

Left Nodes

Middle Nodes

Right Nodes

(a) (b) (c) (d)

Figure 4. Examples of inclination, which indicates the tendency of
unbalanced development of a family tree over generations. After ordering
members in each generation by their birth order, the inclination of a root
is defined as (Nle f t −Nright)/(Nle f t +Nright), where Nle f t and Nright are the
numbers of left and right nodes of the corresponding tree, respectively.
The middle (gray) nodes, including a root node, are split equally to the
left and the right. For example, the inclination values for (a), (b), (c)
and (d) are (3.5− 2.5)/(3.5+ 2.5) = 0.167, (3.5− 1.5)/(3.5+ 1.5) = 0.4,
(2−4)/(2+4) =−0.333, and (4−3)/(4+3) = 0.143, respectively.

3.5.1 Structure Identification
In addition to recognizing the structure of each single family tree,
experts hope to understand general patterns of family trees in the entire
dataset. To meet the needs, we specify our analytical tasks as follows:

T1: Organizing the entire collection of family trees by depth.
Depth, or the number of generations, indicates the continuity or
growth of family trees along with time and has important evolutionary
implications to the founder. A macro-level overview of all the tress
based on depth helps experts answer questions like “in this population,
how many families continue for at least n generations”, “how many
families disappear after n generations”, and “Among those families
lasting n generations, how many of them further continue to n+ 1
generations?”

T2: Aggregating family trees by structural features. As discussed
before, the structure of family trees can be measured by inclination,
the size of offspring population, etc. Revealing distributions of these
features can help experts understand whether (and to what extent)
family trees grow in a balanced structure, and the proportion of family
trees with different feature values in the whole collection.

T3: Presenting the structures of family trees in details. Our experts
demand a familiar visualization of trees at lower-level, such as the
node-link representation. This helps them better understand the specific
structures of family trees with different feature values and examine
their distributions across the whole dataset, such as trees sharing the
same depth and inclination, or even identical structure.

3.5.2 Association Analysis
To discover association patterns, experts first seek to partition family
trees into categorical groups according to specific measures of tree
structure. Then, they apply MLM to conduct a multivariate analysis on
the association effects. To achieve these goals, we distill the following
analytical tasks:

T4: Flexible partition of family trees based on structural features.
Some measurements have a straightforward definition. For example,
when measuring the tendency of unbalanced development of family
trees, the inclination to the left, middle, and right is clearly defined.
However, partition according to other structural features, such as
population, is subject to the decisions of users. For example, experts
may like to split family trees into three groups, i.e., small population,
median, and large population. Since the specific categorization and
definition may vary, the flexibility in partition is an important design
requirement from the experts.

T5: Integration of statistical multivariate analysis with MLM. As
discussed earlier, MLM is one of the most important statistical methods
that our experts rely on. To ease the analysis, visual presentation of
predicted probabilities and marginal effects, that are usually difficult
to generate without advanced skills in STATA, are needed. Based on
the results of MLM, experts are able to answer questions like: “Which
life history traits and socio-economic status of the founder influence
the chance of his family tree to continue or have certain structural
features? And how?”
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Figure 5. TreeEvo interface: (a) The Flow Panel extends the Sankey diagram [36] to organize the entire collection of family trees. (b) The Detail Panel
shows the composition of the selected Sankey nodes using a space-filling visualization. (c) The Analysis Panel reports the results of the Multinomial
Logit Model [19] estimations for all trees in the selected Sankey nodes, allowing experts to quantitatively analyze the statistical associations between
specific ancestral traits and tree structural patterns.

4 TREEEVO INTERFACE

Guided by aforementioned analytical tasks, we design TreeEvo consist-
ing of three interactively coordinated views, i.e., a Flow Panel, a Detail
Panel, and an Analysis Panel (Figure 5).

4.1 Summarizing Entire Tree Collection
As illustrated in Figure 5(a), the Flow Panel is designed to provide an
overview of the entire dataset. Here, we discuss the visual design, the
corresponding interactions, and design considerations in this panel.

4.1.1 Visual Representation
To support the exploration of the dataset targeting growth and continuity
(T1), we employ a Sankey diagram [36] to group and align all family
trees based on depths. For example, the topmost Sankey node contains
all family trees with at least two generations. Sankey nodes at the
second level contain trees with at least three generations, in which
some trees in the first-level Sankey node are repeated here. For
example, suppose that we have four different trees as the input, shown
in Figure 6(a). The trees included in each Sankey node are represented
in Figure 6(b). In some sense, this approach equates to breaking each
tree into sub-trees, which are rooted by the male founder, up to certain
depths and then grouping them by depth values. In addition, as shown
in Figure 5(a), for each Sankey node, its width encodes the number of
trees it contains, and its height is mapped to the depth of those trees.
Intuitively, lower and taller Sankey nodes represent deeper trees. Gray
flows between Sankey nodes indicate shared family trees, of which the
amount is mapped to flow width. The detailed percentages of shared
family trees are displayed on each side of the flow.

For our analytical tasks, a traditional Sankey diagram design is
limited in two ways. First, elements represented by Sankey nodes are
in aggregation. Therefore, many details, such as structural distribution
of family trees, are lost (T2). Second, a traditional Sankey diagram
requires that each Sankey node be defined in advance, and these
nodes cannot be re-defined according to different criteria. This poses
difficulties for our experts to partition and select tree collections with
various structural features with flexibility, as required in T4.

To address the aforementioned limitations, we construct each Sankey
node in a new way inspired by transformation-based simplifications
discussed by Monroe et al. [33]. First, given a collection of family trees
with the same depth, we generalize each family tree as a pixel line, a
slim line with pixel-level width, and align them side by side as shown in

75%
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Figure 6. An illustration of different design alternatives for visual tree
aggregation. (a) An input of four family trees marked with different colors.
(b) A Sankey diagram-based design grouping sub-trees of the input by
depth. (c) A bar chart design grouping trees by depth. (d) An alternative
Sankey diagram design aligning and grouping tree nodes by depth. (e)
An alternative design based on (d) but sorting tree nodes by birth order.

Figure 7(a). Second, we encode the color of each pixel line to structural
feature of the family tree. For example, we map the inclination to a
diverging color scheme, e.g., blue to red (Figure 7(b)). Finally, we
sort these compactly aligned pixel lines according to structural features
(Figure 7(c)). Using this coloring-sorting strategy, experts are able to
(a) understand the distribution of a collection of family trees based
on their structure (T2), and (b) partition tree collections according to
various structural features with flexibility (T4).

4.1.2 Interactions
The Flow Panel incorporates a number of interactions to facilitate
flexible partition in different exploration scenarios.



Selecting. Selection happens when a user wants to 1) examine
detailed family trees of a Sankey node, or 2) define family trees of
interest before running MLM. When a user clicks a Sankey node,
detailed information of the node is displayed in the Detail Panel.
Further, multiple selection and undo-selection are supported.

Locating. When a user hovers over a Sankey node, the hovered
family tree, represented as a pixel line, becomes gray and the user is
able to investigate node-link structure of the tree with a tooltip pane.
This allows users to preview, or review, family trees contained in one
Sankey node, and recall the definition of the Sankey node.

Splitting. Splitting is the key operation to group family trees
according to structural features. With the help of locating, a user is able
to split Sankey nodes with flexibility. In addition to free-form splitting,
a user can split a Sankey node by “Continuity” (i.e., family trees
stopping at some generations) or “Attribute” (i.e., structural features
of trees, such as inclination). Locating works closely with splitting to
partition a Sankey node into multiple parts. For example, by pressing
“Alt” when clicking a Sankey node, a user can set up multiple cutoff
lines on a Sankey node. Then, the user is able to split the Sankey node
by clicking “Split by Attribute”, as illustrated in Figure 8.

Merging. TreeEvo allows users to merge multiple Sankey nodes on
the same row. During the interview sessions with our experts, Merging
is often used to undo splitting if the partition is not desirable. Further,
to provide a short-cut to undo partitioning on all rows, a “Reset All”
button is enabled on the top of Flow Panel. In practice, the button is
useful for starting a new analytical process after finishing the old one.

Scaling. A user can change the scale of the width of a Sankey
diagram to “Absolute” or “Percentage”. “Absolute” means that the
width of each Sankey node encodes the number of family trees it
contains (Figure 11(a)), while “Percentage” unifies the total width of
all Sankey nodes in the same row, as shown in Figure 11(b). Thus, we
care more about how many family trees contained in one Sankey node
account for all trees in the same row.

4.1.3 Discussion on Visual Aggregation of Trees
In multi-generational analysis of family trees, tracing structural changes
across multiple generations (i.e., tree depths) is essential, which is
enabled by the aforementioned analytical tasks (T1 and T2). That is,
each tree should be simplified and organized based on some criteria,
such as depth and inclination, in an abstract visual summarization of
the multi-generational changes. Moreover, at each generation, the
overall distribution of the structure traits of all trees may differ, raising
questions such as “how personal traits of male founders affect the tree
structure with five generations?” To answer these questions and track
the changes through generations, a user needs to filter and collect all
trees at each generation based on the corresponding criteria (T4).

The above considerations lead us to choose the Sankey diagram
which is further empowered with flexible partition of Sankey nodes
(Figure 6(b)), because its “flow” metaphor naturally reveals the trends
of tree structural traits across generations (depths). As described
earlier, this design allows our experts to interactively select sub-trees
of various depths with ease, and obtain an effective overview of the
multi-generational structural changes in the tree collection. Our experts
initially found it difficult to comprehend the design because they were
unfamiliar with Sankey diagrams. However, they were later able to
understand them with the help of an illustration similar to Figure 6(b).
In the end, they found it easy to use for defining groups of family trees
with different structural features.

Before our final design, we have explored several alternatives in the
study. To begin with, we design a traditional bar chart as shown in
Figure 6(c). Each bar groups all family trees with certain numbers of
maximum generations (depth). For example, the first bar contains trees
with two generations, and the second bar, three generations, etc. While
the design is easy to understand, it is infeasible to select sub-trees
in each bar because the design does not focus on sub-trees of each
generation.

Inspired by directed acyclic graph visualization [21], we design
another two alternatives (Figure 6(d) and (e)) for tree aggregation.
These two approaches align all family trees, and group all male
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Figure 7. (a) Each family tree is represented by a pixel line, and all
pixel lines are aligned adjacently. (b) Pixel lines are colored according to
structural features (e.g., inclination). (c) Pixel lines are sorted based on
structural feature to help users understand the distribution of the feature.
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Figure 8. Example of splitting interaction. (a) Users first specify two
cutoff lines on a Sankey node. (b) Then, they click the “Split by Attribute”
button to generate three separate smaller Sankey nodes.

members of the same generation into the one Sankey node and use lines
to indicate father-son relationships. The design in Figure 6(e) further
sorts tree nodes based on birth order. Both methods have an advantage
in selecting family members of interest. However, each Sankey node
contains family members instead of family trees, which may cause
confusion and hinder experts from selecting desired trees groups. In
addition, the scalability is limited if a series of links representing
father-son relationships are drawn.

During the design study, we proposed the above design alternatives
to our experts with sketches and low-fidelity prototypes. An in-depth
user study is needed to further confirm our observations of scalability,
learning, and facilitated tasks for each design.

4.1.4 Design Process of Pixel Lines
We explore the design of displaying distributions of structural features
on a Sankey node through an iterative process by working with our
experts. Initially, we presented an area chart. Taking inclination as an
example (Figure 9(a)), the x-axis represents the value of inclination,
from −1 to 1, while the y-axis is the number of family trees. This
design is able to show the distribution of structural features in a familiar
way. However, it fails to provide enough details. For example, our
experts cannot answer questions like “what portion of family trees have
inclination to the left or to the right in this Sankey node” (T2).

To support more details, we employ pixel-based techniques [34].
We have tried a pixel-map based method. As illustrated in Figure 9(b),
each pixel, or small rectangle, represents a family tree and all pixels are
sorted from top to bottom, from left to right by inclination. This design
is able to provide more details compared with the area chart. However,
partition may be sometimes undesirable in practice. For example,
when partitioning a Sankey node into two parts, i.e., inclination to
the right and others, our experts find many errors in the partition.
As shown in Figure 9(d), white rectangles represent balanced family
trees. However, those with a black border are categorized into the
“inclination to the right” group. Compared with the pixel map design,
pixel lines (Figure 9(c)) allow experts to split Sankey nodes more
precisely (Figure 9(e)). During our interview in the second phase,
the experts were able to generate desired partitions with the pixel-line
design, and they appreciated the understanding of the distribution of
structural features in each Sankey node.

4.2 Displaying Details
When a user selects one, or multiple Sankey nodes, detailed composi-
tion of each Sankey node is displayed in a space-filling representation
in the Detail Panel (T3), as shown in Figure 5(b). When designing the
Detail Panel, we find it challenging to provide enough details while
avoiding information overload. Based on an observation that many
family trees share the same node-link structure, we first group trees
with the same structure, and then employ a Treemap algorithm [17]
to visualize each group of trees in a compact layout. As shown in
Figure 5(b), each rectangle in a Treemap represents a group of family
trees with the same structure. The area of each rectangle encodes
the number of family trees, and the color is mapped to the value of
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Figure 9. Design alternatives to visualize family trees in a Sankey node.
Although area chart (a) may present the distribution of structural features,
it does not provide enough details. Partition in pixel maps (b) may cause
a number of errors (highlighted with black border in (d)). On the other
hand, partition in pixel lines (c) is more precise (no mis-partitioned pixel
lines in (e)). The black vertical lines in (d) and (e) indicate cutoff lines.

structural features, which is consistent with the color encoding of pixel
lines in the Flow Panel. If a rectangle is large enough and has an
adequate aspect-ratio, we overlay the node-link tree structure onto it
for users to explore high-frequency trees with ease.

To help users examine infrequent tree structures, which are rep-
resented as small rectangles in the Detail Panel, semantic zooming
is supported. Specifically, when a user clicks a small rectangle, the
rectangle expands to occupy more screen space while other rectangles
shrink to a smaller area. The tree structure is then displayed. An
animation is played to ease the transition between different visual states
of the rectangle. Furthermore, a user can click the expanded rectangle
to restore the layout.

We choose Nmap [17] to calculate the space-filling layout because it
can generate rectangles with a higher aspect-ratio, which is important
for providing adequate space to display the tree structure. To feed a
number of groups of trees as the input of Nmap algorithm, we first
assign an initial placement to each tree group. That is, we place all
groups from left to right in the Detail Panel after sorting them according
to structural features, which is consistent with the sorting strategy of
pixel lines in the Flow Panel.

4.3 Analyzing with MLM
The Analysis Panel (Figure 5(c)) illustrates analytical results calculated
by MLM, i.e., predicted probabilities and marginal effects (T5). It
coordinates closely with two other panels. After a user selects the
Sankey nodes of interest and presses “Regression” in the Flow Panel,
six prediction diagrams for six personal traits of male founders (e.g.,
age at first birth and number of sons) are displayed in the Analysis
Panel. To save space, marginal effect diagrams are not displayed by
default. A user can choose to show, or hide, marginal effect diagrams
by clicking a button in this panel. The color of each line in prediction
diagrams and marginal effect diagrams is the same as the highlighting
color of the Sankey diagram in the Flow Panel, as well as the border
color of rectangle groups in the Detail Panel.

The prediction diagram (Figure 10(a)) presents the relationship
between a selected predictor (x-axis) and the predicted probabilities of
the different categories (y-axis) [47]. The marginal effect is defined as
the slope of the prediction function at a given value of the independent
variable. Therefore, marginal effect diagrams (Figure 10(b)) inform
us about the change in predicted probabilities due to a change in a
particular independent variable [47].

These diagrams help the experts reveal deeper and quantitative
insights. For example, Figure 10(a) shows the relationship between a
predictor, i.e., the number of sons, and four categories of trees that are
encoded in different colors. During an interview of the second phase,
our experts found that when a founder has four sons, the probability
that the family tree stops at the second generation is about 17.2%, while
the probability of stopping at the third generation is about 38.2%.

Independent variables can be either continuous or discrete when
running MLM. For example, age is a continuous variable, including
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Figure 10. Outcome of analyzing with MLM, i.e., (a) prediction diagram
that is the same as the fifth diagram in Figure 5(c), and (b) the
corresponding marginal effect diagram.
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Figure 11. The Flow Panel shows the inclination patterns of all family
trees in (a) “absolute” and (b) “percentage” scales, respectively. We
can see that white area in both scales decreases when the number of
generation increases.

age at first marriage, age at first birth, and age when last observed
alive, among others. But the indicator of whether the male founder
held a salaried official position is a discrete variable. As a convention,
we employ line charts to present continuous variables, and use scatter
plots for discrete variables in both diagrams. The confidence interval is
important interpreting and understanding results in prediction diagrams,
and is displayed by area charts for continuous variable and error bars
for discrete variable.

5 CASE STUDY

To study the effectiveness of TreeEvo, we conduct several interview
sessions with the experts whom we work with through the design
process. Each interview lasted for one hour. We first demonstrated the
system for 15 minutes by introducing the design and interaction. We
provided a use case sample to our experts to allow them to learn by
example. The following 45 minutes were used for free exploration of
the CMGPD-LN dataset. Experts were encouraged to think aloud, and
speak out about whatever they were thinking and doing during their
exploration. We took notes about their feedback at the same time.

In this section, we describe how the experts used TreeEvo to explore
and gain insights into the dataset, concluding several cases found by
our experts and formulating them into a case study. We denote the
internal expert as E0, and the five external experts as E1-5.



5.1 Insights Discovery
5.1.1 Getting the Gist
After loading the data into TreeEvo, E1 first set the scale to “Absolute”,
and sorted family trees by “Inclination” in the Flow Panel (Figure 11(a)).
He immediately observed that the white area in each Sankey node,
which refers to the frequency of balanced family trees, decreases each
generation. Thus, he wondered whether the proportion of balanced trees
also decreases across generations (T2). To answer this question, he
clicked “Percentage”, to standardize the width of Sankey nodes of each
generation, as illustrated in Figure 11(b). He observed that the white
area decreases when the number of generation increases. This implies
that, in order to make the family last many generations, it is probably
hard to keep the entire tree structure — or, more specifically, each
generation — developed in balance without strategies of differential
investment. In each generation, individuals may have different survival
and reproduction chances so that not all have an equal number of
offspring in the next generation.

To further understand how inclination affects the growth of family
trees (T1), E1 partitioned each Sankey node into three groups, i.e.,
inclination to the left, middle, and right, as shown in Figure 1(a). Then,
he observed that family trees with inclination to the left and right are
more likely to keep the inclination starting with the third generation,
as indicated by the gray flow connecting two generations (Figure 1(a)).
This tendency suggests that unequal growth in the earlier generations
may in fact shape the structure of the family tree and therefore have
multi-generational implications for later generations. Further, there
are more family trees with inclination to the left than to the right. E1
commented, “These findings provide empirical evidence in line with
first-/early-born favoritism, consistent with Confucian familial values.”

5.1.2 Examining Details
To get an intuitive understanding of how family trees look like in
each Sankey node (T3), E1 clicked the Sankey node filled with blue
gradient color on the second row (Figure 1(a)), where all family trees
have inclination to the left. Then, detailed structures of these trees
are illustrated in the Detail Panel (Figure 1(b)). To check an extreme
case of inclination to the left, he selected the top-left pixel in this panel
which has the darkest background color. Then, the rectangle expands to
show more details of the tree structure. Similarly, the expert explored
the family trees with an extreme inclination to the right. “I like the
smooth animation and interactiveness, which make the exploration
easier and more effective.”, E2 added, “Structure is an abstract term
for me, but the system provides a straightforward way of understanding
the structure of family trees. It is awesome to see various left- and
right-inclined trees with different inclination values.”

5.1.3 Referring to Continuity and Growth
The key problem E0 wanted to know was “how and to what extent
is the structure of the family tree associated with the personal traits
of its root” (T5). The expert started by examining the association
referring to continuity and growth of family trees. He clicked “Reset
All” to clear all partitions set for previous tasks, and split the first three
Sankey nodes according to their continuity by generation. After that,
he selected four tree sets (Figure 5(a)). Specifically, he selected trees
stopping at the second generation (orange border), stopping at the third
generation (green border), stopping at the fourth generation (purple
border) and growing over four generations (brown border) Then, he
pressed “Regression” for MLM estimations of the association between
ancestral life history traits and the probability of tree growth outcomes,
i.e. the four selected groups.

The results are illustrated in the Analysis Panel. As shown in
Figure 5(c), the second diagram shows the influence of the age at
first birth (AFB). The orange line represents the probability of family
trees stopping at the second generation, which is positively associated
with AFB. Lines of other outcomes, on the other hand, have an opposite
trend, especially when AFB is greater than 30. The expert explained
that, if a male had his first son too late, he may have less chance for
many sons and less time to raise sons. He further commented, “Given
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Figure 12. Two predicted probability charts show the influence of two
personal traits, i.e., (a) the number of sons and (b) position status, have
on the inclination of family trees.

high mortality rates in historical populations, his family tree is more
likely to end up with two generations — if his son dies — than continue
to last for more generations.” The fourth diagram shows the estimated
effect of life span of the founder, measured by the age at the last alive
observation, the orange line decreased when the last age increased.

“If a male person can live longer, he of course has more chances to
reproduce and to take care of the sons. But it seems that such factor
extends beyond even two generations (green, purple, and brown lines).”
The expert added, “Such results exceed my expectations, and I need to
conduct further research to understand why that is.”

According to the fifth diagram in Figure 5(c) (or Figure 10(a) for
clearer illustration) for the effect of number of sons, all green, purple,
and brown lines show an increasing trend while the orange line shows
a decreasing trend, indicating that as the number of sons grew, the
chances of family trees extending beyond two generations increased.

“It indicates that when a male had more than three sons, the probability
of his family tree lasting for three or more generations is at least 80%.
It is interesting to observe that this is not just driven by three generation
family trees. The probability of having a family tree of four or more
generations is also non-trivial”, commented by E0.

5.1.4 Referring to Inclination
Next, with an interest in the influence of birth order preference, E3
decided to investigate the association between life history traits of
the founder and the inclination of family trees. To look for long-
term influence across multiple generations, he cleared all partitions
previously done by E0, and selected the Sankey node at the six level,
which contains all family trees with at least seven generations. He
sorted Sankey nodes based on inclination and partitioned each Sankey
node into three sets, i.e., a set containing all trees with inclination to
the left — those early borns (orange border), a set with all balanced
trees (green border) and a set containing all trees with inclination to the
right — those later borns (purple border) (T4).

From a diagram in the Analysis Panel with the title “Number of
Sons” (Figure 12(a)), he observed that the predicted probability of
balanced trees (green line) was statistically significantly lower than
unbalanced trees (orange and purple lines). He inferred that it was
hard to keep the tree balanced when it had many (seven in this case)
generations. In addition, he observed that when the founder had more
than four sons, the orange curve, including the confidence interval
area, overlapped with the purple curve and its confidence interval. E3
commented, “when the initial family is big and probably rich, they
may have different strategies and/or easily diversify growth in later
generations. A big family is often an indication of rich conditions in the
historical context.” Further, E3 added, “On the contrary, the long-term
influence of the birth order preference is stronger when the family is
small at the beginning (the founder has no more than four sons)”.

Then, the diagram titled “Position”, as illustrated in Figure 12(b),
caught his attention. It showed how a founder's high or low social status,
measured by whether the founder held a salaried official position, had
an influence on the inclination. One (value of x-axis) means position
holding and zero means no holding. The predicted probability of left
inclination, indicated by the orange point, is about 58% and greater
than others (purple and green points). This difference is especially
evident among family trees with the founder of no position holding.



Among family trees of a high-status founder, the difference between
left and right inclination is however not statistically significant since
their confidence intervals overlap with each other. E3 noted, “This
finding confirms the previous explanation, that is, poor (without official
position) families have high probabilities of favoring first-/early-born,
while rich (with official position) families care less about it or have
more diversity. Maybe poor families tend to concentrate their limited
resources to their first-/early-born to ensure the continuity. But rich
families could provide enough resources to all sons to maximize the
overall chances of lineage continuity.”

5.2 Qualitative Feedback
All experts appreciated the insights found with TreeEvo. E1 mentioned
that all these insights are new and have not been discovered before.
He pointed out that current system inspired them to pursue two new
research directions in multi-generational analysis. First, in addition
to tree roots, one could include personal traits of family members
into analysis process. Second, tree structure could be considered an
independent variable in the MLM. For example, given trees of the first
three generations, experts want to know how the structure of ancestral
lines have influenced the following tree structure. More encouragingly,
E1 particularly valued the visual analytics component and would like to
cooperate on a project that he is actively working on. He commented,

“visualization helps us generate hypothesis, and provides an intuitive
way of understanding analytical results as well as the dataset.”

Since E0 had tried both a statistics approach (Section 3.4) and a
visual analytics approach for association analysis, he compared both
approaches and noted, “I prefer TreeEvo to STATA [1] or R [4] in the
analysis. Since structure is an abstract concept, it is hard to understand
the statistics results without visually spotting the tree structure. TreeEvo
provides a visual way of interpreting the analysis results.” He further
added, “Although we can draw the same (node-link) family tree using
R, we will not do it because it is time-consuming and we do not know
how effectively it can help the analysis. TreeEvo is really a convenient
tool since it not only shows family trees intuitively, but also embeds
analytical modules to show association results.”

During the interview, experts also commented on the usability issues
of TreeEvo. For example, E4 was curious about the result of merging
two Sankey nodes on different rows. She tried but nothing happened
because this operation is not allowed. “I hoped to see a dialog saying
that the operation is invalid,” she commented. She also pointed out that
TreeEvo did not show the number of family trees in each generation.
We plan to improve these usability issues in the future.

6 DISCUSSION

In this section, we discuss the limitations of TreeEvo and how the
visualization design can be applied in other application domains.

6.1 Limitations
Although the case study has demonstrated the effectiveness of TreeEvo
in multigenerational analysis of family trees, it still has limitations.

First, the design and visual encoding of the extended Sankey
diagram has a steep learning curve. The experts found it time- and
attention-consuming to comprehend the visualization at first. However,
after getting used to the diagram, our experts spoke highly of the
design, and they could partition and select various groups of family
trees intuitively and naturally. In future research, we plan to investigate
intuitive presentations to 1) lower the learning curve and 2) keep the
flexibility and expressiveness as Sankey diagram provides.

Second, although TreeEvo can handle a large number of trees, it may
not scale well when the depth of trees increases, even when there is only
one family tree with a large number of generations. This may result in a
large Sankey diagram with too many levels. Allowing for interactively
merging and splitting of multiple generations in the Sankey might solve
the problem.

Third, although the design of pixel lines is suitable for presenting
single structural feature of family trees, e.g., inclination or population,
it is not able to depict multiple structural features at the same time.
For example, our experts may want to group family trees based on

both inclination and population as well as other features. Employing
dimension reduction techniques, such as MDS [26] and t-SNE [30],
may resolve this issue by projecting multi-dimensional features onto
1D and visualized by pixel lines. However, loss of information occurs
during the dimension reduction.

Fourth, we selectively choose personal traits of male founders to
drive our study. However, personal traits of other ancestors, e.g., all
individuals in the first two generations, even though they are not the
focus of this study, are worth investigating as well. Rich interactions
are needed for enabling such investigation. For example, the system
could allow users to select personal traits of ancestors from the family
tree structure.

6.2 Generalizability of the Design
TreeEvo extends Sankey diagram to organize a tree collection and
provide an overview of tree statistics. In addition, trees with complex
structures are simplified by pixel lines to reveal structure-level details
in each Sankey node. This idea can be widely applied to other datasets
(e.g., the history of organismal lineages as they change through time)
with large quantity of trees. To be specific, we can employ aggregation
methods, e.g., Sankey diagram, to reduces the visual complexity of
initially overwhelming phylogenetic trees. At the same time, the pixel-
based techniques are introduced to provide fine-grained details about
the evolution.

It also worth noting that although TreeEvo is designed for tackling
multi-generational analysis in social science, the entire system can be
applied for evolutionary studies to examine the transmission of genetic
and behavioral traits across generations, as well as for comparison
analysis in a large tree collection. For example, a user can select
two subsets of trees with different criteria and browse their structural
changes across levels to identify differences.

7 CONCLUSION AND FUTURE WORK

We have presented a design study exploring the association between life
history traits, socio-economic status of male founders and the structures
of family trees in the following generations. The results of our study
are twofold. First, we characterize tasks in the domain of demography.
We help experts identify an unknown structural feature, i.e., inclination,
that indicates different reproductive strategies regarding differential
parental and kin investments in offspring. Second, we design and
develop TreeEvo, a visual analytics system for hypotheses generation
and verification about the association. TreeEvo is featured with an
enhanced Sankey diagram, which organizes thousands of family trees
by growth and continuity, and provides detailed information of each
family tree on the Sankey node. Also, it breaks the limit of traditional
Sankey diagram, and allows a flexible partition for custom-defined
Sankey nodes. We validate our design through one in-depth case study
that reveals multi-generational implications of reproductive strategies,
which has never been studied before in relevant domains.

There are a number of promising future directions. First, to obtain a
deeper understanding of the associations between ancestral traits and
tree structures, we plan to a) include personal traits of family members
(in addition to tree roots), in Multinomial Logit Models, and b) combine
the analysis of actual timeline of family trees and environmental factors.
Second, we want to pursue comparisons across multiple datasets. For
example, it would be very beneficial to compare how individual traits of
ancestors have influence across generations in different countries, such
as China, Japan, and the United States. Finally, we wish to evaluate
TreeEvo with more experts from demography or related domains to
further improve our system.
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