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ABSTRACT

Massive Open Online Course (MOOC) platforms have scaled on-
line education to unprecedented enrollments, but remain limited
by their rigid, predetermined curricula. Increasingly, professionals
consume this content to augment or update specific skills rather
than complete degree or certification programs. To better address
the needs of this emergent user population, we describe a visual
recommender system called MOOCex. The system recommends lec-
ture videos across multiple courses and content platforms to provide
a choice of perspectives on topics. The recommendation engine con-
siders both video content and sequential inter-topic relationships
mined from course syllabi. Furthermore, it allows for interactive vi-
sual exploration of the semantic space of recommendations within
a learner’s current context.
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1 INTRODUCTION

Modern online education platforms, such as Coursera, edX, and
Udacity, have become popular in recent years. These platforms
allow for teaching at a distance and at scale by presenting edu-
cational materials as Massive Open Online Courses (MOOC). A
course usually consists of a number of short videos, each targeting
a specific concept. To achieve certain learning objectives, instruc-
tors commonly order the videos within a syllabus which may also
group videos hierarchically into sections. However, the syllabus
remains a one size fits all approach with a predefined curriculum,
which contributes to courses’ frequent low retention rates [20, 28].

While these services initially aimed to disrupt the higher edu-
cation market, more recent studies show that professionals, rather
than students, comprise an increasing portion of MOOC learners.
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Figure 1: System architecture overview of MOOCex.

These “lifelong learners” typically aim to achieve career growth
rather than complete degrees or obtain certifications. As a result,
they are less likely to adhere to the syllabus [28], and often have
varied individual information needs and experience levels. It is
critical to offer learners more flexible access to a broader range of
content and perspectives (e.g., from multiple courses) [6, 15, 25].

Although the syllabus can be too rigid, it encodes expert instruc-
tors’ sequencing of topics to best aid comprehension. Indeed, the se-
quential character of educational video is an important cue for effec-
tively exploring this content. Platforms such as KhanAcademy [14]
provide an interactive knowledge (concept) map to enable more
personalized navigation. However, concept maps are not well suited
for sequential flow [19] and are neither scalable nor adaptive.

MOOCex aims to help learners effectively access MOOC con-
tent across courses and content platforms. We first aggregate this
content across multiple courses, introducing the challenge of link-
ing videos in which instructors cover related topics from different
perspectives. Additionally, users must select among such related
videos to address their information needs. While the course syllabus
provides guidance within courses, we propose content-based rec-
ommendation and interactive visualization to facilitate navigation
across courses.

MOOCex builds upon advanced data mining techniques, and
recommends lectures by considering both videos’ topics and se-
quential inter-topic relationships. MOOCex optionally recommends
short sub-sequences of videos within courses, rather than individ-
ual videos, to provide additional depth around specific concepts
and simplify learning. Unlike conventional user interfaces for rec-
ommendation, i.e., a ranked list or a set of ranked lists, MOOCex
supports semantic visualization of recommended videos in users’
current learning context, by projecting videos onto a 2D space anno-
tated with topical regions and key phrases. This provides additional
dimensions for learners to effectively explore related content and
select what to watch next confidently.
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2 RELATED WORK

In this section, we review related work with a focus on video rec-
ommendation techniques as well as visual analytics systems for
MOOC content and data.

2.1 Recommendation

Many approaches to video recommendation are content-based, for
example, using features extracted via analysis of text transcripts or
video frames. VideoReach implements recommendation by combin-
ing unimodal models for textual, visual, and aural information of
videos [17]. TalkMiner is an educational video search system using
OCR and lexical analysis of text displayed in video frames [1]. Topic
modeling, such as Latent Dirichlet Allocation (LDA) [4], has also
been applied [29]. However, none of these methods considered the
sequential relationships between videos, or the explicit inter-video
orderings of course syllabi.

Likewise, applications of sequential pattern mining techniques
are generally distinct from video recommendation. Morales et al.
[18] facilitates information discovery via educational hypermedia
linking based on sequence mining of user logs. Agrawal et al. [2] pro-
posed a system for linking web videos to supplement electronic text-
books, and argued that topic mining alone is insufficient. In other
applications, sequential information has been used in recommend-
ing music [11], online products [5, 12], and travel itineraries [13].

Sequential organization of topics by experts in course syllabi can
provide valuable information for educational content recommen-
dation. However, we face the additional challenge that videos do
not overlap across different courses. This contrasts with datasets
used in previous user-centered work including, music playlists [11],
movies (i.e.Netflix) or e-commerce products (i.e.amazon and [12]).
To address this issue, we apply established sequential pattern min-
ing techniques to analyze both global and local patterns in topic
transitions exhibited in instructors’ syllabi.

2.2 Information visualization

Many techniques have been proposed for visual analysis of data
generated by MOOC:s, such as user clickstreams and forum discus-
sions [21]. One main topic in this area is to study learner behav-
iors [7, 24]. In addition, iForum provides another perspective for
understanding learners via the analysis of the content and structure
of MOOC forum threads [10].

In contrast with systems designed for instructors or analysts, we
focus on recommendation and visual exploration of MOOC videos
to benefit ordinary learners. One work that shares similar goals with
ours is booc.io [23], which allows for visually exploring concept
maps of instructional materials and following personalized learning
plans. However, this approach is less scalable or flexible because of
the required manual creation of the concept maps beforehand. Also,
they focus on video exploration within a single course whereas we
recommend videos sourced across multiple MOOC platforms.

3 SYSTEM DESCRIPTION

MOOCex consists of two components: a content-based recomemen-
dation engine and a visual interface for video playback and semantic
exploration. We describe each in the sections below.
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3.1 Recommendation engine

While syllabi provide learners guidance within courses, we use rec-
ommendation to facilitate exploration of a multi-course corpus. We
use sequential pattern mining to incorporate sequential information
into the recommendation engine.

We assemble content from a number of courses, including videos,
available text transcripts, and other meta-data. Generating recom-
mendations across heterogeneous content requires a common data
representation. Useful visual attributes such as whether the for-
mat is a classroom lecture, khan-academy style electronic ink, or
slide-based video, etc. are largely captured by associated meta-data.
Most platforms provide semantically rich closed caption transcripts
enabling the identification of videos’ prominent topics. We dis-
cover latent topics present across the collection using LDA [4], an
established unsupervised topic modeling method.

Sequential pattern mining (SPM) algorithms identify prominent
subsequences within a sequence database [9]. Denote the topic
signature of the ith video by Vi = {k : P(i)(zk) > 0.1} which is
the discrete set of topic indices weighted at least 0.1 in the video’s
topic distribution. We construct an ordered sequence of video topic
signatures according to each course’s syllabus. These sequences
are aggregated into a sequence database.

Our aim is to use the currently watched video to recommend
videos covering concepts users are likely to watch next. However,
frequent topic subsequence detection alone is not sufficient for
prediction. Sequence mining addresses prediction by discovering
rules of the form X = Y, where X and Y are two sets of topics.
X = Y indicates “topic(s) Y appear in the sequence after topic(s)
X”. The Top-K non-redundant sequential patterns (TNS) algorithm
[9] detects sequential rules that reflect global analysis of inter-
topic transitions. TNS eliminates rules that are deemed “redundant”
(rules that are implied by other rules having the same support and
confidence) to capture more varied sequences and automatically
fine-tunes the minimum support parameter.

Relatively infrequent topic sets will be overlooked in the global
analysis. The Top-K sequential pattern mining (TKS) algorithm [8]
finds sequential patterns within a given minimum and maximum
length such that specified items must appear within a defined al-
lowed gap. For local analysis, we collect sequences that include
each video’s signature. We apply TKS with the constraint that each
video’s topic set appears within a distance of 3 to 6 in the sequence.
We then apply TNS algorithm on these derived sequences to find
significant sequential rules within this local data subset. By this
design, each video’s topic signature is described by sequential rules
in the local analysis. Each sequential rule in the local analysis has a
corresponding confidence score. This application of sequential pat-
tern mining produces sets of prominent topic transitions describing
the sequence database both globally and locally.

The recommendation engine first issues the currently watched
video as the query against our baseline content-based recommenda-
tion system. This currently uses standard tf/idf vectorspace retrieval
[16] based on the video transcripts with ranking according to cosine
similarity. To emphasize results that users are more likely to want
to watch next we have introduced a re-ranking method that incor-
porates scores emphasizing results consistent with topic transitions
mined in the global analysis of the corpus. For global analysis, we
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retrieve N support and confidence score values, {(sp, cn)} from the
mined global sequential patterns with antecedent values matching
Vq and consequent values matching subsets of V.. The GS score is

N
1 [Vr 0 Vq| Sn
Simgs(Vg, V) = — > cp———" + — . (1)
TN ZO " Wl Dg
Dg is the total number of global sequences. Additionally, we re-
trieve M additional support and confidence score values from mined
local sequential patterns with antecedent matching a subset of Vg

and consequent matching a subset of V,. The LS score is

. 1 M Vi N Vq| Sm

SlmLS(Vq, Vr) = M rnzzlo CmW + D_q (2)

Dy is total number of mined local sequences with antecedent match-

ing any subset of V. These scores are uniformly fused with a topic

similarity score derived from LDA to re-rank the initial pool of
recommendations. For additional details, refer to [3].

3.2 Visualization interface

The MOOCex interface consists of three parts. The Video Panel is a
media player for watching a selected video. The Recommendation
Panel is where a learner can explore recommended videos and
assess relationships between them, to inform their choice of a video
to watch next. The Configuration Panel allows manipulation of basic
parameters controlling the display of recommendations and the
specific courses and videos in view.

The Recommendation Panel displays the current video, adjacent
videos in its syllabus, and recommendations in a two-dimensional
Exploration Canvas in the middle. Other videos in the current course
appear in order on both sides (Figure 2-b), and are connected with
gray arrows. Each video is represented as a circle with a number
indicating its position in the course syllabus. Color hues indicate
different courses, and color opacity indicates the rank of that video
in the recommendation list (the lighter the color, the lower its rank).

In contrast to ranked result lists, we employ multidimensional
scaling (MDS) [26] to position videos on the Exploration Canvas
based on their pairwise similarities. In MDS, only the relative dis-
tance between items has meaning while the axes do not. Thus,
we rotate the layout so that the direction of videos in the current
course flows from left to right, aligning with the natural videos on
either side. This rotation eases comprehension of the visualization.
Zig-zags in longer video sequences occur, which cannot be com-
pletely averted. Because learners often focus on semantics in a local
space, they typically do not include many neighboring videos in
the Exploration Canvas. To minimize overlap of circles, we later
apply a repulsive force between videos to obtain the final layout.

To help learners utilize the MDS layout, we perform an agglomer-
ative clustering [27] of the videos, and split the Exploration Canvas
into corresponding regions. Each region exhibits a relatively coher-
ent set of topics. We use the agglomerative approach because it does
not require prior knowledge of the number of clusters. The bound-
aries of the regions are shown as subtle white polylines, determined
by aggregating Voronoi cells of videos in the same cluster.

In addition, we overlay frequent topical keywords extracted
from the text transcripts of each video cluster to reveal contex-
tual information of different regions in the MDS projection. To
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obtain discriminative keywords, we first employ the standard TF-
IDF method and then re-weight the keywords based on terms in
video titles, because the titles are created by human and provide
high quality summarization. Next, we post-process the keywords
for the video clusters to remove duplications. These keywords are
placed using a force-directed layout, and can be hidden if users feel
overwhelmed.

To facilitate exploration of videos, the Recommendation Panel
displays auxiliary information on both sides (Figure 2-b). Videos
that were recently visited and adjacent videos from the current
course are shown in two vertical lists on the left. Similarly, rec-
ommended videos are shown on the right in a ranked list similar
to the traditional approach. Interactive linking of the same video
is provided as it is hovered over in the lists or in the Exploration
Canvas. Meanwhile, a tooltip pops-up showing a set of important
keywords extracted from the video transcript and title based on the
RAKE algorithm [22] (Figure 2-d). Also, clicking any of the videos
selects it as the current video and updates the visualization. Our
goal here is to provide some semantic structure (not necessarily
precisely) in the information space, allowing everyday users to
better understand the MDS layout and confidently select a video to
watch next.

4 CONCLUSION

Our corpus currently includes over four thousand videos from 41
MOOCs. MOOCex enables exploration of this content via recom-
mendations that reflect sequential patterns mined from the collec-
tion of course syllabi. The visual interface facilitates effective explo-
ration of the semantic relationships between videos within a course
and the recommendation results. The prominence of inter-topic
sequential information and inter-video semantics in our system
empowers users to confidently select a video to watch next.
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