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Figure 1: CoPrompt enables programmers to conduct collaborative prompt engineering by building upon collaborators’ prompts
in natural language programming. It provides fourmechanisms: (a) sharemechanism enables programmers to share information
with collaborators without much effort or interrupting collaborators’ work. (b) link mechanism automatically updates linked
prompts. (c) refer mechanism assists programmers to modify prompts regarding collaborators’ prompts. (d) request mechanism
enables programmers to request collaborators’ assistance or feedback without interrupting collaborators’ progress.
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ABSTRACT
Natural language (NL) programming has become more approach-
able due to the powerful code-generation capability of large lan-
guage models (LLMs). This shift to using NL to program enhances
collaborative programming by reducing communication barriers
and context-switching among programmers from varying back-
grounds. However, programmersmay face challenges during prompt
engineering in a collaborative setting as they need to actively keep
aware of their collaborators’ progress and intents. In this paper, we
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aim to investigate ways to assist programmers’ prompt engineering
in a collaborative context. We first conducted a formative study to
understand the workflows and challenges of programmers when
using NL for collaborative programming. Based on our findings,
we implemented a prototype, CoPrompt, to support collaborative
prompt engineering by providing referring, requesting, sharing,
and linking mechanisms. Our user study indicates that CoPrompt
assists programmers in comprehending collaborators’ prompts and
building on their collaborators’ work, reducing repetitive updates
and communication costs.
ACM Reference Format:
Li Feng, Ryan Yen, Yuzhe You, Mingming Fan, Jian Zhao, and Zhicong Lu.
2024. CoPrompt: Supporting Prompt Sharing and Referring in Collaborative
Natural Language Programming. In Proceedings of the CHI Conference on Hu-
man Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI,
USA. ACM, New York, NY, USA, 21 pages. https://doi.org/10.1145/3613904.
3642212

1 INTRODUCTION
Collaborative programming has been widely studied and supported
through a range of collaborative systems [16, 17, 50, 66, 70, 84–
86]. These systems assist programmers in collaboratively writing,
discussing, and debugging code across various contexts, such as
data science [70, 84–86] and software development [16, 17, 66].
While code has traditionally played a central role in collaborative
programming, the emergence of large language models (LLMs)
introduces an alternative approach: using natural language (NL) for
programming and collaboration. Leveraging the context offered by
NL prompts allows programmers to effectively communicate with
their collaborators using a more intuitive language without getting
into the intricacies of low-level code [85]. This benefit aligns with
programmers’ preference for understanding collaborator tasks from
a high-level perspective [84].

To obtain desired code generation results, programmers often
need to conduct prompt engineering, which involves iteratively re-
fining prompts to guide LLMs in solving programming tasks by
evaluating the generated results [18, 45, 71]. However, prompt engi-
neering is challenging in collaborative programming. To effectively
collaborate with others and ensure that their engineered prompts
align with the ongoing work of their collaborators, programmers
need to stay informed about their collaborators’ progress. This in-
volves regularly reviewing their collaborators’ code and engaging in
clear communication without causing any disruptions to their col-
laborators. Nevertheless, programmers encounter difficulties when
switching between their code and that of others [16], including is-
sues such as a lack of contextual references [86] and limited support
for interactive sharing of intermediate results [7, 47, 64]. Addition-
ally, balancing the inclusion of contextual information in prompts
can be challenging for programmers [44, 75]. Deciding on the right
amount of detail to incorporate is not always straightforward, re-
sulting in prompts that may either lack essential information (e.g.,
“Web Scraping” ) or become overly detailed (e.g., “Extract all anchor
<a> tags from the parsed HTML and iterate through each” ). This
variation can lead to confusion among collaborators and impact
the readability and reusability of prompts. These issues increase
the cognitive load of making sense of prompts and thus increase
the communication cost of collaboration.

The purpose of this research is thus to explore the design of
workflows that support programmers in Prompt Co-Engineering,
which involves collaboratively refining and sensemaking prompts
during NL programming. We selected data science work as a case
to demonstrate the potential workflows of prompt co-engineering.
Given the exploratory and explanatory nature of data science, it re-
quires programmers to collaborate closely by sharing intermediate
results [7, 47, 64] and engaging in discussions with the assistance
of contextual references [86]. However, our primary focus is to
comprehend and facilitate the workflow of prompt co-engineering
rather than addressing specific data science tasks.

We conducted a formative study to gain insights into potential
prompt co-engineering workflows and challenges. Our findings
revealed that programmers struggled to maintain a shared common
ground, track collaborators’ revision histories of prompts and code,
and comprehensively understand the code solely from prompts
due to their iterative nature. They also encountered challenges
in managing the procedural dependencies [48, 76] when dealing
with variables represented by different NL prompts, which resulted
in repetitive updates. These findings highlight the importance of
supporting the prompt co-engineering workflow that encompasses
comprehending collaborators’ work and leveraging it to construct
their own prompts.

Building on these findings, we introduce four innovative mech-
anisms for natural language programming aimed at reducing the
effort required to build upon others’ work and facilitate information
sharing among collaborators: referring, requesting, sharing, and link-
ing (Figure 1). Referring enables programmers to locate and access
their collaborators’ prompts by presenting user-defined tasks and
prompts within a shared multi-level hierarchy view of prompts. Re-
questing and sharing enable programmers to share information with
their collaborators and solicit feedback to enhance their prompts.
The linking mechanism facilitates automatic updates for elements
with procedural dependency, reducing the necessity for repetitive
prompt modifications.

Incorporating these mechanisms, we designed CoPrompt, a pro-
totype system that assists the workflow of Prompt Co-Engineering.
CoPrompt supports programmers in making sense of collabora-
tors’ work with multi-level hierarchical interactions and contextual
prompt information, as well as leveraging collaborators’ work and
sharing information. To evaluate the usefulness of CoPrompt in
assisting prompt co-engineering workflow during collaborative NL
programming, we conducted a 2-part user study involving 12 expe-
rienced programmers familiar with LLM-based code assistants and
collaborative programming. Participants were asked to complete
a real-time collaborative programming task in pairs, working to-
gether simultaneously. They were then tasked with following up on
the work of other participant pairs to simulate asynchronous collab-
oration. This involved comprehending and modifying existing work
by others and independently addressing tasks without online col-
laboration. The results showed that CoPrompt effectively supported
programmers in understanding their collaborators’ prompts and
facilitated communication among them to build upon each other’s
work. In summary, this research makes the following contributions:

• A formative study that uncovered the workflow and chal-
lenges of collaborative NL programming.
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• CoPrompt, a prototype system that supports programmers’
prompt co-engineering workflow during collaborative NL
programming by comprehending, referring, requesting, shar-
ing, and linking with collaborators’ prompts.

• A user study that provided insights into the usability and
usefulness of CoPrompt and design implications for future
systems assisting prompt engineering in collaborative NL
programming contexts.

2 RELATEDWORK
As our research aims to address the challenges of collaborative
prompt engineering in collaborative NL programming, we review
prior work on natural language programming and LLMs, as well as
collaborative programming groupware.

2.1 Natural Language Programming and
Prompt Engineering

Natural Language (NL) Programming is the process of using NL to
express programming ideas for desired output [56, 57]. Prior work
provided insights on how people express computer-like procedures
“naturally” and on what features programming languages should
include to be more “natural-like” [57]. With the development of
natural language processing (NLP) [10], it has become feasible to
use NL to conduct more programming tasks, as it allows more
free-form NL utterances to be translated into program code [42].
This advancement increased the accessibility of programming to
non-expert users [56] and end-user programmers [35] who lack
training in computing.

Recently, the advances in generative AI [58, 89], especially LLMs
[8], fostered the capability of generating code from NL prompts, by
allowing a wider space of utterances to be transformed into satisfy-
ing code snippets. This advance significantly enhanced the perfor-
mance of AI-driven code assistants [1] and thus improved the satis-
faction and accessibility of programming with NL prompts [32, 75].
LLM-powered code assistants allow programmers to write at dif-
ferent levels of abstraction when developing code, which provides
a greater degree of freedom [27, 75]. Prior work has investigated
the design space of AI-powered code assistants for computational
notebooks [53] and other popular code editors [81]. However, the
multiple levels of abstractions [22] in the NL prompts also resulted
in the abstraction matching problem when using NL for program-
ming, where programmers find it difficult to select an utterance that
will translate into the desired system action [33, 49, 67, 75, 94]. A
case study investigating the NL prompting process of prototyping
also highlighted the difficulty of evaluating whether a prompt is
improving [32]. This issue is rooted in the challenges of translating
user instructions into executable computer tasks [30].

To mitigate the abstraction matching issue, prior work has in-
vestigated ways of prompt engineering, which is the process of
engineering an NL prompt to make it more effective in generat-
ing desired results [6, 71]. Liu et al. proposed design guidelines
for prompt engineering for text-to-image generative models [46].
Common practices in prompt engineering include appending infor-
mation like explanations [37], demonstrations [13, 41], table schema
[80], and relevant examples (few-shot prompts) [31, 45]. Although
few-shot prompts have become a popular strategy, they may still

behave worse than zero-shot prompts sometimes [71]. To enhance
the effectiveness of the prompts, programmers can further specify
tasks by constructing the signifier, memetic proxy, and specifying
truth-seeking patterns [71].

Other prompt engineering methods include combining specific
task information with general intentions (meta-prompts) [71], gen-
erating mutations of the prompt [40], eliciting feedback with small
data [78], summarizing complicated prompts [36], defining prompt
grammar [18], uncertainty highlighting [82] and introducing a new
programming language [3, 29]. Prior research into natural language
interfaces suggests the benefit of managing expectations and gradu-
ally revealing the capabilities of the system through user interaction
and intervention [74, 82]. There are also practices of breaking down
tasks [72] and dividing complex tasks into chained series of sub-
tasks [93]. By breaking down complex problems into sub-tasks, the
gap in abstraction is reduced, enabling successful guidance of the
model to generate code that matches the programmer’s intents [4].

However, prompt engineering in collaborative programming,
which involves understanding and utilizing collaborators’ work,
remains unexplored. This work aims to investigate the challenges
and benefits of NL prompts with varying levels of abstraction in
collaborative contexts.

2.2 Collaborative Programming
Extensive research in HCI and CSCW has investigated challenges
and system designs to assist collaborative programming. Synchro-
nization is a challenging yet significant part of the collaboration,
as programmers need to synchronize with their collaborators in
various artifacts like data frames, variables, and archives [84]. It
is challenging as the artifacts in programming involve procedural
dependencies [48, 76]: if one part of the code changes, all related
code snippets must be updated to prevent conflict and errors. In
addition, programmers often encounter difficulties when switching
between their code and that of others [16]. The problems of context
switching and knowledge sharing are common, especially in the
data science domain where programmers need to frequently share
intermediate results [7, 47, 64] and discuss with the assistance of
contextual references [86].

Establishing group awareness [15] can reduce communication
costs and thus improve collaboration efficiency [83]. It involves
understanding the activities of others, information sharing, and
knowledge of group and individual contexts [23, 24, 28, 38, 59].
This is particularly important yet challenging in the domain of data
science due to the diversity of artifacts and individuals involved in
data science work [11]. To facilitate comprehending the complex
dependencies and relationships among collaborators’ work, Albireo
displays the relationships between the cells of a computational
notebook using a dynamic graph structure [91]. Documentation
plays an important role in maintaining shared understanding and
group awareness [14, 34, 51, 73, 77]. To document the development
progress, programmers write comments to make the code easier for
both themselves and others to understand [63]. Comments are also
essential for sharing intermediate results in data science work [65].
However, writing comments is tedious whichmakes many program-
mers not bother to write comments in time. The lack of detailed
explanations and intention-revealing comments causes trouble for
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others understanding their work [19]. To make the commenting
process easier, Wang et al. built Themisto, which leveraged AI to
provide AI-assisted comments based on deep learning, query, and
prompt [85]. Their user study suggested that the collaboration
between data scientists and Themisto significantly reduced task
completion time and resulted in satisfaction.

Reusing collaborators’ work is also challenging in collaborative
programming [43, 75, 87]. To facilitate referring to collaborators’
work, chat.codes enabled programmers to link code with messages
in the chatroom [61]. In addition, Codeon provides on-demand
remote collaboration assistance by automatically capturing the
relevant code context and allows remote helpers to respond with
high-level descriptions, code snippets, and NL explanations.[9].
Communication is essential for maintaining shared understanding
and group awareness in collaborative work [23]. While it could be
time-consuming in software developing collaboration [28], prior
work has investigated ways of reducing collaborators’ communi-
cation costs through documentation [19], comments [63], visual-
izations, and version control systems [9]. Considering the heavy
dependencies among the artifacts involved in data science work,
code-gathering tools highlight dependencies used to compute re-
sults to assist programmers in understanding, reusing, and rewriting
in cluttered notebooks [26].

However, these collaboration systems have not considered NL
programming, where the challenges of comprehending and leverag-
ing collaborators’ work are different. CoPrompt aims to investigate
the challenges and potential solutions for the challenges in collabo-
rative NL programming, especially prompt co-engineering.

3 FORMATIVE STUDY
We conducted a formative study to understand the challenges faced
by programmers and their needs in the workflow of prompt co-
engineering. Specifically, we focused on how programmers compre-
hend and build upon their collaborators’ work to iteratively refine
their prompts for generating code that matches their intents.

3.1 Participants and procedure
Five pairs of experienced programmers familiar with LLM-based
code assistants were recruited. Participants reported 6–24 months
of experience with an AI code assistant and 3–5 years of experience
using computational notebooks. All participants were 20–35 years
old and had at least bachelor’s degrees in a CS-related field.

We asked participants towork remotely in pairs on an exploratory
data programming task using a shared Jupyter notebook in the VS-
Code editor [54] embedded with the GitHub CoPilot plugin. The
real-time sharing functions are provided by the Live Share plu-
gin [55], which synchronizes edits between users and allows collab-
orators to see each other’s cursors. The data programming task [2]
is a popular data science task on the Kaggle platformwhich requires
participants to use advanced regression techniques to conduct a
prediction. It involves common data science operations such as data
cleaning, feature transformation, and correlation analysis.

Participants were asked to join a Zoom meeting first to dis-
cuss their task distribution and collaboration workflow. Then, they
started working on their own tasks using NL prompts, and they

were allowed to communicate via audio in the meantime. To ob-
serve the natural prompt co-engineering workflow, participants
were explicitly required to modify the NL prompts instead of di-
rectly tweaking the code. While the study session was conducted
in real-time, the nature of the tasks did not require synchronous
collaboration, i.e., participants had the flexibility to divide the tasks
into sub-tasks and work on them asynchronously. We did not ex-
plicitly require participants to complete the tasks synchronously
or asynchronously. The collaborative programming session lasted
about 90 minutes, after which participants were asked to attend
30-minute follow-up interviews. We instructed participants to try
their best to complete the tasks in high quality and efficiency. While
there was no external incentive for the task performance, all partic-
ipants successfully completed the tasks. All participants received
compensation according to local standards.

3.2 Data Analysis
The studies were logged using VSCode extensions and the process
was video-recorded and transcribed. Two co-authors conducted an
inductive thematic analysis [5] involving cross-referencing times-
tamped data of prompt modifications from system logs with video
recordings and interview transcripts, identifying the events that
transpired before prompt engineering. Specifically, the two co-
authors read through the transcripts first to familiarize themselves
with the data and then performed the open coding process indepen-
dently. Then, all co-authors discussed and updated the code book
during the weekly project meeting for two weeks. Finally, we cate-
gorized and analyzed a total of 229 instances out of 392 recorded
interactions between participants, which fall into 3 stages in the
prompt co-engineeringworkflow: comprehension, pre-modification
interactions, and prompt modification. We excluded 163 actions due
to a lack of clear context or relevance to the specific collaborative
communication events that preceded prompt modifications.

3.3 General Workflows in Prompt
Co-Engineering

In the following paragraphs, we present our findings of the work-
flows that participants adopted in prompt co-engineering and the
challenges (C) that they encountered.

In the initial stages, participants convened online to gain an un-
derstanding of the data. Subsequently, high-level task distribution
was discussed and noted down at the beginning of a collaborative
computational notebook. We noticed that 4 pairs structured the task
by hierarchically numbering lists or bullet points to externalize the
task structure in their minds. Upon settling on a preliminary task
distribution, participants started writing prompts independently
to accomplish their own distributed tasks. Throughout the pro-
cess, they maintained communication via Zoom to discuss ongoing
and potential code implementations. We observed that all partic-
ipants started with a high-level description of the task (e.g., data
preprocessing, encoding) with the methods involved (e.g., low-pass
filtering, linear regression), deliberately omitting details (e.g., vari-
able names and parameters). Participants mentioned the reason is
that they have to “wait until her [collaborator’s] work is complete” -P4
to continue adding more details to the prompt. Therefore, partici-
pants do not verify the generated code in detail at first because they
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Action Description Example n

Sync Up
Participants communicated to align their efforts and ensure consistency in their
tasks. These interactions helped prevent redundancy and maintain cohesiveness in
their prompt engineering process.

“I am encoding the whole dataset." 49

Reactive Communication
(Request & Response)

These interactions aim to seek assistance, feedback, or validation regarding reactively
handling specific aspects of the prompt or generated code.

“Can someone help me determine the
function for encoding?" 61

Clarifying Participants seek answers to queries about their collaborators’ work, including
seeking explanations, and verifying the correctness of specific code segments. “Did you drop the column of xxx?" 57

Reference & Reuse
Participants occasionally referred to and reused (e.g., copy-paste) components from
their collaborators’ work, utilizing these references to inform their own prompt mod-
ifications. These actions fostered a sense of collaboration and knowledge exchange.

“I used the function you wrote in my
block. Any concerns?" 33

Proactive Communication
Proactive communication involves participants sharing insights, updates, or infor-
mation related to their prompts or coding tasks. These exchanges often contributed
to a deeper understanding of the prompt’s context.

“Here’s an update on the changes I made
to the prompt..." 29

Table 1: Five types of actions of the pre-modification interactions.

know that “it will eventually be changed later” -P2. To further refine
their prompts, participants primarily go through three stages:

Stage 1 — Comprehension: Regularly checking in on collabora-
tors’ work became a common practice. The goal was either to reuse
collaborators’ work or to assess their progress and determine the
next steps. However, significant time was spent “scrolling up and
down to identify changes” -P9. Participants also encountered difficul-
ties in comprehending their collaborators’ code based solely on the
prompt, often describing the prompts as “unorganized” and “vague”.
Additionally, P7 highlighted another issue where the generated
code “sometimes not aligned with the prompt,” further complicating
the comprehension process. Lastly, participants faced challenges in
tracking their collaborators’ revision history of prompt and code,
which is essential for understanding “the reasoning behind code
changes” -P1 (C1).

Stage 2 — Pre-Modification Interactions: Programmers often
adapt their prompts based on their own experience and the current
work, which can be challenging to document comprehensively. We
thus focus on the explicit collaborative strategies employed prior
to the start of prompt engineering. Based on the thematic analysis
results, these pre-modification interactions consisted of a series of
actions (Table 1).

Syncing up with collaborators. Many participants found that their
initial task distribution was not detailed enough, which caused re-
dundant effort and inappropriate workflow between collaborators:
“We encoded the data at the same time” -P3. Participants also reported
the tedious process of updating prompts due to procedural depen-
dency [47], in which a downstream prompt only works if a partic-
ular upstream prompt works normally. Due to the ever-changing
nature of data programming work, programmers often need to
monitor their collaborators’ changes and update their prompts to
align with their collaborators’ process, otherwise, they may “en-
counter error messages due to collaborators’ modifying the data frame
halfway through the process” -P2 (C2).

Requesting for collaborators’ feedback and assistance. All partic-
ipants in charge of visualizing correlation (P1, 4, 5, 8, 9) left com-
ments asking for feedback, as it is an essential step for data analysis.
We also observed that some participants (P3, 5, 8, 9) requested help

from their collaborators. For instance, P3 asked his collaborator
to handle a sub-task that he failed to complete. There are also
cases where collaborators need to work closely and go through
a trial-and-error process together: “I asked my collaborator to pay
attention to the outliers every time the way of feature transformation
is changed” -P4. However, most participants (N=7) indicated that
they desire a non-interruptive method to send their collaborators
requests, instead of speaking up, which is too interruptive for them
to use frequently (C3).

Referring to collaborators’ processes and prompts. All participants
checked their collaborators’ processes and referred to their prompts
to improve their own for better generation results across the whole
notebook. To leverage others’ prompts, participants first locate
and read the target prompt to make sense of it. Then, they copy
portions of the prompt relevant to their task and integrate them
into their own prompts to provide contextual information. The
redundant copy-pasting and modifying can be time-consuming
(C4), as programmers may trial-and-error to determine the appro-
priate modifications of the prompts (P1: “I reused my collaborator’s
prompt, which did not work as I imagined. After analyzing its context,
I realized that I had to copy a prompt several blocks above that”).

Proactive communication for sharing intermediate results and rel-
evant information. Many participants have shared intermediate
results with their collaborators that they believe would be use-
ful. They performed three types of sharing strategies: (1) leaving
comments under the block that their collaborators were working
on to attract their attention - P3; (2) leaving comments before the
block of the shared information and pinning their collaborators
using an “@” - P5, 6; and (3) ask their collaborators to check their
current highlights block for reference - P1, 2, 9. The first strategy
requires the comment receiver to locate the shared information,
while the second strategy may influence the collaboration efficiency.
Though many participants communicated directly through Zoom,
it “disturbed my own progress a bit” -P10. These strategies are either
“inefficient” -P9 or “disruptive” -P7 (C4).

Stage 3 — Prompt Modification & Merge Conflicts. The third
stage centers on modifying (i.e., engineering) the prompt. In this
stage, participants refine their prompts by copying and pasting
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utterances or code snippets from collaborators’ prompts to clarify
details about the variable name, resource, methods, and detailed con-
siderations. During this phase, participants may encounter merge
conflicts or issues that need communication for resolution. Partic-
ipants also expressed a desire to access previous versions of the
code, as this helps them “recall who made specific changes to the
prompt” -P4 and the “reasons behind those alterations” -P7. Some par-
ticipants manually tweaked the code instead of modifying the NL
prompts when they could not achieve their desired results within
a few attempts: “find it more efficient to directly change code after
several failed trials” -P1.

In summary, we identified the following user challenges in the
formative study:

• C1: Effort of maintaining group awareness and shared un-
derstanding to enhance collaboration effectiveness.

• C2: Repetitive effort of syncing with collaborators’ work.
• C3: Inconvenient and disruptive ways of requesting collabo-
rators’ feedback and assistance.

• C4: Repetitive copy-pasting effort for leveraging others’
work and disruptive information sharing.

4 DESIGN CONSIDERATIONS
Based on the findings from the formative study, we formulated four
Design Considerations (Ds). to support prompt co-engineering in
collaborative NL programming.

D1: Supporting sense-making of collaborators’ progress
and prompts. Programmers encountered challenges locating col-
laborators’ work in a shared notebook that lacked a clear outline of
NL prompts and code (C1). To support programmers’ locating and
sense-making of collaborators’ progress, it is important to imple-
ment a clearer structure to show the notebook overview [18]. This
structure should include multiple levels of hierarchy (e.g., tasks,
sub-tasks, and prompts) to help programmers identify changes eas-
ily. The design should also incorporate assistive features to help
programmers understand the code from prompts that might be too
vague. In addition, a history view should be provided for program-
mers to track global activities (e.g., collaborators’ works) and local
changes (e.g., prompts variations).

D2: Automatic synchronization to reduce repetitive up-
dates. In the exploratory and iterative programming process, the
prompts and codes might be updated several times throughout the
whole process based on the collaborators’ changes (C2). Automatic
synchronization of variables and code snippets with procedural
dependency should be provided to reduce programmers’ cogni-
tive load and enhance their collaboration efficiency. Programmers
should be able to easily notice changes made by collaborators and
the automatic updates applied to their own work.

D3: Supporting requests for feedback and assistance. Cur-
rent ways of requesting collaborators’ feedback and assistance are
inconvenient and disruptive (C3). An efficient way of requesting
feedback should be provided besides communicating through chat
and voice. In addition, considering the situation that the collabo-
rator has not finished the required prompt, programmers should
be equipped with methods to request knowledge from others and
refer to it later.

D4: Reduce effort for sharing knowledge and incorporat-
ing others’ work. Current ways of referring to collaborators’
prompts and reuse are tedious and time-consuming (C4). Program-
mers need to copy, paste, and modify, which takes a lot of time
unnecessarily. A more effortless way of referring to collaborators’
prompts should be provided. Additionally, the design should enable
proactive sharing of intermediate results with collaborators, pro-
moting sharing without concerns about disrupting their workflow.

5 ENVISIONED SCENARIO
Here, we present a motivating scenario that illustrates the workflow
of using CoPrompt for prompt co-engineering in NL programming.
For simplicity, we describe our scenario using two collaborators,
Alice and Bob.

Alice and Bob are remotely collaborating on a data analysis task
requiring them to predict house prices. To improve collaboration ef-
ficiency, they divide the tasks into smaller segments, allowing each
to tackle different tasks separately. They decide that Alice would
handle missing values, outliers and categorical features. Meanwhile,
Bob is tasked with feature transformation and correlation analysis
(Figure 2). To track each other’s progress and offer/request help
for specific tasks, they outline all sub-tasks in CoPrompt’s rich text
editor (Figure 3 a), which is synchronously displayed in the multi-
hierarchical wiki (Figure 3 b). The wiki’s foldable task items provide
them with a clear overview of tasks and the collaboration process.
They then begin to work on writing prompts independently after
listing all the required tasks.

Although Alice plans to finish encoding before Bob begins fea-
ture transformation, her progress is delayed due to technical issues.
Due to time constraints, Bob cannot wait for Alice to finish en-
coding. With CoPrompt, Bob creates a request (Figure 5) from
the in the transformation prompt to Alice’s encoding prompt,
indicating that his feature transformation steps (e.g., calculating the
skewness) require Alice’s encoded result. Once CoPrompt detects
(through semantic analysis) that Alice has completed the encoding,
it automatically updates Bob’s prompt to leverage encoded data to
generate code. As a result, Bob no longer needs to manually modify
his prompt whenever Alice updates her encoding, saving his time
and allowing him to focus more on task completion rather than
repetitive code upkeep.

After completing the feature transformation, Bob checks the
progress from the wiki (Figure 3) and notices that Alice needs the
transformed data for later outlier handling. In case Alice needs
to spend much time verifying the data to be used, Bob decides to
proactively share it with Alice. To share this transformed data, Bob
utilizes the share mechanism (Figure 6) by highlighting his data
frame and clicking on the share icon next to Alice’s task in the wiki.
Alice receives a pop-up, allowing her to accept Bob’s data without
manually locating the data frame for her subsequent workflow.
Once accepted,CoPrompt automatically regenerates Alice’s prompts
based on Bob’s shared dataframe, eliminating the need for Alice to
input supplementary information like variable names. This reduces
the risk of human errors such as incorrect variable references.

After handling missing values and encoding, Alice anticipates
that there may be future adjustments to the missing value handling
based on her past experience, which may also require updates to
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Figure 2: Envisioned Scenario of collaborative NL programming using CoPrompt, including tasks from 1 to 5 (pink boxes indicate
Alice’s tasks, and blue boxes indicate Bob’s tasks). Four colors of arrows indicate four types of mechanisms.

her encoding methods. To avoid repetitive updating, Alice creates a
link (Figure 7) connecting the in the missing value handling

prompt and the in the encoding prompt. With this link, the
encoding prompt gets automatically updated whenever the prompt
for missing value handling changes (e.g., when ’s variable name
or the method for handling missing values changes). This way, Alice
avoids the need to repeatedly update the encoding prompt. If Alice
no longer wants the two nodes to be automatically synced, she can
unlink the nodes by de-highlighting the link icon.

When handling outliers, Alice needs to refer to the results of
Bob’s correlation analysis. However, she finds it challenging to
navigate through Bob’s prompts, which contain long execution
examples and demonstrative code. To help her better understand
Bob’s prompts, Alice expands the explanation view (Figure 3d) to
see the highlighted prompt and annotated relationships between
the NL prompts and code snippets. From the explanation view, Al-
ice understands Bob’s considerations for correlation analysis and
appropriate criteria for determining outliers. Then, Alice begins
writing her prompts to address the outliers. To ensure no infor-
mation (e.g., criteria for determining outliers) is overlooked, Alice
wants to instruct the LLM to determine the outlier handling method
based on the results of the correlation analysis. Alice employs the
refermechanism (Figure 4), creating a node that links the outlier

handling prompt to the correlation analysis prompt. As a result,
CoPrompt automatically updates Alice’s prompts with appropri-
ate methods, no longer requiring Alice to modify her prompts by
copy-pasting and typing.

In asynchronous collaboration settings, the request, link and re-
fer mechanisms work similarly as those in synchronous settings be-
cause these mechanisms do not require the collaborators to respond
in real-time. However, there are some differences for the share
mechanism. Specifically, if Alice is offline when Bob is sharing arti-
facts, CoPrompt retains the information and systematically presents
each shared artifact when Alice reconnects online. Any modifica-
tions made are highlighted and are readily accessible through the
message panel to facilitate convenient inspection.

6 DESIGNING COPROMPT
Based on our design considerations, we developed a prototype, Co-
Prompt, to support programmers in their prompt engineering work-
flow during collaborative NL programming. Specifically, CoPrompt
supports sense-making of the collaboration process and prompt

co-engineering. CoPrompt interface consists of five components
(Figure 3): block-based rich text editor, prompt wiki, message panel,
explanation view and history view. CoPrompt is also designed with
a set of real-time collaborative features, such as real-time displays
of collaborators’ cursor location and their text selections.

6.1 Sense-Making and Tracking of the
Collaboration Process

CoPromptintroduces two custom block types: the Prompt Block,
for creating prompts that generate code segments, and the Exe-
cution Code Block, which contains generated code that can be
compiled and executed to check the interim results. As changes
are made in the text editor, the wiki view automatically updates
to display the editor’s structure with a tree-based representation.
This structure provides a clear overview of the editor, allowing
programmers to visualize multiple levels of hierarchy, from head-
ings to prompts, down to individual nodes (i.e., phrases within the
prompts). The wiki allows intuitive navigation of its content by
enabling programmers to click and fold each task item, collapsing
unrelated tasks and concentrating on those of interest. Furthermore,
it provides a clear overview of the hierarchical relationships within
the project and keeps programmers updated about modifications
made by their collaborators (D1).

Message Panel. The message panel (Figure 3 c) offers a com-
prehensive log of actions, allowing programmers to track their
collaborative activities. These actions are tied to specific elements
within the editor, such as prompts and nodes, which can be easily
accessed by selecting them directly from the messages. Additionally,
programmers can quickly identify essential information related to
each action, including its type, creator, and timestamp. Messages
are displayed in chronological order, with unprocessed actions pri-
oritized at the top and highlighted by a small dot. Once addressed,
CoPrompt automatically updates the panel by removing the high-
lights to indicate that the action was resolved.

History View. The history view (Figure 3 e) enhances version
control and tracking of changes for prompts and their associated
code. Programmers can review previous versions of selected prompts,
organized chronologically. This view tracks the evolution of prompts,
providing details such as actions that led to changes, individuals
responsible for modifications, and alterations made to the prompts.
Similar to Git version control, CoPrompt offers a diff-view that
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Figure 3: The CoPrompt user interface includes (a) a block-based rich text editor for NL inputs, which consists of prompt blocks
and execution code blocks. (b) PromptWiki: a multi-hierarchy wiki displaying tasks and prompts, (c) a message panel providing
a comprehensive log of actions, (d) an explanation view displaying an explanation for prompts and code-prompt relationship,
and (e) a history view for version control.

allows programmers to identify differences between current and
previous versions of both prompts and code segments.

6.2 Supporting Programmers’ Prompt
Co-engineering

To support the prompt co-engineering workflow, CoPrompt pro-
vides functions commonly used in collaboration interfaces (e.g.,
annotation and history view) to help programmers make sense of
collaborators’ prompts. In addition, CoPrompt provides four mecha-
nisms for programmers to (1) refer to collaborators’ prompts; (2)
request intermediate results from collaborators; (3) share informa-
tion with collaborators; and (4) link variables for synchronization.

6.2.1 Making sense of collaborators’ prompts. In order to leverage
collaborators’ prompts, programmers first need to make sense of
them. To check the last person who modified the prompt, program-
mers can check the left of each prompt where the prompt author’s
icon is displayed. To assist programmers in comprehending high-
level or more complex prompts from collaborators, we designed the
explanations view (D2). By clicking the Explain button (Figure 3 d)
for the prompt block, programmers can access semantic highlight-
ing to better understand the code structure. This feature visually
highlights key phrases in both the prompt and the corresponding

code segments, linking them to help programmers understand the
relationships between them (i.e., which phrase in the prompts led
to the generation of a certain line of code). The view also provides
a high-level overview of all the steps within the code, allowing
programmers to quickly understand the code’s structure, logic, and
functionality. To track the evolution of prompts and their previ-
ous versions, programmers can use history view to find historical
versions of both the prompts and the corresponding code.

In the following sections, we present the design of the four core
mechanisms of CoPrompt. All four mechanisms contain three com-
ponents: (1) a source node in the prompt blocks that are presented
in the editor; (2) a target node in the prompt that is listed in the
Prompt Wiki and (3) additional messages.

6.2.2 Refer to Collaborators’ Prompts for Precise Code Generation.
When programmers need to build upon their collaborators’ work,
they can use the refer mechanism (Figure 4) to specify which part
of collaborators’ work should be used to provide the context of
their prompt (D3). The programmer needs to first select a source
node from the editor, which could be a word (e.g., a variable name),
a phrase (e.g., perform a function with a variable), or the whole
prompt. Upon selection, the editor will toggle the highlighted mark
on the selected node. Next, the programmer chooses a target node
from the list of prompts displayed in the Prompt Wiki. This target
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Figure 4: Refer Workflow: (a) select source node from the editor; (b) select target node for reference from the wiki and click the
refer icon; (c) A’s block will instantly regenerate prompt and code based on the code and execution result of B’s prompt.

Figure 5: Request Workflow: (a) select a source node from the editor; (b) select a target node that needs the collaborator to
finish and share the result from wiki and click the request icon, fill in a descriptive message for the request; (c) when B updates
how they deal with missing values, A’s block will regenerate prompt and code accordingly.

node could also be a word, a phrase, or the entire prompt. Once
selected, the Prompt Wiki panel will display the corresponding col-
ored icon based on the current actions associated with the node.
Additionally, a colored dot will be added before the prompt, sig-
nifying that this prompt contains nodes with associated actions.
Programmers may also opt to include messages to clarify their
intentions, thereby improving the accuracy of code generation.

6.2.3 Request Collaborators’ Assistance for Prompt Engineering.
When programmers require information from their collaborators’
incomplete tasks as context for their own prompt, they can follow a
simple process with the Request feature. First, they create a prompt
with a placeholder indicating the expected result from their collab-
orators. Next, they select a source node from the placeholder in the
editor and choose a target node from the collaborator’s work listed
in the Prompt Wiki. This action notifies the creator of the target
node that a collaborator is awaiting the task to be resolved. Subse-
quently, the programmer can continue working on other tasks and
return to check on this specific task once the collaborator has fin-
ished the requested task (D3). After creating the request, CoPrompt
logs and tracks unresolved actions, and when collaborators create

prompt blocks that address these actions, it automatically executes
the corresponding tasks (D2).

6.2.4 Share Context to Collaborators. To share intermediate re-
sults or other contexts with collaborators, programmers can employ
the share mechanism (Figure 6). After choosing a source node in
the editor and selecting a target node in the Prompt Wiki, the col-
laborator will receive a pop-up notification indicating that shared
context is available. Upon accepting the context, the code associated
with the prompt that contains the target node will be automatically
updated with the context and information provided by the source
node. Programmers can also select the target node as one of the
headings that correspond to a task, especially when there are no
existing suitable prompt blocks under that task. In such cases, the
recipients can assign this contextual information to the prompt
block they create afterward.

6.2.5 Link Elements for Automatic Synchronization. In a program-
ming context, a variable, prompt, or code segment within a project
may undergo multiple changes and could have various names in
blocks authored by different programmers. To reduce repetitive
updates, programmers can link together variables with the same
value but different names. By doing so, when the prompt linked to
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Figure 6: Share Workflow: (a) select a source node to be shared from the editor; (b) select a target node to be updated with the
shared content from the wiki and click the share icon to highlight the node, then A will see a pop-up message, indicating that B
would like to share some information with A; (c) when A accepts, A’s highlighted block will update its code based on B’s df.

Figure 7: Link Workflow: (a) select a source node from the editor; (b) select a target node to be synced with the source node
from the wiki and click the link icon; (c) when A updates the name of the df, B’s block will regenerate prompt/code accordingly.

one variable is modified, the associated prompt will automatically
update based on the changes. This mechanism also extends to vari-
ables with procedural dependencies. It not only streamlines future
code generation but also helps prevent potential conflicts (D4).

6.3 System Implementation
CoPrompt is a web-based application built using Next.js and Re-
act TypeScript. The core of the block-based editor is constructed
using TipTap [79], which serves as a headless wrapper for Pros-
eMirror [25], providing the foundation for a rich text WYSIWYG
editor The overall architecture of CoPrompt is illustrated in Fig. 11.

CoPrompt enables programmers to begin by creating a prompt
block with generated code beneath it. Programmers can also initiate
a code block and manually input code, pausing midway to generate
a prompt block from the code comments. CoPrompt implements col-
laborative editing by leveraging the power of Y.js, which is a CRDT-
based approach to handling shared document editing. Changes
made by users are distributed and merged using WebSocket com-
munication, with the Hocuspocus Server serving as the backend
for handling real-time synchronization of documents among users.
This approach enables real-time collaboration, syncing between
devices, and the ability to work offline while maintaining consis-
tency in the edited documents. Actions and messages are shared in
real-time through the Firebase Real-Time Database [21]. The event
listener updates the prompt wiki whenever actions are triggered
within the four mechanisms.

To facilitate code generation, CoPrompt employs the OpenAI
GPT-4 API [62] in combination with custom prompt templates (all

prompt templates are provided in Appendix A.2). The code gener-
ation process leverages the context provided by the prompt wiki,
as well as the current prompt and code blocks within block-based
text editors. While CoPrompt allows programmers to structure their
prompts in any format using any techniques, it is not specifically
designed for these techniques (e.g., prompt decomposition or few-
shot learning). The primary intention is to enable them to write
simple prompts and allow CoPrompt to generate the desired code.
In the case of link, CoPrompt incorporates automatic self-check
mechanisms with a specific prompt template to validate whether
changes are necessary when one side is updated. Regarding the
request, all programmers’ requests are queued and cross-verified
against the expected results specified by requestors. These two
mechanisms make use of prompting techniques that draw upon
few-shot learning [6] and Chain-of-Thought techniques [90] to
enhance accuracy in the code generation process.

The Python code execution in the web app is made possible
through Pyodide [69]. Pyodide represents a port of CPython to
WebAssembly, enabling the installation and execution of Python
packages directly within the browser using micropip. For the execu-
tion of Python code in a separate thread, a communication channel
is established between the main thread and the Pyodide worker,
incorporating a defined communication protocol. It is worth not-
ing that, despite sharing the same context within the collaborative
editor, CoPrompt ensures that the OpenAI and Python kernels do
not overlap, preserving stability and functionality.
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7 USER STUDY
We conducted a user study to evaluate the effectiveness of Co-
Prompt in assisting programmers’ prompt co-engineering during
NL programming by answering the following research questions:

• RQ1: How does the system support programmers to under-
stand collaborators’ progress and prompts?

• RQ2: How does the system support programmers to build
on top of collaborators’ work?

• RQ3: How does the system minimize the redundant updates
of prompts or code?

7.1 Participants and Tasks
We recruited 12 participants (7 female, 5 male, aged 20-31) from
a local university. All participants have more than two months of
experience in AI-based code assistants and more than three years
of experience in using computational notebooks. Participants were
compensated $50 for the 120-minute study. The data science task
was modified from a Kaggle competition [12] that predicts survival
from a disaster. To scope the task within the study duration, we
asked participants to only perform exploratory data analysis. We
also divided the high-level task into several sub-tasks with the
assistance of two expert data scientists and provided a basic task
division plan for participants’ reference.

7.2 Procedure
Participants were first informed of the aim of this study and gave
their consent. Then, they were asked to participate in a two-part
study including (1) real-time collaboration and (2) following up
with the others’ work.

7.2.1 Part 1: Real-time collaboration (90minutes). Participants were
asked to perform a data analysis task in pairs using NL prompts
collaboratively. Each pair of participants was asked to complete
two sessions of collaborative programming: one session to use our
CoPrompt prototype and another to use the baseline system (VS-
Code live share with CoPilot plugin). The sequence of the sessions
was counter-balanced.

For each session, the experimenter first introduced features of
the system and gave each participant a 10-minute training session
on the system, with example tasks to complete. Then, each pair of
participants was asked towork on a data science task collaboratively
by prompting for around 30 minutes. After that, participants were
asked to rate their experience of CoPrompt and the baseline system
on a 7-point Likert scale. The experimenters then conducted a semi-
structured interview based on the results and observed use patterns
to learn participants’ perspectives.

7.2.2 Part 2: Following up with the Collaboration Process (30 min-
utes). In stage 2, we evaluated how a new collaborator followed up
with an ongoing collaborative project using CoPrompt. We asked
participants to review the work of another pair of participants col-
lected from part 1 of the study using CoPrompt (e.g., P1 and P2
reviewed the work of the second pair - P3 and P4). After reviewing
the work for 10 minutes, we asked participants to complete addi-
tional tasks to modify the existing work, such as changing the way

of dealing with outliers. The experimenters then conducted a semi-
structured interview regarding the user experience of reviewing
and revising others’ work using CoPrompt.

7.3 Data Analysis
All study sessions were recorded and transcribed. Data collection in-
cluded server-side logs, screen recordings, and interviews. Addition-
ally, we made observational notes during the study. Our analytical
approach involved the articulation of codes and themes, employ-
ing a combination of inductive and deductive thematic analysis.
Two authors independently coded the transcripts and identified
themes to gain insights into how participants utilized and evalu-
ated CoPrompt and the baseline condition. The themes generated
encompass both parts one and two of the studies, which address the
three RQs. We explicitly specified if the results pertain exclusively
to part two in the results section.

For all survey data, we opted for non-parametric statistical meth-
ods given the ordinal nature of Likert-scale responses and the small
sample size. Specifically, we employed the Wilcoxon signed-rank
test to compare responses between the two conditions. Addition-
ally, prompts and code collected from participants’ logs underwent
open coding based on the reasons for manual modifications. Two
researchers independently open-coded 30% of the data to establish
a codebook, identifying major reasons for prompt and code mod-
ifications. These codes were then applied to the remaining data,
resulting in a 74% agreement, which was subsequently refined iter-
atively until reaching 100%. Results from self-defined Likert scale
data will be highlighted with question numbers (Fig. 9).

8 RESULTS
Here we report the findings from analyzing participants’ survey
responses, interview transcripts, think-aloud feedback, and system
usage logs to understand 1) how CoPrompt support prompt co-
engineering and 2) how participants perceive the utility of the
four mechanisms for leveraging collaborators’ work and sharing
information among collaborators.

8.1 Overall Collaboration Behaviors and User
Perceptions

8.1.1 Completion Time. All participants successfully completed
the programming tasks and utilized all four types of mechanisms
in the study. However, participants took significantly more time
to complete the tasks in the baseline condition (𝑀CoPrompt=23.21 <
𝑀baseline=26.82minutes, 𝑝=.002, 𝑟=.57). This could be due to height-
ened synchronous communication requirements in the baseline
condition, while in CoPrompt, participants leveraged the four mech-
anisms, facilitating “a way for quicker communication.” -P3

8.1.2 Overall Collaborative Workflow. In both conditions, all par-
ticipants initiated their work by crafting prompts at a higher level
of abstraction, such as defining the task as “data visualization,” and
then iteratively refined these prompts to reach a lower level of
detail, like specifying “pair plot df.” This process was facilitated
by the wiki provided by CoPrompt, which allowed participants to
easily locate the target prompt block that was available for further
iteration. The four mechanisms further supported participants in
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Figure 8: Distribution of event counts per participant. The left image compares the event counts between the baseline and
CoPrompt, and the right image shows the count of CoPrompt-only event types.

collaborative efforts without requiring context switching to exter-
nal communication tools. P4 explained, “Using CoPrompt, I do not
need to wait for my collaborator to finish encoding, as I can write
prompts for transformation first and then refer to my collaborator’s
prompt.” In general, CoPrompt facilitated parallel work on program-
ming tasks without being hindered by collaborators’ workflows
compared to the baseline.

8.1.3 System Usability & Cognitive Load. To measure the usability
of CoPrompt, we computed the SUS scores based on the UMUX-LITE
[39]. The average SUS scores were significantly greater (𝑝 = 0.02)
for CoPrompt (Mdn = 90.61), compared to baseline (Mdn = 68.94). We
also used NASA-TLX to measure participants’ perceptions of the
cognitive workload of using the systems. Compared to baseline,
CoPrompt had lower mental (Mdn = 3.5 < 5.5, 𝑝 = 0.040), physical
(Mdn = 1.0 < 3.0, 𝑝 = 0.0179), and temporal (Mdn = 3.0 < 5.0, 𝑝 =

0.0082) demand, required less effort (Mdn = 3.0 < 5.5, 𝑝 = 0.033),
and led to better performance (Mdn = 4.5 > 3.0, 𝑝 = 0.0532) and
less frustration (Mdn = 1.5 < 3, 𝑝 = 0.0187). The overall perceived
workload, obtained by averaging all six rawNASA-TLX scores (with
the “Performance” measure inverted), was also lower for CoPrompt
than baseline (Mdn = 2.5 < 4, 𝑝 = 0.0532).

8.1.4 Code Edit & Prompt Edit. We compared the overall code and
prompt edit counts between the baseline and CoPrompt conditions
(Figure 8 Left). We observed that while there is a less significant dif-
ference in adding prompts (𝑀𝑑𝑛CoPrompt=35.0 <𝑀𝑑𝑛baseline=46.5,
𝑝=.003), there are much larger significant differences in code edit-
ing (𝑀𝑑𝑛CoPrompt= 45.5 < 𝑀𝑑𝑛baseline=111.5, 𝑝=3.42 × 10−8) and
prompt editing (𝑀𝑑𝑛CoPrompt=67.0 < 𝑀𝑑𝑛baseline=99.0, 𝑝=6.94 ×
10−4). These substantial differences can be collectively attributed
to the four mechanisms and are explained in Sec 8.4.

8.2 RQ1: How does the system support
programmers to understand collaborators’
progress and prompts?

CoPrompt supported programmers’ sense-making of collaborators’
work by providing the hierarchical overview, generating explana-
tions associated with the prompts, and displaying historical views.
In the following sections, we report the detailed usage and perceived
utility of these features.

8.2.1 The holistic overview with multi-levels of details facilitates
users tracking and locating collaborators’ processes (D1). All partici-
pants found that the prompt wiki reduces the need for programmers
to keep track of collaborators’ progress (Q2: Mdn = 6.5 > 2, 𝑝 =

0.0034, Figure 9) and helps them understand what the collaborators
are doing (Q1: Mdn = 5.5 > 3, 𝑝 = 0.0034). The foldable table-of-
content-like view allowed participants to view all the sections of
the notebook at a higher level, which facilitated participants in
locating their target regions and “understand the overall structure
easily.” -P4 With the navigation function, participants could navi-
gate to their target regions by clicking on the items in the prompt
wiki, which is straightforward as “there is no need to scroll back
and forth.” -P1 The event count from the log data (Figure 8 Right)
shows that participants frequently utilize this navigation feature
(𝑀CoPrompt=36.17, 𝑆𝐷=7.47). P2 expressed their preference for the
annotation in the wiki as it indicated the owner of the prompt:
“With the icon before the prompt, the ownership of the prompt is clear.”
We also noticed that most participants (N=9) collapsed their own
sections while leaving the collaborator’s sections expanded to “track
on collaborators’ work” -P4 and “easily identify changes not made by
me [participant].” -P11 In part two of the study, participants utilize
the prompt wiki to gain a quick understanding of the asynchronous
work accomplished by their collaborators. They subsequently used
the navigation feature to look into lower-level code details when
they encountered “tasks that were unclear.” -P5

8.2.2 Generating and associating explanations assisted participants’
comprehension of prompts (D2). All participants found that the
system helps them understand the prompt written by collabora-
tors (Q3: Mdn = 5 > 2.5, 𝑝 = 0.0304). They mentioned that the
high-level, step-by-step explanations of the generated code and
the semantic connections between prompts and code segments are
“especially useful when the prompt or the code is way too long.” -P1 Par-
ticipants typically required these explanations before utilizing the
refer mechanism, as sometimes they struggled to fully grasp their
collaborators’ intentions through the prompts alone. The prompt
explanations played a vital role in scaffolding participants’ com-
prehension by “providing more details about the code.” -P1 Conse-
quently, participants could reuse or refer to their collaborators’
work without the need for direct communication, as highlighted
by one participant, “I do not need to keep bothering my partner to
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Q1: understand collaborator
Q2: keep track on collaborators

Q3: understand the prompt
Q4: reduce the need to communicate

Q5: helps me convey my need
Q6: reaching the common ground

Q7: support prompt engineering
Q8: build on top of collaborators
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Figure 9: The results from the self-defined Likert scale questionnaire comparing between condition baseline and CoPrompt

ask what the code is about.” -P9 Furthermore, some participants per-
ceived these explanations as a means to reduce conflicts and errors
during collaboration. As one participant noted, “I became less likely
to misunderstand my collaborators’ intention and modify their code,
which always causes conflicts.” -P1

8.2.3 Providing a history view allows users to have a clear view of the
changes (D1). The history view presents a comprehensive record
of all historical versions of a specific prompt, offering users insight
into its evolving process, as noted by P5, “It is good to view the
changes.” This view not only captures the modifications made but
also the “interactions that happened” -P1 and the “generated result
for each iteration” -P2, thus facilitating a holistic understanding of
the prompt’s evolution. Participants frequently utilized this feature
when changes were enacted after any mechanism had been acti-
vated (e.g., the requested message had been resolved). In such cases,
the history view allowed them to identify “who altered my code.” -P2
Most participants (N=8) also leveraged the diff view of the code and
prompt to resolve the conflict and restore the version. Overall, par-
ticipants reported that the system supports programmers in reach-
ing common ground with collaborators (Mdn = 5 > 2, 𝑝 = 0.0034).
Interestingly, participants also employed the history view to check if
their collaborators had “started work on my requests.” -P12Moreover,
the historical view also helped participants refine their prompts and
serve as memory anchors. For instance, P7 mentioned, “it helped
me recall what or why I made certain changes.”

8.3 RQ2: How does the system support
programmers to leverage collaborators’
work?

All participants agreed that the four types of mechanisms are (1)
easy to use: refer (𝑀𝑑𝑛=6.5, 𝑆𝐷=1.76), request (𝑀𝑑𝑛=5.5, 𝑆𝐷=1.35),
share (𝑀𝑑𝑛=6, 𝑆𝐷=1.45) and link (𝑀𝑑𝑛=6, 𝑆𝐷=1.27); (2) intuitive
to learn: refer (𝑀𝑑𝑛=6, 𝑆𝐷=1.15), request (𝑀𝑑𝑛=5, 𝑆𝐷=1.68), share
(𝑀𝑑𝑛=5.5, 𝑆𝐷=1.31) and link (𝑀𝑑𝑛=6, 𝑆𝐷=1.30); (3) could fulfill
their requirements: refer (𝑀𝑑𝑛=6, 𝑆𝐷=1.68), request (𝑀𝑑𝑛=5.5,
𝑆𝐷=1.53), share (𝑀𝑑𝑛=6, 𝑆𝐷=1.61) and link (𝑀𝑑𝑛=6, 𝑆𝐷=1.36);
and (4) easy to control: refer (𝑀𝑑𝑛=6, 𝑆𝐷=1.37), request (𝑀𝑑𝑛=5,
𝑆𝐷=1.03), share (𝑀𝑑𝑛=5, 𝑆𝐷=1.61) and link (𝑀𝑑𝑛=5.5, 𝑆𝐷=1.51).
Overall, CoPrompt reduces participants’ need to communicate with

collaborators (Q4: Mdn = 5 > 3, 𝑝 = 0.0122) and facilitates partici-
pants to modify their prompt (Q7: Mdn = 5.5 > 2.5, 𝑝 = 0.0065).

8.3.1 Request and auto-updates reduce mental load (D3). CoPrompt
helps participants to convey their needs clearly to the collaborator
(Q5: Mdn = 5.5 > 2.5, 𝑝 = 0.0122) and reduce the need to “remember
what tasks have not yet been done.” -P9 In collaborative programming,
since the task distribution may involve procedural dependencies,
there are often cases where participants need to wait for their
collaborators to complete certain tasks. With the request-detect-
update mechanism, participants just need to send request with
brief descriptions. Participants reported that although it “took more
time to get familiar with [request]” -P10, it ultimately saved them
considerable time. They could request tasks at higher-level headings
if a suitable prompt had not yet been created by collaborators.

Compared to communicating with collaborators using messages
or audio in baseline, the request takes less cognitive effort since
“it provides contextual information through the node” -P3 and does
not request programmers to “write too much text to describe the
changes.” -P2 Some participants (N=4) highlighted that this feature
reduces cognitive load of ensuring a polite tone, as they no longer
need to carefully craft messages to their collaborators, “I do not
need to care about the manner.” -P3 In addition, the auto-update of
the prompts sending requests after target input is detected from
collaborators offloads the tedious review and update process. P9
and P10 expressed their satisfaction with these features: “Detection
and auto-update saved me a lot of effort.” -P10 P9 added, “I only need
to know what the task is about, without thinking about where and
when to address it.” However, the automatic update feature makes
P12 feel a slight loss of control, and sometimes they would like to
decide whether to handle updates manually or automatically.

8.3.2 Sharing knowledge both proactively and reactively (D4). Par-
ticipants utilized the share mechanism for both proactive and re-
active sharing of output or prompt segments. Proactively, some
participants shared their results with collaborators, “I know the
encoded result would be used for following step.” -P1 They also shared
insights from the result through share, “I would share some text that
may not necessary is the prompt to share insights I got.” -P7 Reac-
tively, participants responded to their collaborators’ requests for
specific data processing results through direct communication by
sharing requested results. Participants also made use of the hierar-
chical structure to share elements by placing them under relevant
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Figure 10: The left image displays edit prompt counts categorized by reasons of change for both the baseline and CoPrompt
conditions; The right image illustrates code edit counts categorized by reasons of change for the same two conditions.

headings. This occurred when collaborators had not yet delved into
those specific details.

For the receiver of the shared content, most participants indi-
cated that the content was useful for clarifying their own prompts
and the pop-upmessage was clear enough for quick comprehension,
“very convenient as I do not need to find and refer to my collaborators’
work.” -P5 Participants also revealed their trial-and-error strategies
for dealing with the pop-up message that is too brief to understand
or too long to read, “Just like using ChatGPT, I just accept the answer
and view its execution result to evaluate its effect.” -P3 This strategy
was adopted by many participants (N=9), as the trial-and-error cost
is low with the view of the history version and the “ability to trace
back to previous versions.” -P4

8.3.3 Referencing reduces the effort of careful reading and copy-
pasting (D4). CoPrompt helps participants build on top of collabo-
rators’ work easily (Q8: Mdn = 6 > 3, 𝑝 = 0.0049). All participants
used the refer feature significantly more than other links when
using CoPrompt to perform prompt co-engineering (Figure 8 Right).
With the refer mechanism, participants no longer need to read the
whole prompt and select utterances for copy-pasting to modify
their own prompts. Instead, they handed off the comprehension
work to CoPrompt by guiding it with the refer mechanism. The
multi-level hierarchy display of prompts supported programmers
in pinpointing the prompts they wished to refer to and enabled
them to select the most appropriate level for reference. All par-
ticipants agreed that the interaction process of refer “reduced the
cognitive switching between communication and code.” -P5

Analyzing the open-coded results regarding the reasons for
manually modifying prompts and code (Fig. 10), we observed that
participants using CoPrompt made significantly fewer modifica-
tions due to “Missing Requirements” in both code and prompt edits
(Code Edit:𝑀𝑑𝑛CoPrompt=2 <𝑀𝑑𝑛baseline=36, 𝑝<5.10×10−8; Prompt
Edit: 𝑀𝑑𝑛CoPrompt=4.5 < 𝑀𝑑𝑛baseline=25.5, 𝑝=2.57 × 10−9). Simi-
larly, we found that participants in the baseline condition needed to
make significantly more modifications to the prompt and code due
to “Wrong Variable”, which was caused by outdated or incorrect
variables generated by the AI model (Code Edit: 𝑀𝑑𝑛CoPrompt=2
< 𝑀𝑑𝑛baseline=9.5, 𝑝=1.93 × 10−5; Prompt Edit: 𝑀𝑑𝑛CoPrompt=2 <

𝑀𝑑𝑛baseline=15, 𝑝=1.39 × 10−5). While these results can be attrib-
uted to all four mechanisms that collectively reduce the overall
need for manual modifications, the substantial reduction in the
need to modify due to missing requirements and wrong variables
is more likely a result of the mechanism refer.

8.4 RQ3: How does the system reduce the
repetitive updates of prompts or code?

The link mechanism effectively reduced the frequency of repetitive
updates by offering automatic synchronization (D2). Participants
made significantly fewer modifications to code and prompts due
to “Sync” when using CoPrompt (𝑀𝑑𝑛CoPrompt=1 <𝑀𝑑𝑛baseline=28,
𝑝<.001), indicating a reduced need to update in response to changes
made by others (Fig. 10). CoPrompt decreased the need for partici-
pants to repeatedly and iteratively modify prompts and significantly
facilitated their ability to establish a shared understanding with
collaborators (Q6: Mdn = 5 > 2, 𝑝 = 0.0068).

The link mechanism was deemed the most intuitive by all partic-
ipants, and they unanimously agreed that it significantly reduced
the workload associated with repetitive updates due to procedural
dependencies. P4 expressed that it “saved a lot of time on going back
and forth between users” and “helped offload some mental model” -P5
without the need to keep track of collaborators’ changes on a cer-
tain task. Additionally, three participants employed links between
headings to convey the synchronization of an entire subsection.

All participants mentioned that the refer and share mechanism
simplifies the interaction of updating prompts. When there is a
need to update existing prompts, many participants (N=9) leveraged
refer so that they just needed to indicate the part of the prompt
that requires modification and the target prompt reference. The
share mechanism assisted programmers’ prompt engineering by
allowing collaborators to pass knowledge to others and it only
requires receivers to accept the shared prompt or code snippets
and coarsely navigate to the target prompt, instead of “carefully
locating andmanual copy-pasting.” -P7However, it also increases the
likelihood of the models generating excessive content (as shown
in Figure 10 left), requiring participants to manually refine the
prompts (𝑀𝑑𝑛CoPrompt=3 >𝑀baseline=2, 𝑝=.63).
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9 DISCUSSION
We discuss various topics that emerged during our study, offering
insights and design implications. We further outline the primary
limitations of our study and highlight areas for future research.

9.1 Using NL-predominant Expression in
Collaborative Programming

Compared to code, NL-predominant expressions are easier to un-
derstand [57] and therefore helpful for maintaining shared under-
standing among collaborators [63, 65]. However, programmers still
have difficulty making sense of the NL expressions used by their
collaborators when they are too vague or at a high level. CoPrompt
provided the hierarchical wiki, explanation view, and history view
to assist programmers’ comprehension with different levels of de-
tails. CoPrompt also allows programmers to share knowledge with-
out losing context through four mechanisms, reducing their need
for repetitive updates, copy-pasting, and synchronization in collab-
oration. Our findings reveal the possible benefits of prompt sharing
and referring, including reducing task completion time, the need
for communication and cognitive load. Participants found it useful
to share intermediate results with context like the method details.
However, it also increased the likelihood of the models generating
excessive content, requiring participants to manually refine it.

9.2 Sense of Control in Code Generation Process
In CoPrompt, the four mechanisms involve a high level of automa-
tion [52] as LLMs are in charge of comprehending. This design
significantly reduced the programmers’ cognitive load, while it
raised concerns about the generated content: How to make the gen-
erationmore satisfying and how to efficiently deal with unsatisfying
results. Prior work in the domain of human-AI collaboration empha-
sized the importance of preserving user control when collaborating
with LLMs [96] at different granularities [93]. To maintain user
control in code generation process, CoPrompt allows programmers
to manually tweak the code whenever the result is unsatisfying, and
provides convenient history views for each prompt for checking and
rolling back. Our design serves as a first step towards interaction
design in prompt co-engineering, using cases of simple prompting
templates to demonstrate the effectiveness of the workflow and
core mechanisms. Future work could extend the design by consid-
ering more complex prompting strategies like few-shot prompts.
The level of generation automation and controllability provided to
the programmers could also be further investigated.

9.3 Synchronous and Asynchronous
Collaboration

Overall, CoPrompt can be used in both synchronous and asynchro-
nous collaboration settings. While the overall design of CoPrompt
is catered towards synchronous programming, some features could
assist asynchronous tasks. For instance, the message panel stores
and displays each programmer’s usage of the mechanisms, which fa-
cilitates programmers who are initially offline to catch up with their
collaborators’ work. Although the formative study was conducted
in real-time settings, participants overall followed the scatter-gather
interaction [88], where they did not synchronously work on the

task. Many interactions and communications were not carried out
in real-time, where participants worked on their distributed tasks
independently and then gathered the results without close and
back-and-forth communication. All participants spent more than
15 minutes working asynchronously. We also evaluated the usage
of CoPrompt in both synchronous and asynchronous settings using
the 2-part user study: part 1 as real-time collaboration and part 2
as asynchronous collaboration. This demonstrates that CoPrompt is
able to support both sync and async collaborative programming.
However, there are some specific challenges for asynchronous col-
laboration that the current CoPrompt could not fully tackle, such
as preserving essential elements when automatically updating of-
fline collaborators’ work. Future work could investigate ways of
balancing user control and level of automation.

9.4 Supporting Mixed Collaborative
Programming Styles

AlthoughCoPrompt aims to facilitate prompt co-engineering, it does
not depend on the “NL-first” style of collaboration. It also supports
code-level collaboration, which allows programmers to manually
write and modify code in the generation block. If programmers
would like to have multiple prompts and code in one block, they
can write multiple prompts inside the block, each starting a new
line. The code will then be generated exactly below the prompts.

Participants edit both prompts and code when using CoPrompt
(Figure 8), but they tend to add prompt blocks more frequently
than code blocks. We observed that three participants opted to
add new code blocks directly and used the four mechanisms on
the code itself. They explained that this approach provided them
with greater “controllability” -P9 over their program. Additionally,
we observed several differences between NL-first and code-level
collaboration when participants interacted with CoPrompt. 1) NL
prompts served as high-level summaries, while code sharing often
involved larger code chunks that required more navigation; 2) NL
prompts were generally declarative and conveyed meaning directly,
though exceptions existed for participants who added code blocks
when code was in one line and “declarative” -P5 enough; 3) Partic-
ipants’ familiarity with programming tasks also influenced their
preference. Those less familiar with data science preferred prompts
that mostly explain the intentions behind them. Future research
could investigate the differences in using CoPrompt with NL and
code. We envision the possibility of a mixed-methods approach that
combines elements of code and NL for more efficient collaboration.

Further, all four mechanisms in CoPrompt can be generalized to
code-level manipulation by selecting code snippets as nodes. For
instance, when utilizing the link to link two variables in code, the
code will automatically update based on the context whenever the
user-specified condition is met. This feature is particularly valuable
in programming languages plagued by issues related to procedural
dependencies [48]. However, the effectiveness of the share mecha-
nism might be limited at the code level. When a programmer wants
to share a piece of code with collaborators, merely sharing the code
without prompt might result in misinterpretation for both the LLM
and the collaborator. Future research could distinguish between
code and prompt sharing in collaborative NL programming.
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9.5 Limitations
Our study of the CoPrompt presents important findings in the do-
main of collaborative NL programming. However, certain limita-
tions should be recognized. First, CoPrompt was exclusively tested
with programmers experienced in using LLM-driven code assistants.
While NL programming is beneficial to a wide range of expertise
levels, our pilot study indicated that programmers with limited
experience often found it difficult to refine prompts effectively and
were less active in the collaborative process. Future studies should
be conducted including programmers unfamiliar with AI-driven
code assistants to understand how varying expertise levels influ-
ence the collaborative workflows.

Secondly, we chose data science work as our case study due
to its involvement of diverse participants [11] and the existence
of procedural dependencies among various artifacts [48, 76]. The
exploratory and explanatory aspects of data science necessitate
close collaboration, frequent information exchange [7, 47, 64], and
discussions [86]. These characteristics made data science an ideal
initial case to explore the concept of prompt co-engineering. Beyond
data science, challenges such as repetitive updating and synchro-
nization persist [95] in general collaborative programming [92].
Since the workflow and mechanisms of CoPrompt are designed for
prompt co-engineering rather than specific data science tasks, they
remain applicable to reduce the need for repetitive updating and
the effort for synchronization. Nonetheless, in certain cases, there
might be some challenges that the current CoPrompt could not fully
tackle, such as dealing with compilation error [20] and organizing
spaghetti code [60]. For instance, CoPrompt could automatically
update some linked artifacts in the spaghetti code, but could not en-
sure that there are no conflicts due to the entangled code structure.
To better cope with the specific challenges in the wider domain of
collaborative programming, future work should incorporate more
customized designs.

WhileCoPrompt leverages a rich text editorwith block-formatting
features, it also works for less structured files or projects spanning
multiple files, which are common in general programming tasks
besides data science. The coding blocks used in CoPrompt are the
objectification of code snippets and prompt phrases, leading the
prompt co-engineering to a node-based workflow. By selecting any
part of the project as a node, all mechanisms could be applied to
the selected node. Meanwhile, the four mechanisms enabled par-
ticipants to distribute the tasks into smaller sub-tasks. Prior work
mainly investigated the collaborative styles of single authoring,
divide & conquer and competitive authoring [68, 84]. Our proposed
mechanisms could lower the cost of merging task results and lever-
aging others’ output. This could enable the task distribution to be
more nuanced so that every collaborator could program simulta-
neously, resulting in a more parallel collaboration and thus higher
efficiency. This may also prevent the formation of spaghetti code.

10 CONCLUSION
In this work, we investigated the potential workflow of using NL
prompts to conduct collaborative programming, especially prompt
co-engineering. Our formative study revealed the workflow of
prompt co-engineering and identified four challenges related to

comprehension, synchronization, feedback, and reference of col-
laborators’ prompts. To tackle these challenges, we introduced Co-
Prompt, a prototype to support prompt co-engineering through four
novel mechanisms: share, refer, request, and link. Our user study
indicated that CoPrompt effectively supported programmers’ work-
flow of prompt co-engineering from comprehending collaborators’
work to leveraging and sharing work.
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A SYSTEM DESIGN
A.1 System Architecture

Figure 11: The system architecture of CoPrompt consists of
a web socket server and a server-side rendering route for
invoking the generative AI API. All messages and triggered
actions are managed and updated using the Firebase Real-
Time Database, while logs are stored in Firestore.

A.2 Prompt Templates

[ADD] As an AI Python code-writing assistant, your task is to generate specific Python code segments based

on the user's input in [$PROMPT]. When a request for code continuation is made, refer to context from

[$REFER]. In such cases, concatenate the prompt with the previously generated code from [$REFER] to form

a cohesive extension.

Requirements:

Accurately generate Python code that aligns with the directives in [$PROMPT].

In case of code continuation, seamlessly integrate new code with the existing code from [$REFER].

Focus on the latter parts of the prompt if it contains multiple instructions, but ensure that the entire

prompt is considered.

Provide concise responses, strictly limited to the required code without additional explanations,

contextual information, or comments.

Figure 12: Prompt template for Adding prompt blocks.

As an AI Python code editor, your role is to modify existing Python code based on user instructions in

[$PROMPT]. Use the code provided in [$CONTEXT] as the base for your modifications. The user will specify

the exact changes needed, which may include bug fixes, adding new functionalities, or altering existing ones.

Guidelines:

Clearly understand and follow the modification instructions in [$PROMPT].

Ensure that the edited code remains consistent with the overall logic and structure of the original code in

[$CONTEXT].

If the prompt includes multiple edit requests, prioritize them based on their order in the prompt.

The response should be limited to the modified code only, without additional explanations or comments.

Maintain the integrity of the original code, ensuring that changes do not introduce new errors or disrupt

existing functionalities.

Figure 13: Prompt template for editing existing prompt
blocks.

You are an AI model specializing in analyzing Python code dependencies. Your task is to assess pairs of code

segments provided by the user, identify procedural dependencies between them, and determine if any

changes in one segment necessitate updates in the other.

Input: A list of pairs of code segments, each with a unique identifier (id) and index. Instructions:

Analyze Dependencies: For each pair of code segments, identify the dependencies and the impact of

changes in one segment on the other.

Decide on Updates: Based on the dependency analysis, determine if updating one segment requires

changes to the other. Use logical reasoning to justify your decision.

Provide Updated Code: If an update is necessary, provide the updated code for the affected segment.

Output Format:

id: [Unique identifier of the code pair]

index: [Index number of the code pair]

updated: [Boolean indicating if an update is necessary]

updated_code: [String containing the updated code, if applicable]

Example Input/Output:

Example N:

Input:

id: 'pair1',

index: 1,

Code_Segment A:

def calculate_sum(a, b):
    return a + b

Code Segment B:

result = calculate_sum(2, 3)
print("The sum is:", result)

Output:

id: 'pair1',

index: 1,

updated: True,

updated_code:

def calculate_sum(a, b, c):  # Updated to include a third parameter
    return a + b + c

result = calculate_sum(2, 3, 5)  # Updated to pass a third argument
print("The sum is:", result)

Reasoning: The update is required because Code Segment A has been modified to include an additional

parameter in the function calculate_sum. Consequently, Code Segment B needs to be updated to pass

the additional argument when calling the function.

Figure 14: Prompt template for link mechanism.
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You are an AI model tasked with evaluating whether the provided code fulfills specific user requests. Each

request comes with a set of details including an ID, an index number, a prompt, the generated code, and

supplementary information.

Input: A list of user requests, each containing:

id: [string] - The ID of the request.

index: [number] - The index of the request.

prompt: [string] - The original prompt used for the code request.

code: [string] - The generated code based on the prompt.

supplementary_info: [string] - Additional information or specific requirements related to the request.

Task: Evaluate if the 'code' from each request successfully meets the criteria or needs expressed in the

'supplementary_info'. Please logically reason through each request, considering how the 'code' corresponds

to the 'supplementary_info'.

Output Format: Return a list of objects, each including:

id: [string] - The same ID as in the input.

index: [number] - The same index as in the input.

fulfilled: [boolean] - Indicates whether the code fulfills the supplementary

Example Input:

completion: "iris = load_iris()"
requests: [{
    id: "qodwjqoiojJ@OIJoihiy2ge1i12jhqiuo",
    index: 1,
    prompt: "Visualize iris data in pairplot",
    code: "import pandas as pd\nimport seaborn as sns\nsns.pairplot(iris,     hue='species')",
    supplementary_info: "plot data"
},
{
    id: "qwedojio@o3289901hANUIl-jio",
    index: 6,
    prompt: "Visualize wine data",
    code: "import pandas as pd\nimport seaborn as sns\nsns.pairplot(wine, hue='species')",
    supplementary_info: "Provide me wine data"
}]

Example Output:

The UserB is requesting code to "plot data" from the prompt "visualize iris data" UserA used to 

The UserB is requesting code to "provide me wine data" from the prompt "visualize wine data" Use

[{
    id: "qodwjqoiojJ@OIJoihiy2ge1i12jhqiuo",
    index: 1,
    fulfilled: true
},
{
    id: "qwedojio@o3289901hANUIl-jio",
    index: 6,
    fulfilled: false
}]

Figure 15: Prompt template for request mechanism.



CoPrompt: Collaborative Prompt Engineering CHI ’24, May 11–16, 2024, Honolulu, HI, USA

B SURVEY QUESTIONS
B.1 System Usability Likert Scale Questions

(1) The system helps me understand what my collaborator is doing.
(2) The system reduces the need for me to keep track of collaborators’ progress.
(3) The system helps me understand the prompt written by collaborators.
(4) The system reduces the need to communicate with collaborators.
(5) The system helps me convey my needs to the collaborator.
(6) The system supports me in reaching common ground with my collaborators.
(7) The system supports me on how to engineer my prompt.
(8) The system helps me build on top of collaborators’ work easily.

B.2 Mechanism Usability Likert Scale Questions
(1) I think this mechanism is easy to learn.
(2) I think this mechanism is easy to control.
(3) I think this mechanism is easy to use.
(4) I think this mechanism can help me achieve what I want.

B.3 UMUX-LITE
(1) This system is easy to use.
(2) This system’s capabilities meet my requirements.

B.4 NASA-TLX
(1) How mentally demanding was the task?
(2) How physically demanding was the task?
(3) How hurried or rushed was the pace of the task?
(4) How successful were you in accomplishing what you were asked to do?
(5) How hard did you have to work to accomplish your level of performance?
(6) How insecure, discouraged, irritated, stressed, and annoyed were you?
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