
EDAssistant: Supporting Exploratory Data Analysis in
Computational Notebooks with In-Situ Code Search and
Recommendation
XINGJUN LI

∗
, YIZHI ZHANG

∗
, JUSTIN LEUNG

∗
, CHENGNIAN SUN, and JIAN ZHAO

†
, Uni-

versity of Waterloo, Canada

Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data

analysis (EDA) based on their prior experience and external knowledge such as online examples. For novices or

data scientists who lack specific knowledge about the dataset or problem to investigate, effectively obtaining

and understanding the external information is critical to carrying out EDA. This paper presents EDAssistant,

a JupyterLab extension that supports EDA with in-situ search of example notebooks and recommendation of

useful APIs, powered by novel interactive visualization of search results. The code search and recommendation

are enabled by advanced machine learning models, trained on a large corpus of EDA notebooks collected

online. A user study is conducted to investigate both EDAssistant and data scientists’ current practice (i.e.,

using external search engines). The results demonstrate the effectiveness and usefulness of EDAssistant, and

participants appreciated its smooth and in-context support of EDA. We also report several design implications

regarding code recommendation tools.

CCS Concepts: • Human-centered computing → Information visualization; • Information systems →
Search interfaces; • Applied computing→ Document searching.

Additional Key Words and Phrases: Exploratory data analysis, software visualization, code search, computa-

tional notebooks.

ACM Reference Format:
Xingjun Li, Yizhi Zhang, Justin Leung, Chengnian Sun, and Jian Zhao. 2022. EDAssistant: Supporting Ex-

ploratory Data Analysis in Computational Notebooks with In-Situ Code Search and Recommendation. ACM
Trans. Interact. Intell. Syst. 00, 0, Article 000 (2022), 27 pages. https://doi.org/10.1145/3545995

1 INTRODUCTION
Exploratory data analysis (EDA) [53] is a critical process in modern data science workflows [2, 3,

52]. During EDA, data scientists investigate new datasets or problems with the broader goal of

understanding “what is going on here?” and with an emphasis on visualization of data, iterative

and tentative model building, as well as hypothesis generation and measures [5]. Due to its vague

goal and exploratory nature, EDA is often challenging, as data scientists need to decide among

a large number of possible actions [4, 61, 66]. To mitigate this challenge, many visual tools have

∗
These authors contributed equally to this work.

†
Corresponding author.

Authors’ address: Xingjun Li; Yizhi Zhang; Justin Leung; Chengnian Sun; Jian Zhao, University of Waterloo, 200 University

Ave W, Waterloo, Ontario, Canada, N2L 3G1, {xingjun.li,yizhi.zhang,justin.leung1,cnsun,jianzhao}@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2160-6455/2022/0-ART000 $15.00

https://doi.org/10.1145/3545995

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

https://doi.org/10.1145/3545995
https://doi.org/10.1145/3545995

000:2 Li, et al.

been proposed to facilitate the EDA process with intuitive authoring interfaces (e.g., Tableau
1
and

PowerBI
2
), data wrangling support [25], and recommendations of data visualizations [61, 66].

Despite the benefits of these visual tools, computational notebooks, such as Jupyter Notebook
3

and RStudio
4
, are the single most popular and useful means for data scientists to perform EDA

[29, 47]. One reason is that computational notebooks combine code, documentation, and outputs

(e.g., tables, charts, and images) within a single document, which provides expressive and interactive

support for EDA. Moreover, computational notebooks support literate programming in languages

such as Python, which allows for directly integrating EDA code into a production pipeline. Most

importantly, computational notebooks can be easily shared and hosted on platforms such as GitHub
5

and Kaggle
6
, making it possible to leverage the collective wisdom of the data science community.

Indeed, people learn programming from the widely-available examples and tutorials online, and

code search is one frequent and critical activity for developers [7, 46, 50, 65]. This is the same for

EDA and using notebooks [20, 52]. When data scientists, especially novices, start to investigate

their data or are stuck on some problems, they usually look for EDA notebooks online to learn how

others approach the same or similar problem, check the APIs, models, and metrics that others have

used, and get inspirations for performing EDA themselves [40, 47, 52]. The code that data scientists

write in their current notebooks is often an externalization of their thoughts or hypotheses, which

could inform future steps. Thus, leveraging large repositories of EDA notebooks, several researchers

have attempted to use machine learning for automating EDA, such as recommending the next

operations in data wrangling [63] and generating EDA sessions from a dataset [2]. However, these

methods are constrained to a small set of EDA operators (e.g., filter, merge, and groupby in

pandas
7
), sometimes imprecise due to the complexity of EDA goals, and lack human engagement

and interaction. Further, while these methods sometimes could inform data scientists what to do

next, they do not tell the data scientists why or allow them to learn or improve skills.

To fill the gap, we propose EDAssistant, an interactive and visual tool that facilitates EDA with

in-situ code search, exploration, and recommendation based on existing notebook repositories,

embeddedwithin the JupyterLab environment for a seamless user experience. To design EDAssistant,

we first curated a large corpus of EDA notebooks (consisting of 38,581 notebooks from Kaggle),

and characterized the EDA process based on a formative study with two data scientists as well as a

quantitative analysis of the corpus. We confirmed the observation that data scientists organize their

EDA code in sequences of blocks (e.g., [33, 52]), and discovered four major types of EDA blocks. Our

findings also reflect typical characteristics of data science workflows mentioned in the literature

[3, 26]. With the analysis and dataset, we employed advanced deep learning models, specially

GraphCodeBERT [17], to learn a latent representation (i.e., embeddings) of all the EDA sequences.

As the backend of EDAssistant, we developed a search engine for retrieving relevant EDA sequences

based on a data scientist’s current code and a recommender for potential APIs to use next, which

facilitates their EDA with useful examples and suggestions. Further, we built a visual interface,

as a JupyterLab extension, to allow users to conduct EDA while accessing EDAssistant smoothly.

The user interface also features a novel visualization that provides an informative overview of the

search results and the coding patterns in EDA notebooks.

1
https://www.tableau.com/

2
https://powerbi.microsoft.com/

3
https://jupyter.org/

4
https://www.rstudio.com/

5
https://github.com/

6
https://www.kaggle.com/

7
https://pandas.pydata.org/

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:3

During the development of EDAssistant, we conducted quantitative experiments to compare

different models including GraphCodeBERT and Doc2Vec [31] in our search and recommendation

tasks. We also carried out a user study with 14 participants, who have different levels of technical

expertise in data science, to evaluate EDAssistant as a whole on conducting EDA, by referencing a

baseline setting of using external search engines (e.g., Google). The results indicate that participants

appreciated the new in-situ code search and recommendation experience during EDA as well as

the interface design of EDAssistant on retrieving, exploring, and understanding code examples.

Moreover, several design implications are discussed, shedding light on future research. For example,

participants sometimes benefited from the diverse results on Google (e.g., video tutorials, forum

discussions, etc.), and combining EDAssistant’s in-situ search with traditional manual keyword-

based search could potentially improve their EDA performance.

In summary, our contributions in this paper include: 1) an empirical characterization of the EDA

process with a formative study and a quantitative analysis of a large notebook corpus; 2) a search

engine for retrieving EDA examples and a recommender for suggesting useful APIs based on the

application of the state-of-the-art machine learning models; 3) an interactive tool, implemented

within the Jupyter Notebook environment, which offers in-situ code search and recommendation

as well as novel visual exploration of search results
8
.

2 BACKGROUND
In this section, we first introduce computational notebooks and relevant tools, then exploratory

data analysis and systems, and lastly techniques for searching, recommending, and visualizing

code in general.

2.1 Computational Notebooks
Computational notebooks (e.g., Jupyter Notebook and RStudio) have recently emerged as a new

form of programming environments. A notebook is broken down into cells, which contain code cells
that are segments of scripts, and markdown cells that are formatted text to supplement and explain

the code. Code cells can be independently executed in an arbitrary order, run multiple times, or even

edited between different runs; these cells are also interrelated as in the same notebook environment

where they share common variables, function definitions, and so forth. In addition, the outputs of

executed code cells, such as charts, tables and printouts, are embedded in the notebook in place.

The above characteristics of notebooks provide much freedom and flexibility, which perfectly suit

EDA, allowing data scientists to dynamically experiment with different methods, try out alternative

models, and write temporary code [29, 47]. However, at the same time, such flexibility creates

challenges in code management, comprehension, and development with notebooks. For example,

messes in code may accrue during EDA, and data scientists may lose track of their thought processes.

To address these issues, several tools have been proposed, such as Variolite [27], Verdant [28], and

Fork It [57], to support fast versioning and history tracking. Code Gathering Tools [19] assist data

scientists with cleaning, recovering, and comparing versions of code in notebooks by analyzing

code cells’ dependency and organizing code into chunks.

However, these tools focus on general code management and versioning in notebooks, rather

than EDA tasks. In our work, by taking the huge advantages of computational notebooks in

supporting EDA, we designed and developed EDAssistant as a JupyterLab extension, which can

be used seamlessly in the environment that is familiar to data scientists. Further, EDAssistant

facilitates EDA in notebooks with in-situ code search, exploration, and recommendation, enabled

by analyzing a large collection of EDA notebooks gathered online.

8
We will make the corpus and code publicly available upon publication.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:4 Li, et al.

2.2 Exploratory Data Analysis and Tools
The concept of exploratory data analysis (EDA) stems from John Tukey’s early work [53]. The

nature of EDA is loosely characterized by addressing goals or hypotheses with skepticism and

flexibility, emphasizing the use of data visualization, building tentative models, and applying robust

measures, in an iterative manner [5]. Batch et al. [3] further advocated the gap in using interactive

visualization for EDA in data science.

Data scientists need to make many decisions during EDA, such as which models to employ,

which parts of data to examine, and which graphic representations to use? Thus, a number of

techniques have been proposed to facilitate EDA, where most focus on supporting the creation

of data visualization. Commercial tools like Tableau and PowerBI allow analysts to interactively

explore data, further enabled by intelligent algorithms (e.g., Tableau “ShowMe” [36]) to recommend

expressive visualization. Visualization specification languages, such as Vega-Lite [48], have also

been proposed to ease the process of creating common data charts programmatically. Based on

Vega-Lite, Voyager [60] and Voyager 2 [61] blend manual and automated visualization specifications

in EDA. Falx [55] automatically infers visualization specification and data transformation from user-

input examples. Another branch of research uses data-driven methods for automatically generating

visualization. Examples include Data2Vis [12], DeepEye [35], and VisML [23], which employ deep

learning techniques to extract rules, patterns, and designs from large collections of user-created

charts. Further, ChartSeer [66] adopts a mixed-initiative approach to recommend visualization

designs dynamically based on an analyst’s input. While the above systems are effective in creating

a visualization, they are standalone tools separated from the computational notebook environment.

Further, EDA is more than just data visualization [5], which also includes data processing, model

building and evaluation, etc. Thus, switching among tools for different EDA tasks significantly

reduces the effectiveness of a data scientist’s workflow.

There thus exist several tools, created with friendly integration to computational notebooks, for

supporting different aspects of EDA. Many R and Python packages have been developed, such as

tidyverse
9
(containing ggplot2, etc.), matplotlib

10
, scikit-learn

11
, and pandas, which can be directly

used in the corresponding notebook environments. There also exist different techniques proposed

as computational notebook extensions or plugins. BURRITO [18] and TRACTUS [52] provide

the provenance of EDA by capturing and displaying code outputs, development activities, and

users’ hypotheses. Wrex [13] is a Jupyter Notebook extension that supports data wrangling with a

programming-by-example approach. B2 [62] allows users to easily move from code to visualization

and vice versa by treating data queries as a shared representation. Although providing much

convenience, these tools assume that data scientists have a good idea about what to do in their

EDA, lacking the support of “tutoring or inspiring” them, especially for less-experienced data

scientists. Often they still need to leverage other means, such as Google Search, to find, browse, and

learn from example notebooks online, which is our focus in this work. PySnippet [56] is a Jupyter

Notebook extension that allows users to create and share live code, equations, visualizations, and

narrative text as well as provide a simple “auto-completion” feature to for rapid access of code

segments. Similarly, PyMOL was developed in JupyterLab to facilitate molecular biologists using

their domain-specific graphics libraries. Compared to EDAssistant, these tools lack the analysis

of data science workflows to provide more suitable code examples relevant to the programming

context.

9
https://www.tidyverse.org/

10
https://matplotlib.org/

11
https://scikit-learn.org/stable/

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:5

Learning from a large collection of notebooks, Auto-Suggest [63] can recommend the next

step (e.g., which pandas API to use, and with what parameters), but only in the data processing

phase of EDA. Similarly, ATENA [2] automatically generates data exploration sessions using deep

reinforcement learning; however, the types of EDA operations are limited to data filtering and

grouping. At the same time, Pimentel et al.’s works [41, 42] analyze a large collection of notebooks

provided insights into the quality and reproducibility of notebooks, while they did not specifically

focus on EDA or code search. Inspired by these data-driven methods, EDAssistant leverages the

collective wisdom of the data science community by analyzing high-quality EDA notebooks online

to facilitate EDA with in-place code search and API recommendation. Instead of viewing EDA as

a series of low-level operations, we treat EDA as a sequence of semantic code blocks to enhance

the utility of the search results. Also, different from these pure automated methods, we employ

interactive visualization to allow data scientists to explore and understand searched notebooks,

thus better utilizing the examples and gaining knowledge.

2.3 Code Search and Visualization
Code search is a ubiquitous activity for developers, including data scientists. Sim et al. [50] compre-

hensively compared several code search tools including Koders
12
, Google, Krugle

13
, and Source-

Forge
14
, with different sizes of search target and search motivation. Common code search engines

usually index code based on API keywords and method signatures. Researchers have also uti-

lized other information in code, such as structures, application descriptions, and data flows, to

enhance the traditional keyword-based search; examples include Examplar [37], CodeGenie [32],

and Sourcerer [34]. However, none of the above techniques are designed to tailor searching code

or EDA processes in computational notebooks, which have different characteristics compared to

traditional code modules. For example, in EDA notebooks, code cells are organized much more

freely and method signatures are difficult to extract. The analysis of structures and semantics relies

on clean, well-documented, and linearly-organized code modules, which are often not available in

computational notebooks.

Visual methods have also been employed to understand the functional and structural components

of code. Hoffswell et al. [22] proposed an in-situ visualization to summarize variable values and

distributions. Graph visualization is another popular way of presenting code, such as the dependency

between variables and methods [1, 49]. In the case of notebooks, Albireo [58] uses a force-directed

graph to display relationships among code cells and markdown cells. TRACTUS [52] employs a

tree structure to reveal a hypothesis-driven analysis process. However, these systems focus on

visualizing one single notebook, and do not provide the capabilities for searching or browsing a

search result of multiple notebooks. Lodestar [43] uses a graph to model analysis steps in notebooks

and provides recommendations for the next steps based on a semi-automatic analysis on a small

corpus of about 6,000 notebooks. While this is similar to the API recommendation in our approach,

it does not offer the in-situ search and exploration of code segments as we do, or thoroughly analyze

high-level EDA patterns from a large enough corpus. Another similar work is NBSearch [33], which

supports semantic code search in a notebook collection and the exploration of resulting notebooks.

But their search method is based on the code cell level, which is not effective in supporting EDA

where higher-level blocks of code (containing multiple code cells) need to be retrieved and explored.

There are also visualization techniques specially designed for presenting search results. For

example, Feng et al.’s study [14] examined users’ search behaviors in a web visualization. Wilson

12
https://en.wikipedia.org/wiki/Koders

13
https://krugle.com/

14
https://sourceforge.net/

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:6 Li, et al.

et al. [59] advocated that web search interfaces should emphasize exploration. Oneway of presenting

search results is based on a linear ranked list (e.g., Google). TileBars [21] shows a colored bar next

to each list item for the document length and term frequency. uRank [11] provides on-the-fly

search results refinement and reorganization as a user’s needs evolve. Another way is to leverage

a 2D space to present items with various layout methods. An energy model has been proposed

to place text snippets of search results with minimal overlap [16]. Space-filling techniques (e.g.,

treemaps) have also been used for browsing searching results [9, 30]. Further, WebSearchViz [38],

Topic-Relevance Map [39], and RankSpiral [51] employ a circular (or spiral) layout, where the

distance to the center represents a document’s relevance, and the section of the circle denotes a

specific topic or cluster. However, the above techniques focus on visualizing searched documents,

rather than code or notebooks that have a different set of characteristics such as the presence of

cells, variables, API calls, outputs, etc. The interactive visualization in EDAssistant, by contrast,

displays EDA operations, code blocks, and the relationship between the searched code and other

irrelevant code in notebooks.

3 EDA IN COMPUTATIONAL NOTEBOOKS
While EDA is not a new concept [53], topics on EDA with computational notebooks have recently

gained much popularity in both industry and academia. In this section, to characterize EDA

processes in notebooks, we first describe how we curated a corpus of EDA notebooks, which is the

testbed of this work. We then report a formative study with professional data scientists as well as a

quantitative analysis of the corpus regarding the EDA processes in notebooks.

3.1 Data Collection
Rule et al. [47] provided a large collection of public Jupyter Notebooks scraped from GitHub.

However, this corpus is noisy containing all kinds of notebooks with diverse goals, and it does

not contain sufficient or clean metadata to determine whether a notebook is performing EDA or

not. Therefore, we curated a new corpus of notebooks by crawling high-quality submissions from

Kaggle competitions. Each Kaggle competition features a data challenge, invites data scientists

around the world to explore the data and build models to solve the problem, and evaluates their

submissions with both automated testing and community feedback. As the setup is more controlled,

the notebooks tend to have a better quality as well as are well-formatted and well-documented.

Also, as everyone works towards a single goal in a competition, it allows us to capture different

approaches that data scientists used.

We used the MetaKaggle
15
dataset as our entry point for getting access to Kaggle competitions.

We selected competitions with the tags of “featured,” “research,” “recruitment,” and “playground”

because the challenges are normally more open-ended, thus containing more EDA notebooks,

and participated by expert data scientists, thus having higher-quality submissions. In total, we

selected 281 competitions from Kaggle. For each selected competition, we filtered the notebooks

by their ranks of accuracy on Kaggle (i.e., selecting the top 10% of the total submissions). We also

included notebooks that are never submitted but have a high number of upvotes and reviews, which

normally guides notebooks (e.g., written by the winners for explaining and summarizing their

methods aftermath). In the end, we obtained a total of 38,581 notebooks, consisting of 856,941 code

cells and 303,041 markdown cells. The median length of the notebooks is 22 code cells 75% of all

notebooks contain 39 cells at most.

15
https://www.kaggle.com/kaggle/meta-kaggle

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:7

3.2 Formative Study
While there exist many empirical and qualitative studies about data scientists’ behaviors and

workflows [3, 26, 33, 52, 54], many of them do not focus especially on EDA in computational

notebooks. To better understand such EDA processes, we conducted semi-structured interviews

with two professional data scientists (referred to as E1 and E2 below), recruited through the word

of mouth. Both experts have PhD degrees in computer science and have worked for three or more

years as data scientists in large IT companies. Their job responsibilities include discovering business

insights into customer data, deriving models andmetrics for products, and creating visualization and

reports, which consist of many EDA tasks with Jupyter Notebooks. The semi-structured interview

included questions and discussion points on: how our interviewees perform EDA in their daily

work, how they manage EDA with computational notebooks, what the key steps are in an EDA

process, and what drives their decisions during EDA. After, we used Otter.ai
16
to transcribe the

audio recordings of the interviews. Two authors independently coded the transcripts and then

formed an affinity diagram together to discover themes and insights in the results. Our results are

described as follows, which also confirm many observations from the literature.

R1: Data scientists manage their EDA processes in semantic code blocks. As the nature
of EDA is highly dynamic and uncertain, it is often challenging for data scientists to keep track

of their analysis [5, 66]. When using notebooks, they strive to maintain an analysis provenance,

even for actions leading to dead ends [47]. To mitigate the chance of getting lost and preserve the

provenance, data scientists often organize their code into blocks and use these as checkpoints for

navigation later, where each block represents one meaningful step in the EDA (e.g., loading data)

[52]. Our experts echoed the same behavior, where we refer to the code blocks as EDA blocks. E2
said that a code block could contain one or multiple small code cells, but sometimes several semantic

blocks are placed in “a giant code cell.” E1 also mentioned “I usually put all my preprocessing code
and plotting code together, in one or several cells [...] I sometimes use PowerPoint slides to record the
results of a section of code.”

R2:A canonical EDAprocess generally contains a sequence of different semantic blocks.
Several prior studies have investigated the general workflow of data science. Kandel et al. [26]

identified five stages in enterprise data analysis and visualization, including discovery, wrangling,

profiling, modeling, and reporting. Similarly, Batch et al. [3] discovered four main elements in EDA

based on context inquiries, including input (e.g., question), process (e.g., select, filter), environment

(e.g., GUI, programming), and output (e.g., visualization). Subramanian et al. [52] also found data

scientists’ exploration involves standard routines such as finding base code, cloning, contextualizing,

and evaluating the result. Our experts described very similar steps in their EDA practices, where

we tried to identify the basic units of EDA in terms of coding tasks. In the end, we concluded

with four different types of EDA blocks, together forming a canonical EDA sequence. They include:

(1) configuration and data preparation, (2) model exploration and development, (3) hypothesis

verification and evaluation, and (4) output examination and visualization. The four stages were

also confirmed by both experts. In addition, E2 mentioned: “The benefit of Jupyter Notebook is the
outputs (visual or textual) are persistent. I could complete a stage and move forward without rerunning
the previous code again.”

R3: A real-world EDA process is normally iterative and non-linear, guided by data sci-
entists’ rationale. Our participants stated that in practice EDA is far more complex than we

thought. Because EDA often explores “the unknowns,” E1 made an analogy to the design thinking

or user-centered design process [8]. She said that “an actual EDA process is iterative, going through
the steps (basic EDA blocks) again and again, and also non-linear, jumping from one step (EDA block)
16
https://otter.ai/

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:8 Li, et al.

to another,” not necessarily following the canonical order. Thus, sometimes an entire EDA process

can be modeled as a tree structure or even a graph [52], where each path could form an EDA

sequence. Moreover, E2 indicated that such a real-world EDA process is guided by the rationale

formed by a data scientist’s prior experience, dynamic text and visualization outputs, and most

importantly external knowledge (e.g., searched examples online). “When I want to apply some
non-trivial methodology, I frequently look for samples online. The API docs are not very helpful in this
case,” said by E1. This resonates Subramanian et al.’s findings [52] and the fact that code search is

critical in exploratory programming with notebooks [7, 33, 65].

3.3 Analysis of Computational Notebooks
To further characterize EDA processes, we performed quantitative analysis on our corpus of EDA

notebooks, guided by the obtained results from the formative study. As real-world EDA is highly

iterative and non-linear, a notebook may contain several interleaving canonical EDA processes

(R3). First, we aimed to decompose a complicated notebook into multiple EDA sequences. To do

so, for each cell that produces outputs (such as visualizations, printout tables, etc.) in a notebook,

we checked the variable and function call dependency of that cell by using a similar program

slicing technique in code gathering tools [19]. The rationale of employing such a method is that

we assumed a canonical EDA sequence ends by examining staged results with visual or textual

outputs (R2). Thus, each sliced code segment is an executable script from the original notebook,

which mostly starts from the first few cells of the notebook that perform environment setup and

data preparation, and ends at a cell that produces some intermediate (or final) outputs.

We obtained 236,501 EDA sequences from our corpus. Note that the script in each EDA sequence

may be composed of code from more than one cell, and a cell may be split into different EDA

sequences. While data scientists tend to organize their code in semantic blocks, sometimes different

steps of EDA are written in one cell (R1). The above analysis breaks the original cell boundaries

and builds based on code dependency, which allows for better capturing the semantics in code.

However, we observed that in most of the cases, cells were “preserved” in our sliced programs,

because many cells just contain small and atomic chunks of code or a single function definition.

Moreover, we aimed to analyze the steps in our sliced EDA sequences. Inspired by the literature on

text analysis, we employed topic modeling [6] to discover themes in the code. Intuitively, we treated

each EDA sequence as a “document” and tried to identify its “topic” composition, where each “topic”

governs code that is semantically coherent. However, different from natural language documents

mostly containing English words, code may exhibit a larger vocabulary because variables can be

freely named. Thus, we only extracted the APIs from common data science toolkits (e.g., pandas,

numpy, scipy, scikit-learn, and some Python built-in functions) as the “words” in “documents.” By

analyzing the code dependency and structure, we extracted full API calls as our tokens; for example,

we expanded the python builtin API len to __builtins__.len. This normalized different forms of

calling an API in different notebooks, reducing non-necessary duplications. In total, we identified

19,453 unique API keywords, denoting the vocabulary of notebooks’ code.

Next, we performed LDA [6], a widely-used method in topic modeling, on EDA sequences

represented by these keywords. To thoroughly explore the data, we varied the number of topics in

the LDA input. When there are four topics, the code scripts are relatively separated; when there are

five topics, two of them overlap a lot, which could be combined into one topic with many python

built-in and common data science APIs. These observations were based on our exploration of the

results with the pyLDAvis
17
visualization. This confirms our formative study results that there

exist four different EDA operation types (R2). We then examined the keywords, which matched our

17
https://github.com/bmabey/pyLDAvis

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:9

PC1

PC2 Marginal topic distribution

2%

5%

10%

1

2

3

4

pandas.read_csv

pandas.head

__builtins__.print

pandas.merge

pandas.drop

pandas.concat

pandas.groupby

pandas.to_datetime

pandas.get_dummies

__builtins__.str

sklearn.model_selection.train_test_split

__builtins__.list

__builtins__.reduce_mem_usage

__builtins__.len

numpy.iinfo

pandas.copy

numpy.finfo

sklearn.preprocessing.labelencoder

pandas.isnull

pandas.describe

pandas.sort_values

pandas.apply

pandas.append

pandas.info

pandas.rename

pandas.read_json

pandas.sample

pandas.melt

pandas.fillna

numpy.lo

__builtins__.print

sklearn.model_selection.train_test_split

__builtins__.len

pandas.read_csv

__builtins__.range

keras.layers.dense

sklearn.metrics.mean_squared_error

__builtins__.enumerate

sklearn.metrics.accuracy_score

sklearn.ensemble.randomforestclassifier

sklearn.linear_model.logisticregression

keras.layers.dropout

sklearn.preprocessing.standardscaler

sklearn.model_selection.cross_val_score

numpy.sqrt

keras.models.sequential

sklearn.metrics.roc_auc_score

numpy.zeros

sklearn.model_selection.kfold

numpy.round

keras.models.model

__builtins__.list

sklearn.metrics.confusion_matrix

sklearn.model_selection.gridsearchcv

numpy.array

sklearn.metrics.classification_report

keras.layers.input

numpy.mean

xgboost.xgbregressor

__builtins__.rmsl

__builtins__.print

matplotlib.pyplot.subplots

matplotlib.pyplot.show

__builtins__.range

matplotlib.pyplot.plot

matplotlib.pyplot.title

__builtins__.len

matplotlib.pyplot.figure

matplotlib.pyplot.subplot

sklearn.calibration.calibratedclassifiercv

numpy.arange

matplotlib.pyplot.xlabel

matplotlib.pyplot.ylabel

sklearn.metrics.classification.log_loss

sklearn.linear_model.sgdclassifier

__builtins__.enumerate

matplotlib.pyplot.imshow

numpy.argmin

__builtins__.calibrate

__builtins__.int

matplotlib.pyplot.xticks

__builtins__.str

__builtins__.prep_data

__builtins__.list

numpy.diff

matplotlib.pyplot.grid

scipy.optimize.curve_fit

matplotlib.pyplot.yscale

pandas.groupby

numpy.argmax

__builtins__.len

__builtins__.range

__builtins__.print

__builtins__.list

numpy.array

__builtins__.enumerate

numpy.zeros

__builtins__.int

__builtins__.str

pandas.read_csv

pandas.concat

__builtins__.zip

__builtins__.set

__builtins__.dict

__builtins__.sorted

numpy.mean

__builtins__.max

__builtins__.super

numpy.asarray

tqdm.tqdm

numpy.sum

__builtins__.open

numpy.arange

__builtins__.float

numpy.concatenate

__builtins__.min

numpy.ones

collections.counter

__builtins__.round

sklearn.feature_extraction.text.tfidfvectorize

Fig. 1. Topic analysis of the EDA sequences in our notebook corpus with GuidedLDA. The top 30 frequent

keywords of each topic are shown in the corresponding color. The figure is generated using pyLDAvis and is

in high resolution.

expectations for the four types. To obtain more precise and descriptive topics, we further conducted

GuidedLDA [24] using some most salient keywords selected from our initial LDA results. As shown

in Figure 1, the resulting four topics are relatively separated based on PCA (principal component

analysis). From the top keywords shown on the side, we can roughly discover: Topic 1 (red) is

about hypothesis verification and evaluation (mostly builtin and numpy APIs); Topic 2 (blue) is

about output examination and visualization (mostly matplotlib APIs and print); Topic 3 (yellow)
is about configuration and data preparation (mostly pandas APIs); and Topic 4 (purple) is about

model exploration and development (mostly sklearn and keras APIs).

4 EDASSISTANT OVERVIEW
The curated corpus, formative study, and quantitative analysis of the notebooks have set the basis

of the design of EDAssistant, which aims to facilitate open-ended EDA in computational notebook

environments. In this section, we first introduce the design goals of EDAssistant, and then an

overview of the EDAssistant’s architecture, followed by a scenario of using the tool.

4.1 Design Goals
Based on our understanding of the challenges of EDA from the formative study and the literature,

we distilled the following design goals to guide the development of EDAssistant.

G1: Provide suitable EDA examples in context. Because real-world data problems are often

vague and ill-defined, data scientists usually search for existing EDA notebooks online to learn how

others address similar issues [20, 33, 52]. Our E1 and E2 confirmed this as well (R3). Code search
is an essential activity for almost all developers beyond just data scientists in conducting EDA

[7, 46, 50, 65]. Therefore, the system should be able to retrieve appropriate EDA examples from the

widely available public EDA notebooks online, which is necessary for data scientists, especially

novices, to get up to speed with their EDA. However, current data scientists still use external tools

such as Google Search to achieve this task. Thus, the retrieval support needs to be in place, within

their programming environment (e.g., Jupyter), and in-situ, closely associated with the code scripts

they are working on.

G2: Facilitate exploration of example EDA processes. As mentioned earlier, a real-world

EDA process exhibited in a notebook is often interleaving and non-linear (R3), although data

scientists organize their code in semantic blocks (R1). Even though a set of suitable notebooks are

retrieved for the context, it is challenging for a data scientist to quickly comprehend others’ EDA

processes and make use of the search results [19, 33]. Currently, data scientists can only rely on

an embedded renderer (e.g., on GitHub or Kaggle) to view notebooks and try to decipher others’

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:10 Li, et al.

Preprocessing and
storage

Back-end analytics
engine

front-end visual
interface

Graph

CodeBERT

Program
Analyzer

Program Slicer

Search

Engine

API
Recommender

Sliced EDA
Sequences

API Execution
Orders

Code
Embeddings

Code Block
Type

Code Block
Keywords

Raw

Notebooks

Search Results
View

API Suggestion
View

Notebook
Detail View

Fig. 2. EDAssistant system architecture, which consists of three components: (1) a Data Preprocessing and

Storage module, (2) a back-end Analytics Engine, and (3) a front-end Visual Interface.

code which may also contain a lot of irrelevant information. Thus, the system should extract the

relevant parts from an entire notebook and present those parts first in a complete EDA sequence

(R2). Further, the system should support interactive exploration of the complicated EDA processes

reflected in the retrieved notebooks.

G3: Offer suggestion for subsequent EDA actions. While with example notebooks data

scientists can obtain knowledge from others’ code such as the APIs used, the number of examples

they can view during their EDA is limited. Being able to provide some suggestions about subsequent

exploration steps can be significantly helpful, not only in data manipulation [2, 63] but also in

visualization generation [36, 60, 61]. This is essential for novices to learn and get familiar with a

large number of methods/APIs available in data science toolkits (e.g., pandas) [18, 20], thus helping

them form rationale for the next steps (R3). While completely automating the whole EDA process

without any limitation is not possible, the system should offer some level of suggestion, also in-situ,

such as the operations that are likely to use next based on the current code sequence (R2). This
allows data scientists to effectively make decisions for carrying out their EDA.

The existing practice for data scientists to search for examples during EDA is based on frequently

switching between the Jupyter interface and external search engines such as Google and StackOver-

flow. Compared to this, the above design goals have outlined the demand for more context-based

code search, recommendation, and exploration and a more integrated data science workflow with

computational notebooks. However, our goal here is not to replace the existing practice, but to

investigate effective means of facilitating EDA with in-situ support during the EDA process.

4.2 System Architecture
Following the above design goals, we developed EDAssistant, an interactive and visual tool that

facilitates EDA with code search, exploration, and recommendation based on existing notebook

repositories. EDAssistant is embedded within the Jupyter Notebook environment as an extension

for seamless access to these functionalities. As shown in Figure 2, the EDAssistant system consists

of three components: (1) a Data Preprocessing and Storage module, (2) a back-end Analytics Engine,
and (3) a front-end Visual Interface. Details about these components will be introduced later.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:11

In the Data Processing and Storage module, from the raw corpus of EDA notebooks (see Sec-

tion 3.1), a Program Slicer disentangles EDA sequences from the original notebooks, as described in

Section 3.3. Each sliced EDA sequence, which is an executable script, is fed to a Program Analyzer
(see Section 5.1) that extracts three types of information: (1) used APIs or methods in the order

of execution, (2) descriptive keywords for code blocks, and (3) EDA types for code blocks, based

on the LDA topic analysis in Section 3.3. The sliced EDA sequences are also used for fine-tuning

the GraphCodeBERT [17], a pre-trained code representation deep learning model, for our two

downstream tasks: EDA sequence search and next API prediction. GraphCodeBERT generates a set

of code embeddings, which is stored in a database, along with other computed information above,

for later use in other components of the system.

The back-end Analytics Engine includes two key components, which work interactively with the

front-end Visual Interface that contains three main views. First, a Search Engine (see Section 5.2)

leverages the code embeddings to retrieve potentially useful EDA examples based on a code query

from the front-end (i.e., relevant code in the notebook based on the current working cell), and all

the examples are then summarized in a Search Results View (Figure 3-b; see Section 6.1) with a

novel visualization (G1, G2). Second, an API Recommender (see Section 5.3), also built upon the

GraphCodeBERT model, utilizes the code embeddings and extracted API execution orders to predict

APIs that are most likely to use next. The recommended results, which are obtained from a code

query constructed in a similar way as above, are displayed in the API Suggestion View (Figure 3-d;

see Section 6.3) on the front-end (G3). Finally, the front-end Notebook Detail View (Figure 3-c;

see Section 6.2) allows for viewing the detailed code of each searched EDA example within the

context of the original notebook that it was extracted from (G2). Based on the experiments with

our notebook corpus, it takes about 23 seconds to load the trained model (only once when the

back-end server starts) and about 0.5 seconds to perform a code search or API recommendation

(i.e., model inference time), with a configuration of an Intel(R) Xeon(R) 2.20GHz CPU, 25GB RAM,

and a Tesla P100-PCIE-16GB GPU.

4.3 Usage Scenario
In this section, we demonstrate the basic usage of EDAssistant with a simple scenario. Suppose

that Alex is a junior data scientist who just starts his job at a bank, and he is asked to find some

insights from some customer loan default records. After loading the dataset and printing out some

portions of the data table in JupyterLab, Alex gets stuck on how to proceed with his EDA. Thus, he

launches EDAssistant and places the panel beside his notebook (Figure 3-a).

He clicks “Search for Examples” and within seconds, EDAssistant returns a rank list of EDA

sequences based on his current notebook and working code cell, organized horizontally in the

Search Results View (Figure 3-b). Each example EDA sequence is visualized as colored strips

stacked together, where each strip represents a continuous code block in the searched notebook

and the color indicates the EDA operation type (i.e., preprocessing, modeling, visualization, and

evaluation, as shown in the legend). The white strips (spaces) indicate other less important code in

the notebooks. He has an intuition that some visualization of the data is needed before building

any models, so he clicks on the purple parts of the searched EDA sequences. This displays the

corresponding code in the Notebook Detail View and jumps to the selected line of code (Figure 3-c).

Similarly, he browses a few top-ranked examples; and he finds out that the methods countplot
and boxplot from the seaborn library are used often for initial data visualization. By toggling the

“Fold/Unfold Details” button, he is able to switch his focus between the relevant code scripts and the

whole example notebook. He can also browse the markdown cells and in-line comments available

in the examples to get some context about how the methods are used and why. Some basic data

manipulation APIs are recommended as well (with importance encoded by color transparency),

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:12 Li, et al.

a

d

e

f

g

b

c

Fig. 3. A data scientist is conducting EDA on a bank loan default dataset with EDAssistant, which is a

JupyterLab extension to offer situated EDA support with three interactively coordinated views for Search

Results (b), Notebook Detail (c), and API Suggestion (d).

when Alex clicks “Suggest Methods” (Figure 3-d). Following the API usages in these examples, Alex

easily swaps some parameters and creates a few charts to view several basic characteristics of his

data, such as the distributions of Bank_Balance over IfDefaulted (Figure 3-e).

Now Alex identifies some relationships between IfDefaulted and other data variables. So he

wants to build some machine learning models to predict the loan default state. Again, he has no idea

what technique to use. Thus, he clicks “Suggest Methods” which triggers the API recommendation

and returns a list of potentially useful methods next, based on his current code. Alex finds that the

second-highest ranked method RandomForestClassifier from scikit-learn could be an interesting

technique to try (Figure 3-g). Hovering over the API provides a brief method summary from its

official documentation, and clicking it directs Alex to the documentation page online. With this in

mind, Alex copies and pastes the API call signature to his notebooks, and then clicks “Search for

Examples” again. A different set of examples is retrieved based on his updated code (Figure 3-f),

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:13

which indeed contains some sample usage of RandomForestClassifier. Thus, Alex decides to

follow the examples to apply this classifier to his prediction problem.

5 NOTEBOOK ANALYTICS IN EDASSISTANT
In this section, we describe the data processing and analysis in EDAssistant, including how we

prepared the data, built the search function, and constructed the API recommender.

5.1 Analyzing Sliced EDA Sequences
The preprocessing and storage module of EDAssistant is based on the previous explorative analysis

described in Section 3.3. As shown in Figure 2, the raw notebooks are sliced into EDA sequences by

the Program Slicer based on the approach in code gathering tools [19]. The sliced scripts are then

processed by the Program Analyzer that produces the following three kinds of outputs for future

use in EDAssistant.

• Code EDA operations. Section 3.3 describes our exploration of the EDA operation types based

on topic modeling, which detects four “topics” in code: (1) configuration and data preparation, (2)

model exploration and development, (3) hypothesis verification and evaluation, and (4) output

examination and visualization. Leveraging the learned topical keywords and their probability

distributions within each topic, the main EDA operation type can be identified for any given

code block. However, it is challenging to define the boundaries of semantic code blocks, as data

scientists sometimes split them into different code cells or just write a giant code cell for several

goals (see Section 3.2). As an initial step, we relied on the code cells from the original notebooks

to determine code blocks. That is, if the lines of code are from the same code cell originally, they

stay in the same code block in the sliced script. Thus, the Program Analyzer generates a sequence

of high-level EDA operations based on the order of the code blocks and their contents.

• API execution orders. Section 3.3 also describes how we extracted the keywords for the topic

modeling, which include the APIs from common data science toolkits such as pandas. The

Program Analyzer keeps this information and outputs the API or method execution orders of

each sliced script based on its parsed abstract syntax tree.

• Code keywords. Further, the Program Analyzer outputs a set of descriptive keywords for each

of the code blocks in the sliced EDA sequences, which helps summarize the gist of the code. We

utilized a simple TF-IDF approach [44] in document retrieval, by viewing each EDA sequence

as a “document” and each extracted API or method in code as “words.” The keywords with top

TF-IDF scores are treated as more informative for describing the content of the code.

5.2 Retrieving Example EDA Sequences
As shown in Figure 2, we fine-tuned GraphCodeBERT [17] to build the Search Engine in EDAssistant,

which can retrieve suitable EDA examples from our notebook corpus, dynamically based on the

code that a data scientist currently works on (G1). Pre-trained models such as BERT [10] have

shown significant advantages in natural language processing (NLP) tasks. The pre-trained models

are first trained on a large unsupervised corpus to generate latent representations of the text (i.e.,

embeddings), and then fine-tuned on downstream tasks. GraphCodeBERT is the state-of-the-art

model for programming languages based on similar structures of BERT and CodeBERT [15], which

is comprised of an encoder (that converts code into embeddings) and a decoder (that converts

embeddings into code). We chose GraphCodeBERT because it also leverages the data flow graph in

programs for training and achieves the best performance for many downstream tasks such as code

clone detection and natural language code search.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:14 Li, et al.

EDA Block

EDA Block

EDA Block

Similarity Search?

Sliced EDA Sequences

...

User's notebook

GraphCodeBERT

based Model

Code Embedding of Predicted Next EDA Block

Code Embeddings and API Labels of EDA Sequences Corpus

API One-Hot Vector of Predicted Next EDA Block

Search
Results

API
Suggestions

API Lookup

Training Inference

df = pd.read_csv(“train.csv”)
sliced_df = df.drop(columns=[“id”])
train_df, test_df = train_test_split(df)

Source Code

Code API/Variable Orders

GraphCodeBERT + Mean Pooling

Code Embeddings

df sliced

df

train

df

test

df

Data FlowSliced EDA Sequences

Dense Layer

API One-Hot Vectors

a b

Fig. 4. Illustration of EDAssistant code search and API recommendation during training (a) and inference (b).

In our development, based on pre-trained models [17], we fine-tuned GraphCodeBERT for the

downstream code search task with massive EDA sequences, each being a series of code blocks as

described in Section 5.1. Intuitively, each code block is like a “word” in a “sentence” that is the

whole EDA sequence, and our goal is to obtain the embeddings of the EDA sequences for our

Search Engine. Thus, guided by SentenceBERT [45], we added a mean pooling layer to obtain the

“sentence” embeddings, which has shown effectiveness in their experiments (Figure 4-a). We used

60% of the data for training, 20% for validation, and 20% for testing. After the training process, each

EDA sequence can be represented by a 768-dimensional vector, and an encoder that can transform

any EDA sequences into embeddings is obtained. Therefore, during the inference time, the Search

Engine takes an input EDA sequence, uses the encoder to get its embedding, and leverages the

embedding to find relevant EDA sequences in our corpus based on cosine similarity (Figure 4-b).

These related examples could help data scientists get inspiration on what to do next in their own

EDA.

To investigate how well GraphCodeBERT works in our situation, we compared it with a baseline,

Doc2Vec [31], which was trained to generate embeddings of the same size. Doc2Vec is a classic

NLP method for unsupervised document representation learning, not based on neural networks.

We chose this method because the experiments in GraphCodeBERT already compared the model

with a couple of state-of-the-art neural network based models. The two models were compared

using simulated code searching tasks. For each EDA sequence in our test dataset, we used its first

N code blocks as the query and checked the rank of the original full EDA sequence (i.e., ground

truth) in the retrieved results. Thus, we generated N − 1 queries for each EDA sequence to perform

the experiments, where N is the length of the sequence. Figure 5 shows the counts when the

ground truth falls within the top-k items of the search results (until top 100). We can see that

GraphCodeBERT returns significantly more correct EDA sequences than those by Doc2Vec for any

given rank; Doc2Vec barely retrieves any true samples within top-20.

5.3 Recommending Potentially Useful APIs
Besides providing suitable examples to inspire data scientists on how to perform their current

EDA, EDAssistant recommends the potential APIs to use next via the API Recommender (G3). It is
built upon the same architecture as the Search Engine model using GraphCodeBERT (Figure 4).

Specifically, a dense layer is added after the last EDA sequence embedding layer to predict a one-hot

vector (in 19,453-dimension) representing the next API to use over all the possible APIs (i.e., our

vocabulary). During training, in addition to the EDA sequences as the input, the extracted API

execution orders (see Section 5.1) were used as ground truth for the target prediction. This design

allows the Search Engine and API Recommender models to share the same architecture and achieve

two tasks simultaneously with one training process, significantly increasing the efficiency.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:15

0 20 40 60 80 100
Rank

0

1000

2000

3000

Re
tri

ev
ed

 T
ru

e
Sa

m
pl

es

Doc2Vec
CodeBERT

Fig. 5. Comparison of GraphCodeBERT and Doc2Vec on the numbers of true samples retrieved in the top-k
search results.

Table 1. Comparison of different API recommendation models with accuracy and IOU.

Accuracy IOU

GraphCodeBERT with a dense layer (API Recommender) 0.507 0.399

GraphCodeBERT only (Search Engine) 0.146 0.079

Doc2Vec 0.491 0.389

Similarly, we evaluated the API Recommender by comparing it with two different baselines. The

first is the Search Engine itself, where the APIs of the top-ranked EDA sequence in search results

were treated as recommendations. This baseline helps us investigate whether the added dense layer

is necessary. The second is based on the Doc2Vec model, where a similar approach was used to get

recommended APIs (i.e., extracted from the search results). However, the GraphCodeBERT with

a dense layer predicts a probability distribution over all possible APIs, rather than a set of APIs

like the two baselines. We thus used log(pi) > 0.5 as a threshold to select the APIs where pi is the
probability of APIi . We used a similar experimental setup to 5.2simulate the processes of getting

API recommendations. For each EDA sequence in the corpus, we used its first 1 to first N − 1 code

blocks to create N − 1 queries and compared the predicted APIs with ground truth APIs.

Given these predicted sets of next APIs, we computed the accuracy of the models by averaging

the number of correctly predicted APIs divided by the actual number of ground truth APIs in each

query. However, the accuracy measure does not consider the size of predicted sets, because when

the size of a predicted set is larger, more ground truth APIs are likely in it. We thus computed

the IOU (intersection over union) between the predicted sets and the ground truth sets, so larger

predicted sets get some penalty. As shown in Table 1, the results indicate that the API Recommender

model is comparable with Doc2Vec, but significantly outperforms the bare Search Engine model

without the dense layer. Given that GraphCodeBERT significantly outperforms Doc2Vec for the

code searching tasks (see Section 5.2), it is thus still valuable to use the GraphCodeBERT-based

models in our cases due to the efficiency in sharing the code embeddings. Further, as shown in

Figure 6, GraphCodeBERT converged much faster during training than Doc2Vec, which could be

more applicable in practice for larger training datasets.

6 USER INTERFACE OF EDASSISTANT
In this section, we introduce the front-end visual interface of EDAssistant (Figure 2) which is

developed as an extension of JupyterLab. It can be accessed on a panel next to the main notebook

panel and contains three interactively coordinated views (Figure 3): the Search Results View,

Notebook Detail View, and API Suggestion View.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:16 Li, et al.

0 20 40 60 80 100
Epoch

8

10

12

14

16

18

Lo
ss

Doc2Vec
CodeBERT

Fig. 6. Comparison of GraphCodeBERT and Doc2Vec on training losses for API recommendation.

pred

knn

seaborn
numpy

linear

histplot

displot
cross_val

accuracy

Preprocess
colored strips representing different EDA blocks

white space indicating irrelevant code

“folded” area indicating long code not in the sequence

keywords showing code content

Visualization

Modelling

Evaluation

Fig. 7. An illustration of the DNA plot visualization in EDAssistant.

6.1 Visualizing Searched EDA Sequences
At any time during the EDA, a data scientist can initiate a search for useful EDA sequences to guide

their analysis, by clicking the “Search for Examples” button on the top panel (G1). EDAssistant
analyzes the currently active code cell in the notebook, extracts dependencies from other cells, and

constructs a sequence of code blocks as the query for the Search Engine. Then, EDAssistant displays

the retrieved EDA sequences in the Search Results View (Figure 3-b), with a novel visualization,

called DNA plot. The visual design resembles the chromosomes on DNAs, and the retrieved EDA

sequences are displayed from left to right based on their search ranks (Figure 7). Prior work indicates

that visualization of search results and code, rather than textual ranked lists, is necessary for users

to better understand and explore the returned items (e.g., [21, 33, 38, 39]). Our visualization here

can help data scientists get an overview of the search results and thus make decisions to explore

specific EDA sequences (G2).
Fundamentally, each EDA sequence is extracted from a real-world notebook, and the notebook

is also important to understand the EDA sequence. However, exposing too much unnecessary

information could overwhelm users. The DNA plot encodes an example EDA sequence in the

context of its original notebook, with horizontal colored strips indicating each code block inside the

sequence and white space indicating those not belonging to the sequence (Figure 3-b, Figure 7). The

color of the strips represents the EDA operation type of the code block. As the original notebook

might be lengthy, a “folded” visual metaphor is used to indicate many consecutive code blocks that

are not in the retrieved EDA sequence. Hovering over the strip or the white space initiates a tooltip

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:17

of the actual code it represents. Further, a set of code keywords (one of the outputs of the Program

Analyzer; see Figure 2) are shown beside the DNA plot to provide more contextual information

(Figure 3-b, Figure 7). The DNA plot design facilitates data scientists with showing approximately

where the EDA sequence is located in the original notebook and what operations the EDA does in

general.

6.2 Exploring EDA Sequences in Context
Based on the search results, the Notebook Detail View of EDAssistant allows a data scientist to

browse the actual code in an EDA sequence in detail by clicking the corresponding DNA plot

(G2). Moreover, clicking a color strip navigates the view to the specific lines of code it represents

(Figure 3-c). The code is presented in a similar visual fashion to the JupyterLab user interface for

ease of learning. Initially, only the code belonging to the selected EDA sequence is shown in the

Notebook Detail View. As each EDA sequence is extracted based on variable dependencies, it is a

complete and executable script that is normally sufficient for the data scientist to understand the

searched examples. However, clicking the “Fold/Unfold Details” button on the middle panel toggles

other cells in the original notebook, which provides more context on demand. To distinguish the

cells within the EDA sequence from other cells, a small red vertical bar is shown on the right for

each cell in the sequence and the current select line of code is also highlighted. This design avoids

presenting too much information at once, increasing the efficiency of comprehending the code,

leveraging the useful knowledge, and browsing the search results.

6.3 Discovering Subsequent APIs to Use
In addition to the searched EDA sequences that allow a data scientist to learn from the examples

and carry out their own EDA, EDAssistant recommends common APIs that can be potentially used

next, also based on the current coding context. The data scientist can initiate the recommendation

by clicking the “Suggest Methods” button in the API Suggestion View (Figure 3-d). This triggers

the API Recommender of EDAssistant and the returned APIs are displayed as tags with the color

transparency indicating the probability. The darker the color is, the more likely the system thinks

that API is useful. Further, clicking the tag links to the online documentation of the corresponding

API, which helps the data scientist learn about its usage. While only a set of common data science

toolkits are considered now in EDAssistant, it is easy to integrate more APIs in the future.

7 USER STUDY
To assess the effectiveness and usefulness of EDAssistant in supporting EDA, we conducted a

user study by investigating our tool and a baseline approach that resembles the setup of data

scientists’ current practice (i.e., using a separated search tool, Google Search, while conducting

EDA in computational notebooks). However, we note that Google Search can access a much larger

corpus of notebooks and knowledge base than ours. We do not want to compare EDAssistant with

a customized search engine with only our dataset, because that might constrain the user experience

and our investigation. Our goal here is not to replace the existing search engines, but to understand

the strengths and weaknesses of both approaches and seek opportunities for EDAssistant to be

used in data scientists’ workflows. The general purpose of the study is to explore users’ experience

of finding useful examples during EDA with their current practice and EDAssistant.

7.1 Participants
We recruited 14 participants, 12 males and 2 females, aged 22–41 (m=27.8, sd = 5.8), through mailing

lists at a local university and social media. Their technical backgrounds included computer science

and engineering. Of all the participants, two were with PhD degrees, seven with Master’s degrees,

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:18 Li, et al.

and five with Bachelor’s degrees. Further, four of them were professional data scientists and the rest

were students. We did a pre-screening for participants’ experience in using Python, computational

notebooks, and relevant data science toolkits. We selected the participants who met the minimum

technical standard for a novice or entry-level data scientist. On a 1–7 Likert scale (from “no

experience” to “expert”), participants’ self-reported technical knowledge was as the follows: Jupyter,

md=6, iqr = 0.75; Python, md=6, iqr = 0.75; chart plotting libraries such as MatplotLib, md=6, iqr = 1;

machine learning libraries such as scikit-learn, md=5, iqr = 0; data science libraries such as Pandas

and numpy, md=6, iqr = 0.75; as well as familiarity with visualization, md=5, iqr = 0.

7.2 Tasks and Design
Two datasets were selected from the test set of our notebook corpus, which has similar sizes (i.e.,

the numbers of columns and rows) and complexity. Both were tabular datasets including categorical

and numerical attributes. One was about students’ exam scores with their demographic information

(e.g., gender, catered lunch or not), and the other was about customers’ loan defaults with their

personal data (e.g., income, employed or not). These two datasets are relatively less popular to

analyze on Kaggle, which could potentially avoid the case that some participants had done some

analysis on these datasets before.

We adopted a within-subjects design for our study. The task resembled a realistic open-ended

EDA with a controlled structure, which contained two parts. The first part was more constrained,

in which participants were asked to plot charts on certain attributes. The purpose of this was to

help participants get familiar with the dataset and warm up. The second part was more open, in

which participants were asked to investigate the data patterns in more depth by building models to

predict certain values, cluster the data points, or classify the records. Participants were encouraged

to plot charts during this exploration process. Participants were instructed to search for examples

freely only using the provided tool (i.e., Google Search or EDAssistant). To make the study more

trackable, they were only allowed to use the loaded libraries in a starter Jupyter notebook, which

included pandas, numpy, scipy, matplotlib, seaborn, and scikit-learn. These libraries were common

data science toolkits and were sufficient for the study tasks. The order of presenting the study tools

and the datasets was counter-balanced with a Latin square design across participants.

7.3 Procedure
The study was conducted using remote conferencing software, where participants used their own

computers to access EDAssistant hosted on a server. In the beginning, they were introduced to

the general background and procedure of the study. Then, each participant was asked to complete

two EDA tasks as described above, one with each tool (i.e., Google Search or EDAssistant). For

EDAssistant, a brief video tutorial was provided right before the task and participants could ask

any questions about the tool’s functionalities. As EDA is usually open-ended and there is no

clear indication of completeness, we set a 20-minute limit for each task, where participants were

encouraged to explore the data as much as possible. There was no hard time limit for each part of

the task but they got a reminder around 9 minutes. After each task, participants filled in a short

questionnaire regarding their experience of using the tool. In the end of the study, a semi-structured

interview was conducted to collect participants’ qualitative feedback about the two tools. The

whole study lasted about one hour for each participant, and they received $10 for remuneration.

7.4 Results and Analysis
In this section, we report the results of our user study, which includes participants’ task performance,

subjective ratings on their experiences, and qualitative feedback to EDAssistant. Participants are

referred to as P# in the following text.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:19

Table 2. Comparison of participants’ task performance with different indicators byM and SD (in parentheses).

Google Search EDAssistant

Completion Time (minutes) 9.8 (2.5) 12.9 (3.7)

Number of Lines Written 16.1 (9.2) 17 (15.5)

Number of Cells Created 7.1 (1.8) 6.4 (1.3)

Number of Charts Generated 1.7 (0.8) 1.8 (0.4)

Number of Searches Performed 4.2 (1.8) 3.6 (1.9)

Number of Users Built Models (out of 14) 6 10

7.4.1 Quantitative Results. Table 2 shows different task performance metrics of Google Search

and EDAssistant. There was no significant difference in time between the tools for participants to

complete the two study tasks and reach the results that they were satisfied with. While participants

with EDAssistant took a longer time on average, as EDA often has vague goals, task completion

time is less of an indicator. But this is still encouraging because the new visualization and interface

of EDAssistant that require further familiarity did not significantly slow the participants down.

The ending states of participants’ notebooks at the end of the study were similar between the

two conditions, in terms of the number of lines, code cells, and charts created. The reason that

EDAssistant has a high variance for the number of lines is because P9 wrote 68 lines in their

exploration. These results demonstrate that both the tools could lead participants to reasonable

EDA for our tasks, while with Google Search, participants have the advantage of getting access to

a much broader range of information (e.g., videos, web tutorials), in addition to just notebooks.

Overall, participants conducted similar numbers of code searches with Google Search and

EDAssistant during the study. Participants conducted a few more searches with Google Search

since they needed to adjust their search keywords several times when the context-based search (in

EDAssistant) was not available. For the API recommendation in EDAssistant, on average participants

used it 1.0 times (sd = 0.7); however, seven out of 14 participants did not use this function. When

asked for reasons, they mentioned that it was not needed as they already had an idea of using

which methods from their past experience and the received examples from the search.

As the second part of our study task asked participants to try to build a prediction model with

the data, we observed 6 out of 14 (43%) participants successfully employed a machine learning

model with Google Search during the study, compared to 10 participants (71%) with EDAssistant.

This indicates EDAssistant helped participants build models based on the searched examples.

Moreover, participants used a larger variety of machine learningmodels with EDAssistant, including

logistic regression, k-means, linear regression, DBSCAN, kNN, random forest, gradient boosting,

and decision tree. However, with Google Search, participants only employed k-means, random

forest, linear regression, and decision tree. This may be because the EDA notebooks returned by

EDAssistant have a broader coverage since they are based on participants’ customized code; it is

more constrained as in Google Search participants searched more similar keywords in the study.

Figure 8 shows participants’ ratings on the post-study questionnaire (the higher the better). In

both conditions, participants were highly satisfied with their EDA results (Google: md=7, iqr = 1;

EDAssistant:md=6, iqr = 1) and EDAprocesses (Google:md=5.5, iqr = 1; EDAssistant:md=5, iqr = 0.5),

where the medians of the ratings on both tools were similar. Google Search was rated slightly

higher, and one reason was that it could provide more diverse search results other than just code.

Moreover, for the usefulness to real-life scenarios, both were rated highly (md=6, iqr = 0), which

indicates that participants perceived EDAssistant as a good alternative compared to Google Search.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:20 Li, et al.

Fig. 8. Participants’ ratings on the post-study questionnaire on a 1–7 Likert scale (1 - strongly disagree, 7 -

strongly agree).

7.4.2 Qualitative Feedback. Overall, participants were positive about their experience with EDAs-

sistant and appreciated the new ways of conducting EDA and notebook example searches. They

thought the interface of EDAssistant was intuitive and useful. “The idea is good and obvious.”-P14.
They also liked the visual encodings and user interactions, which made it easier to understand the

searched examples. In the following, we organized our interview results based on the design goals

in Section 4.1.

In-context and in-situ search experience for EDA examples (G1). Participants, in general,

felt the search experience with EDAssistant smoother and more effective than using Google Search.

“It was helpful to give me similar code examples.”-P7. “I think the system (EDAssistant) was very
useful. The relevant libraries are all there.”-P10. P4 echoed the same point: “This will definitely help
programmers, because we do need examples, not the APIs.”

Further, P12 had the following statement when comparing EDAssistant with Google Search: “The
main advantage of the interface (EDAssistant) is that the code it provided was all usable because they
are from Kaggle. If I was using Google, I wanted to see the detailed implementation, but normally there
might be some non-related texts.”

Participants also gained experience while using EDAssistant. For instance, through the searched

examples, P7 mentioned “I did not realize I can actually plot two separate charts to solve the first
task.” At the same time, participants pointed out that EDAssistant did not have the capabilities of

Google Search to retrieve a diverse set of results beyond notebooks, such as video tutorials, forum

discussions, etc.

“Google will return results with non-code stuff. For instance, some StackOverflow results provide
code and detailed explanation.”-P9. “Because Google usually has many different types of results, some
of them have interactive explanations which save time for understanding the code.”-P6.

Participants (P2 and P5) also suggested that it would be more effective to combine the keyword-

based search with Google Search and the in-situ search with EDAssistant, which allows the tool to

take more “users’ opinion” into consideration.

P12 explained “The advantage of Google is that I can predict the search results, especially when I
know which library to use. If I can have a Google + the interface combination, that would be great.” P4
also stated that using EDAssistant more would result in better performance: “If I am familiar with
it, it will be extremely helpful.”

Visualization and exploration of searched EDA examples (G2). Participants especially
liked the design of EDAssistant for supporting the exploration and understanding of searched

notebooks. For example, P12 mentioned “Visualization and interface are clean and neat. No useless
information.” P1 appreciated the visual design of the Search Results View, mentioning: “I think
the colors from the first view can help me filter down for what I am looking for. When I am looking
for plotting methods, I tried to read the purple lines first.” Further, P2 said: “Amazing, very helpful,
especially when you don’t know what the code is doing, the visual encoding can give you some hints.”
Similarly, “Compared to Google, which doesn’t have this color-coded highlighting, this is intuitive.”-P8.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:21

Together with the keywords besides the EDA sequences, participants found that: “It can help you
locate the answers faster. The tags are pretty good, using colors to encode importance. And the colors
from the first view are helpful. They basically try to tell you what kind of operation that line is.”-P10.
“The words besides can tell you what are the packages being used before clicking it, and hovering over
gives you the imports. I think the searched sequences are helpful.”-P7.

However, some participants demanded a higher-level summarization for the EDA sequences with

text. “The idea is good, but sometimes the keywords were not important enough.”-P9. “Some keywords,
such as ’df’, do not contain much information.”-P14. “It might be helpful if you can summarize what
the code is doing in natural language, rather than keywords.”-P10.

As for the Notebook Detail View, participants realized its importance and used it often with the

Search Results View for exploring the EDA sequences. They thought it was standard and effective

for demonstrating the code. They also liked the fold/unfold feature: “It’s good to highlight the specific
operation you just clicked from the top view, and use fold/unfold to go over the entire notebook.”-P7.
Participants suggested that some filtering and searching mechanism could be integrated into

both views. “It will be good if the keywords from the first view can tell me which one contains linear
regression, and this will save lots of my time. Otherwise, I need to read the code line by line.”-P1.
Also, P9 recommended that the same color coding of the Search Results View could be added:

“But I want to try to introduce some consistency here. In the first view, you use colors to encode the
operation type for each line, is it possible to do the same thing from the second view?”

Recommendation of APIs to use next (G3). Seven out of 14 participants used the API recom-

mendations in EDAssistant and they thought this was useful for obtaining the methods to use and

checking the API documentation, which was another key advantage participants perceived for our

tool.

“It can quickly go to the documentation page, which is the main advantage. Usually, I click the dark
green one first, because it usually gives the most relevant method.”-P7. “I realized the bottom view
later, but the bottom view was really helpful to understand the key methods that are helpful.”-P2.

Moreover, P14 gave specific examples: “I think the bottom view was good. After drawing the first
catplot, it recommended me the matplotlib.plot function for the second chart. After writing some code
related to training, it provided me with some validation functions.”
Similar to searching EDA sequences, participants suggested the integration of manual search

keywords into the API recommendation. “I hope the button could take user text inputs, so that I can
have a little bit of control over the results.”-P5. Further, P11 recommended an interesting feature that

“helps auto-fill current working cell” after clicking the tags.

8 DISCUSSION AND FUTURE DIRECTIONS
In this section, we discuss some design implications obtained from our study results, limitations of

the current EDAssistant implementation, and future directions to enhance the work.

8.1 Design Implications
From our study results, we observe a trade-off between the “active-style” search by inputting

keywords on Google Search and the “passive-style” search in EDAssistant based on code written

by users. Participants thought that actively inputting the keywords allowed them to know what

to expect. “Manual search can help us find things that match with ideas in our minds.”-P4. “If I’d
like to find things related to the chart, then I will have some expectations in my head.”-P3. This is
essentially helpful when data scientists have a clearer goal of what to do and what to search. This

also explains why participants thought Google performed better in the first part of the EDA task in

our study, which was more prescribed. However, “Manual search is not always better and it only
performs well when results contain what we really expect.”-P7.

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:22 Li, et al.

In cases where the goals were vague (e.g., in the second part of each study task), participants felt

that the experience with EDAssistant, by just clicking the “Search for Examples” button, was more

natural and integrated into their workflows with computational notebooks. This is also true when

users lack adequate domain knowledge or experience in their problems. Further, as described in our

qualitative results, participants hoped to combine both active and passive search styles together in

their EDA. Interestingly, we did observe that some participants “hacked” our tool by creating a new

cell containing the keywords they wanted to search with and initiating the search. “Later I tried to
put some keywords into the current working cell, to see whether I could affect the final results.”-P14.
However, this does not fully leverage the advantages of EDAssistant in understanding the code

structures. Therefore, in the future, it is worth considering how to design such integrated EDA

support tools within the Jupyter environment, while balancing the two search styles.

Moreover, another trade-off lies between the diversity and consistency of search results. Several

participants (such as P6 and P9) mentioned that Google retrieved a lot of “non-code stuff” such as

forum discussions and videos, which could benefit their EDA tasks. For example, a few well-curated

interactive tutorials or web blogs could be significantly helpful for learning new concepts and APIs.

However, this highly depends on the availability of the resources and the specific cases that users

encounter. On the other hand, due to limited data diversity, EDAssistant right now can only retrieve

EDA notebook examples. P8 made a nice analogy that “I think what you are trying to replicate is
like what I was doing: when I forgot how to plot chart, I would search among my past projects and
find what I did.” Indeed, in some corporate scenarios, teams tend to work on a set of aligned goals

and use many internal APIs of which learning materials are hard to find in the public domain [33].

More consistent and focused search results would be beneficial for onboarding new employees or

team members, which may otherwise overwhelm the users. Also, developers in companies usually

generate a lot of code but few well-made tutorial resources due to various constraints on time

and money. Being able to search for code examples by other senior co-workers in a seamless way

would increase new members’ productivity under such constraints. Thus, future research could be

conducted to study how the diversity or consistency factor affects data scientists’ EDA in different

real-world scenarios.

Thirdly, there exists a trade-off between encouraging creativity and following past practices for

novice data scientists using tools like EDAssistant. As the suggested EDA sequences are mined from

Kaggle competitions, this might compel data scientists to follow certain routines of analysis. While

EDA is a relatively creative process, these suggestions may further reinforce common previous

practices and allow more and more users to follow. This is a double-edged sword. On one hand, it

helps novice data scientists quickly gain skills from existing knowledge, but on the other hand, it

reduces their chances to experiment with new ideas and approaches in EDA. While assessing the

trade-off is out of the scope of this paper, it is a profound research problem that should be studied

in-depth in the future.

Finally, EDAssistant was designed and developed according to the typical stages of data science

workflows [3, 26], where four different semantic EDA blocks have been identified based on our

analysis of the corpus. However, it is challenging to optimize the code search and recommendation

in EDAssistant for all four stages in EDA, due to the characteristics of the available notebook corpus.

For the stages that tend to be more standard in terms of API usage and analysis procedures, such

as configuration & data preparation and output examination & visualization, EDAssistant would

perform better, as the machine learning models could extract more generalizable rules. In contrast,

for the other two stages, model exploration & development and hypothesis verification & evaluation,

there exist more creativity and diversity in how exactly the EDA is performed by different users.

Thus, users may not be able to get the most relevant code examples through the system and it is

also difficult to learn from these examples with diverse analysis approaches. However, in general,

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

EDAssistant 000:23

the search result visualization in EDAssistant, the DNA plot, could help mitigate this issue by

providing the interactive exploration of searched code. Future studies should be carried out to

investigate the differences between the four stages and verify the above observation.

8.2 Limitations and Future Work
Our tool and study design are not without limitations. First, while we trained our models on a

reasonable-sized corpus including around 38K notebooks, it is still small compared to the vastly

available online resources that other search engines (e.g., Google Search) can leverage. Further, all

the notebooks were captured from competitions on Kaggle to ensure their quality, this, however,

may introduce bias into the trained models. Thus, further collecting larger and more diverse data

is necessary to maximize the potentials of effective in-situ search experience that EDAssistant

has brought to data scientists. Using more diverse data, we could also support data scientists

with a better understanding of why certain notebooks or APIs are suggested (i.e., explaining the

recommendation), which is a promising future direction.

Moreover, EDA is highly dynamic and case by case, and the notebooks collected in Kaggle

competitions are dataset or problem-dependent. Data scientists may work on a different problem

and at the same time require suitable examples. While the literature [2, 63] has attempted to learn

data-independent patterns from notebooks and the models we used to have such abilities, the utility

of retrieved example notebooks can still vary in different situations. P9 mentioned that “People can
have different next steps because they have different goals.” The characteristics of working datasets

have not been considered in EDAssistant’s search and recommendation yet. Future approaches for

learning embeddings that also represent dataset features can be employed, such as in a similar vein

to VizML [23] for generating visualizations from datasets.

Third, as discussed above and in participants’ feedback (Section 7.4.2), the current code search

and recommendation in EDAssistant lack diversity in results and finer manual control over the

inputs. Computational methods and visual interfaces to support these functions can be developed

in the future. Also, participants pointed out some other improvements for EDAssistant to better

support the understanding of the searched examples, such as providing a natural language code

summary instead of discrete keywords in the Search Results View. There is a need for EDAssistant

to offer more context for the retrieved EDA code, such as relating to forum discussions and video

tutorials that are sometimes returned in Google Search. Thus, it is interesting to broaden our corpus

to include these contents on top of notebooks as well as develop code summarization capability of

machine learning models (e.g., [64]).

Last, our study still has limitations, since EDA is often open-ended and flexible. The current study

design is in a controlled environment with fixed datasets, problems, and task procedures, whereas

EDA in the wild can be more diverse. Longer-term deployment studies are needed to thoroughly

examine the strengths and weaknesses of EDAssistant, compared to data scientists’ existing practice.

Also, as discussed above, the proposed approach could be more effective in corporate scenarios

where employees deal with similar sets of problems, compared to more general-purpose search

cases. Future studies need to be conducted to examine this hypothesis.

9 CONCLUSION
We have presented EDAssistant, an interactive and visual tool that facilitates EDA with in-situ

code search, exploration, and recommendation, which is developed as a JupyterLab extension to

enable a seamless user experience. To develop EDAssistant, a large corpus of high-quality EDA

notebooks was curated from the competitions on Kaggle. We then characterized data scientists’

behaviors with EDA notebooks based on a qualitative formative study and a quantitative analysis

of the corpus. Advanced machine learning models were trained and evaluated based on the corpus,

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

000:24 Li, et al.

resulting in the search and recommendation modules of the tool. EDAssistant also features a novel

visualization to support the exploration and understanding of searched EDA examples, as well

as a user-friendly interface for accessing the search and recommendation functionalities. A user

study was conducted to assess the strengths and weaknesses of EDAssistant in EDA tasks as well

as a baseline setup of using the external Google search. The results indicate that, while Google

Search performed better in search results diversity and input control, participants appreciated the

EDAssistant design and the EDA experience with the tool as well as seemed more successful in

building prediction models in EDA tasks.

ACKNOWLEDGMENTS
This work is supported in part by the Natural Sciences and Engineering Research Council of Canada

(NSERC) and the University of Waterloo, Canada.

REFERENCES
[1] F. Balmas. 2004. Displaying dependence graphs: a hierarchical approach. Journal of Software Maintenance and Evolution:

Research and Practice 16, 3 (2004), 151–185. https://doi.org/10.1002/smr.291

[2] Ori Bar El, Tova Milo, and Amit Somech. 2020. Automatically Generating Data Exploration Sessions Using Deep

Reinforcement Learning. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.
Portland OR USA, 1527–1537. https://doi.org/10.1145/3318464.3389779

[3] Andrea Batch and Niklas Elmqvist. 2018. The Interactive Visualization Gap in Initial Exploratory Data Analysis. IEEE
Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 278–287. https://doi.org/10.1109/TVCG.2017.

2743990 Conference Name: IEEE Transactions on Visualization and Computer Graphics.

[4] Leilani Battle and Jeffrey Heer. 2019. Characterizing Exploratory Visual Analysis: A Literature Review and Evaluation of

Analytic Provenance in Tableau. Computer Graphics Forum 38, 3 (June 2019), 145–159. https://doi.org/10.1111/cgf.13678

tex.ids: battle2019characterizinga.

[5] John T. Behrens. 1997. Principles and procedures of exploratory data analysis. Psychological Methods 2, 2 (1997),

131–160. https://doi.org/10.1037/1082-989X.2.2.131

[6] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning
research 3 (2003), 993–1022.

[7] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two Studies of Opportunistic

Programming: InterleavingWeb Foraging,Learning, andWriting Code. In Proceedings of the 27th international conference
on Human factors in computing systems. https://doi.org/10.1145/1518701.1518944

[8] Tim Brown. 2009. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. Harper-
Business.

[9] E. Clarkson, K. Desai, and J. Foley. 2009. ResultMaps: Visualization for Search Interfaces. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1057–1064. https://doi.org/10.1109/TVCG.2009.176

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[11] Cecilia di Sciascio, Vedran Sabol, and Eduardo E. Veas. 2016. Rank As You Go: User-Driven Exploration of Search

Results. In Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI ’16). 118–129. https:

//doi.org/10.1145/2856767.2856797

[12] Victor Dibia and Cagatay Demiralp. 2019. Data2Vis: Automatic Generation of Data Visualizations Using Sequence-

to-Sequence Recurrent Neural Networks. IEEE Computer Graphics and Applications 39, 5 (sep 2019), 33–46. https:

//doi.org/10.1109/mcg.2019.2924636

[13] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020. Wrex: A Unified Programming-by-

Example Interaction for Synthesizing Readable Code for Data Scientists. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. Honolulu HI USA, 1–12. https://doi.org/10.1145/3313831.3376442

[14] Mi Feng, Cheng Deng, Evan M. Peck, and Lane Harrison. 2018. The Effects of Adding Search Functionality to Interactive

Visualizations on the Web. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.
https://doi.org/10.1145/3173574.3173711

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,

Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In

Findings of the Association for Computational Linguistics: EMNLP. https://doi.org/10.18653/v1/2020.findings-emnlp.139

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

https://doi.org/10.1002/smr.291
https://doi.org/10.1145/3318464.3389779
https://doi.org/10.1109/TVCG.2017.2743990
https://doi.org/10.1109/TVCG.2017.2743990
https://doi.org/10.1111/cgf.13678
https://doi.org/10.1037/1082-989X.2.2.131
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1109/TVCG.2009.176
https://doi.org/10.1145/2856767.2856797
https://doi.org/10.1145/2856767.2856797
https://doi.org/10.1109/mcg.2019.2924636
https://doi.org/10.1109/mcg.2019.2924636
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3173574.3173711
https://doi.org/10.18653/v1/2020.findings-emnlp.139

EDAssistant 000:25

[16] E. Gomez-Nieto, F. S. Roman, P. Pagliosa, W. Casaca, E. S. Helou, M. C. F. de Oliveira, and L. G. Nonato. 2014. Similarity

Preserving Snippet-Based Visualization of Web Search Results. IEEE Transactions on Visualization and Computer
Graphics 20, 3 (2014), 457–470. https://doi.org/10.1109/TVCG.2013.242

[17] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,

Shengyu Fu, et al. 2020. Graphcodebert: Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[18] Philip J. Guo and Margo Seltzer. 2012. BURRITO: Wrapping Your Lab Notebook in Computational Infrastructure. In

Proceedings of the 4th USENIX Conference on Theory and Practice of Provenance (TaPP’12). 7.
[19] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine. 2019. Managing Messes in

Computational Notebooks. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3290605.3300500

[20] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann. 2020. Composing Flexibly-Organized

Step-by-Step Tutorials from Linked Source Code, Snippets, and Outputs. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. https://doi.org/10.1145/3313831.3376798

[21] Marti A. Hearst. 1995. TileBars: Visualization of Term Distribution Information in Full Text Information Access. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’95). 59–66. https://doi.org/10.

1145/223904.223912

[22] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code with In Situ Visualizations to

Aid Program Understanding. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3173574.3174106

[23] Kevin Hu, Michiel A. Bakker, Stephen Li, Tim Kraska, and César Hidalgo. 2019. VizML: A Machine Learning Approach

to Visualization Recommendation. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3290605.3300358

[24] Jagadeesh Jagarlamudi, Hal Daumé, and Raghavendra Udupa. 2012. Incorporating Lexical Priors into Topic Models. In

Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (Avignon,
France) (EACL ’12). Association for Computational Linguistics, USA, 204–213.

[25] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wrangler: Interactive Visual Specification

of Data Transformation Scripts. In Proceedings of the 2011 annual conference on Human factors in computing systems.
https://doi.org/10.1145/1978942.1979444

[26] Sean Kandel, Andreas Paepcke, JosephM. Hellerstein, and Jeffrey Heer. 2012. Enterprise Data Analysis and Visualization:

An Interview Study. IEEE Transactions on Visualization and Computer Graphics 18, 12 (dec 2012), 2917–2926. https:

//doi.org/10.1109/tvcg.2012.219

[27] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Exploratory Programming by Data

Scientists. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). 1265–1276.
https://doi.org/10.1145/3025453.3025626

[28] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A. Myers. 2019. Towards Effective

Foraging by Data Scientists to Find Past Analysis Choices. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (CHI ’19). 1–13. https://doi.org/10.1145/3290605.3300322

[29] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 2018. The Story in the Notebook:

Exploratory Data Science using a Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. https://doi.org/10.1145/3173574.3173748

[30] Yanir Kleiman, Joel Lanir, Dov Danon, Yasmin Felberbaum, and Daniel Cohen-Or. 2015. DynamicMaps: Similarity-based

Browsing Through a Massive Set of Images. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). 995–1004. https://doi.org/10.1145/2702123.2702224

[31] Quoc V. Le and TomasMikolov. 2014. Distributed Representations of Sentences and Documents. arXiv:1405.4053 [cs.CL]

[32] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, Joel Ossher, Ricardo Santos Morla, Paulo Cesar Masiero,

Pierre Baldi, and Cristina Videira Lopes. 2007. CodeGenie. In Proceedings of the 22nd IEEE/ACM international conference
on Automated software engineering. https://doi.org/10.1145/1321631.1321726

[33] Xingjun Li, Yuanxin Wang, Hong Wang, Yang Wang, and Jian Zhao. 2021. NBSearch: Semantic Search and Visual

Exploration of Computational Notebooks. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. https://doi.org/10.1145/3411764.3445048

[34] Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and Pierre Baldi. 2008. Sourcerer: mining

and searching internet-scale software repositories. Data Mining and Knowledge Discovery 18, 2 (2008), 300–336.

https://doi.org/10.1007/s10618-008-0118-x

[35] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards Automatic Data Visualization. In Proceedings
of the International Conference on Data Engineering. https://doi.org/10.1109/icde.2018.00019

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

https://doi.org/10.1109/TVCG.2013.242
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/223904.223912
https://doi.org/10.1145/223904.223912
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/tvcg.2012.219
https://doi.org/10.1109/tvcg.2012.219
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/2702123.2702224
https://arxiv.org/abs/1405.4053
https://doi.org/10.1145/1321631.1321726
https://doi.org/10.1145/3411764.3445048
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1109/icde.2018.00019

000:26 Li, et al.

[36] J. Mackinlay, P. Hanrahan, and C. Stolte. 2007. Show Me: Automatic Presentation for Visual Analysis. IEEE Transactions
on Visualization and Computer Graphics 13, 6 (2007), 1137–1144. https://doi.org/10.1109/TVCG.2007.70594

[37] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie. 2012. Exemplar: A Source Code Search

Engine for Finding Highly Relevant Applications. IEEE Transactions on Software Engineering 38, 5 (2012), 1069–1087.

https://doi.org/10.1109/tse.2011.84

[38] T. Nguyen and J. Zhang. 2006. A Novel Visualization Model for Web Search Results. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (2006), 981–988. https://doi.org/10.1109/TVCG.2006.111

[39] Jaakko Peltonen, Kseniia Belorustceva, and Tuukka Ruotsalo. 2017. Topic-Relevance Map: Visualization for Improving

Search Result Comprehension. In Proceedings of the 22nd International Conference on Intelligent User Interfaces (IUI ’17).
611–622. https://doi.org/10.1145/3025171.3025223

[40] Jorge Piazentin Ono, Juliana Freire, and Claudio T. Silva. 2021. Interactive Data Visualization in Jupyter Notebooks.

Computing in Science Engineering 23, 2 (2021), 99–106. https://doi.org/10.1109/MCSE.2021.3052619

[41] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2019. A Large-Scale Study About

Quality and Reproducibility of Jupyter Notebooks. In Proceedings of IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). 507–517. https://doi.org/10.1109/MSR.2019.00077

[42] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2021. Understanding and improving

the quality and reproducibility of Jupyter notebooks. Empirical Software Engineering 26, 4 (may 2021). https:

//doi.org/10.1007/s10664-021-09961-9

[43] Deepthi Raghunandan, Zhe Cui, Kartik Krishnan, Segen Tirfe, Shenzhi Shi, Tejaswi Darshan Shrestha, Leilani Battle, and

Niklas Elmqvist. 2021. Lodestar: Supporting Independent Learning and RapidExperimentation Through Data-Driven

Analysis Recommendations. In Proceedings of the IEEE Symposium on Visualization in Data Science.
[44] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document queries. In Proceedings of the first

instructional conference on machine learning, Vol. 242. 29–48.
[45] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (2019). https://doi.org/10.18653/v1/d19-1410

[46] Martin P. Robillard and Robert DeLine. 2010. A field study of API learning obstacles. Empirical Software Engineering
16, 6 (dec 2010), 703–732. https://doi.org/10.1007/s10664-010-9150-8

[47] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Explanation in Computational Notebooks. In

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3173574.3173606
[48] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE

Transactions on Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.1109/TVCG.2016.2599030

[49] Doreen Seider, Andreas Schreiber, Tobias Marquardt, and Marlene Bruggemann. 2016. Visualizing Modules and

Dependencies of OSGi-Based Applications. In Proceedings of the IEEE Working Conference on Software Visualization
(VISSOFT). https://doi.org/10.1109/vissoft.2016.20

[50] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes. 2011. How Well Do Search Engines

Support Code Retrieval on the Web? ACM Transactions on Software Engineering and Methodology 21, 1, Article 4 (2011),

25 pages. https://doi.org/10.1145/2063239.2063243

[51] A. Spoerri. 2004. RankSpiral: Toward Enhancing Search Results Visualizations. In Proceedings of IEEE Symposium on
Information Visualization. 18–18. https://doi.org/10.1109/INFVIS.2004.56

[52] Krishna Subramanian, Johannes Maas, and Jan Borchers. 2020. TRACTUS: Understanding and Supporting Source

Code Experimentation in Hypothesis-Driven Data Science. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. https://doi.org/10.1145/3313831.3376764

[53] John W. Tukey. 1977. Exploratory Data Analysis. Pearson.
[54] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How Data Scientists Use Computational

Notebooks for Real-Time Collaboration. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (nov 2019),

1–30. https://doi.org/10.1145/3359141

[55] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J Ko. 2021. Falx: Synthesis-Powered

Visualization Authoring. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21).
New York, NY, USA, 1–15. https://doi.org/10.1145/3411764.3445249

[56] Alex Watson, Scott Bateman, and Suprio Ray. 2019. PySnippet: Accelerating Exploratory Data Analysis in Jupyter

Notebook through Facilitated Access to Example Code. In Proceedings of the EDBT/ICDT Workshops.
[57] Nathaniel Weinman, Steven M. Drucker, Titus Barik, and Robert DeLine. 2021. Fork It: Supporting Stateful Alternatives

in Computational Notebooks. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI
’21). New York, NY, USA, 1–12. https://doi.org/10.1145/3411764.3445527

[58] John Wenskovitch, Jian Zhao, Scott Carter, Matthew Cooper, and Chris North. 2019. Albireo: An Interactive Tool for

Visually Summarizing Computational Notebook Structure. In Proceedings of the IEEE Symposium on Visualization in

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/tse.2011.84
https://doi.org/10.1109/TVCG.2006.111
https://doi.org/10.1145/3025171.3025223
https://doi.org/10.1109/MCSE.2021.3052619
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/vissoft.2016.20
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1109/INFVIS.2004.56
https://doi.org/10.1145/3313831.3376764
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3411764.3445527

EDAssistant 000:27

Data Science. 1–10. https://doi.org/10.1109/VDS48975.2019.8973385

[59] Max L. Wilson, Bill Kules, m. c. schraefel, and Ben Shneiderman. 2010. From Keyword Search to Exploration:

Designing Future Search Interfaces for the Web. Foundations and Trends in Web Science 2, 1 (2010), 1–97. https:

//doi.org/10.1561/1800000003

[60] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2016. Voyager:

Exploratory Analysis via Faceted Browsing of Visualization Recommendations. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (Jan. 2016), 649–658. https://doi.org/10.1109/TVCG.2015.2467191

[61] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka Anand, Jock Mackinlay,

Bill Howe, and Jeffrey Heer. 2017. Voyager 2: Augmenting Visual Analysis with Partial View Specifications. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver, Colorado, USA, 2648–2659.
https://doi.org/10.1145/3025453.3025768

[62] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging Code and Interactive Visualization in

Computational Notebooks. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology.
Virtual Event USA, 152–165. https://doi.org/10.1145/3379337.3415851

[63] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data Preparation Steps Using Data Science

Notebooks. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. Portland OR

USA, 1539–1554. https://doi.org/10.1145/3318464.3389738

[64] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020. Retrieval-based neural source code

summarization. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. ACM. https:

//doi.org/10.1145/3377811.3380383

[65] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung Kim. 2018. Are code examples

on an online Q&A forum reliable?: a study of API misuse on stack overflow. In Proceedings of the 40th International
Conference on Software Engineering. Gothenburg Sweden, 886–896. https://doi.org/10.1145/3180155.3180260

[66] Jian Zhao, Mingming Fan, and Mi Feng. 2020. ChartSeer: Interactive Steering Exploratory Visual Analysis with

Machine Intelligence. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/

tvcg.2020.3018724

ACM Trans. Interact. Intell. Syst., Vol. 00, No. 0, Article 000. Publication date: 2022.

https://doi.org/10.1109/VDS48975.2019.8973385
https://doi.org/10.1561/1800000003
https://doi.org/10.1561/1800000003
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1109/tvcg.2020.3018724
https://doi.org/10.1109/tvcg.2020.3018724

	Abstract
	1 Introduction
	2 Background
	2.1 Computational Notebooks
	2.2 Exploratory Data Analysis and Tools
	2.3 Code Search and Visualization

	3 EDA in Computational Notebooks
	3.1 Data Collection
	3.2 Formative Study
	3.3 Analysis of Computational Notebooks

	4 EDAssistant Overview
	4.1 Design Goals
	4.2 System Architecture
	4.3 Usage Scenario

	5 Notebook Analytics in EDAssistant
	5.1 Analyzing Sliced EDA Sequences
	5.2 Retrieving Example EDA Sequences
	5.3 Recommending Potentially Useful APIs

	6 User Interface of EDAssistant
	6.1 Visualizing Searched EDA Sequences
	6.2 Exploring EDA Sequences in Context
	6.3 Discovering Subsequent APIs to Use

	7 User Study
	7.1 Participants
	7.2 Tasks and Design
	7.3 Procedure
	7.4 Results and Analysis

	8 Discussion and Future Directions
	8.1 Design Implications
	8.2 Limitations and Future Work

	9 Conclusion
	Acknowledgments
	References

