
CodeToon: Story Ideation, Auto Comic Generation, and
Structure Mapping for Code-Driven Storytelling

Sangho Suh, Jian Zhao, Edith Law

University of Waterloo, Canada

{sangho.suh,jianzhao,edith.law}@uwaterloo.ca

apple

appleIf

tastes

tastes

good

good

let’s buy some for Jenny

Code
programming language

Concept

Condition

Story
natural language

Comic
visual language

ConcreteAbstract

if x == True:

x = True

print(“True”)

1

2

3

does apple taste good?

apple tastes good

yes

let’s buy some for Jenny

Thank you!

apple

Figure 1: CodeToon helps users create stories and comics from code. It uses 1-to-1 mapping to make connections clear across
code, story, and comic. For example, as indicated by the dotted line, line 1 (code) maps to line 1 (story) and to row 1 (comic).

ABSTRACT
Recent work demonstrated how we can design and use coding

strips, a form of comic strips with corresponding code, to enhance

teaching and learning in programming. However, creating cod-

ing strips is a creative, time-consuming process. Creators have to

generate stories from code (code7→story) and design comics from

stories (story7→comic). We contribute CodeToon, a comic author-

ing tool that facilitates this code-driven storytelling process with

two mechanisms: (1) story ideation from code using metaphor and

(2) automatic comic generation from the story. We conducted a

two-part user study that evaluates the tool and the comics gen-

erated by participants to test whether CodeToon facilitates the

authoring process and helps generate quality comics. Our results

show that CodeToon helps users create accurate, informative, and

useful coding strips in a significantly shorter time. Overall, this

work contributes methods and design guidelines for code-driven

storytelling and opens up opportunities for using art to support

computer science education.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00

https://doi.org/10.1145/3526113.3545617

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools.

KEYWORDS
code-driven storytelling, comics, coding strip, authoring tool

ACM Reference Format:
Sangho Suh, Jian Zhao, Edith Law. 2022. CodeToon: Story Ideation, Auto

Comic Generation, and Structure Mapping for Code-Driven Storytelling. In

The 35th Annual ACM Symposium on User Interface Software and Technology
(UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3526113.3545617

1 INTRODUCTION
“Computer science is a field that attracts a different

kind of thinker. . . they are individuals who can rapidly

change levels of abstraction, simultaneously seeing

things ‘in the large’ and ‘in the small’.” [19]

Learning programming is difficult due to its abstract nature [38]:

it requires learning concepts and programming languages that have

been derived through a series of abstractions. Specifically, learning

with text-based programming languages poses a barrier for novice

learners [20, 32], as text-based programming languages rely on

symbolic representations that use a set of seemingly arbitrary rules

and abstract expressions. The compact syntax and notations are

useful for specifying precise operations but not for communicating

to learners the underlying computational ideas intuitively, unlike

https://doi.org/10.1145/3526113.3545617
https://doi.org/10.1145/3526113.3545617

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

pictorial or visual representations, which can leverage real-life

scenarios to help learners understand computational concepts. As

such, novice learners are often forced to memorize the rules and

code expressions without understanding the intuitions behind the

syntax and semantics. Unfortunately, this has perpetuated an image

of computer programming as a set of abstract ideas and rules, and

computer science as an abstruse, inaccessible, and uninteresting

discipline, especially for those who struggle with abstract reasoning.

To address this, many researches looked at embodied approaches,

exploring ways to use familiar abstractions such as real-life objects,

situations, and visual representations to make computer program-

ming more concrete and accessible [18, 23, 30, 32]. Recent research

on coding strips, a form of comic strips with code, follows this line

of work by looking at comics as a vehicle. By identifying many

design variations and patterns for explaining code executions and

semantics, Suh [33] showed that comics can be a powerful medium

for visualizing computational concepts and procedures. In another

study, Suh et al. [36] tested four use cases of coding strips in an

introductory computer science course and found that coding strips

can enhance learning in various ways. For instance, one use case in-

cluded an instructor introducing code expressions with comics first

and then with code. Students appreciated this scaffolding over the

code-only approach as comics allowed them to learn the intuition

without being distracted by the syntax and rules and then pick up

code expressions in terms of familiar dialogues and actions.

Unfortunately, despite growing evidence of their usefulness,

creating coding strips remains a creative, laborious, and time-

consuming process. First, it requires creators to ideate (brainstorm)

and select stories that align with code. Second, creators need to

invest significant effort and time (and sometimes confidence in

drawing) to sketch stories in the form of comics. While Suh et

al. [38] proposed a design process and tools to help creators design

coding strips, the entire process wasmanual and not automated [38].

Moreover, while the related literature and previous work suggest

that making connections between code and comics obvious is criti-

cal for coding strips’ success [3, 36], no work has yet explored how

we can establish a clear mapping between code and comics.

We introduce CodeToon, a comic authoring tool that supports

this creative process with twomechanisms: (1) facilitating—through

metaphor recommendation—the ideation of code-aligned stories

and (2) automating the generation of comics from stories. Inspired

by Gentner’s structure mapping theory [16, 17] and visual narrative

grammar [12] for comics, the two mechanisms allow CodeToon

users to add code or select code examples provided by the tool, gen-

erate a story from the code, and automatically produce comics based

on the code or story while maintaining 1-to-1 mapping across them.

Our two-part evaluation of CodeToon found that this streamlined

design process allows users to quickly and easily create quality

coding strips that convey a salient connection between code and

comics. In summary, our contributions include:

• a computational pipeline that uses story ideation, auto comic

generation, and structure mapping for code-driven storytelling;

• CodeToon, a tool for code-driven storytelling where users can

efficiently transform code into story, then story into comics;

• user experiments that evaluate the authoring process and the

generated results of CodeToon.

2 BACKGROUND
2.1 Building Ladder of Abstraction
Coding strip was inspired by the ladder of abstraction, with comic

and code representing different levels within the ladder [1, 32, 33].

Thus, we review previous work that addressed two questions for

building the ladder of abstraction:Q1: How do we conceive abstrac-

tions at different level(s), and Q2: What are design considerations?

Q1⇒A: Find what we can abstract over/under. In his inter-

active articleUp and Down the Ladder of Abstraction [40], Bret Victor
uses variable as a control for moving up and down the abstraction

ladder. In this article, the variable is time, and a system at a par-

ticular time an abstraction; readers use a slider to change the time

(e.g., t=1 to t=2) and observe how the system (abstraction)—a car’s

trajectory—changes. He equates this interaction as moving up and

down the ladder of abstraction, explaining that all systems share

the same anatomy—an independent variable (e.g., time), structure

(the set of rules and what is controlled by the variable), and data

(environment)—and suggesting that the process of building the lad-

der of abstraction (i.e., conceiving abstractions at different levels)

consists of identifying what can be parameterized and providing

a control to explore the range of abstractions. This informed how

we should engineer story ideation (code7→story). Specifically, in

conceptualizing how we can turn code into a story, we used this

idea to explore what parts of the code can be parameterized and

used to develop stories. (Further details in Section 4.)

Q2⇒A:Maintain structure across abstractions.Defining ab-
straction as “a comparison in which the base domain [(e.g., code)]

is an abstract relational structure,” Gentner proposed structure

mapping theory to posit that the structure—the relations between

objects—is the most important factor when conceiving new abstrac-

tions, not the number of attributes shared between the base and

target domains or the specific content [17]. An example he gives

is: “The hydrogen atom is like our solar system.” In this example,

what makes the hydrogen atom a comparable abstraction is that

the hydrogen atom and solar system share the same relation (e.g.,

the electron REVOLVES around the nucleus, like how the planets

REVOLVE around the sun), not their object attributes (they do not

share the same object attributes, e.g., color, size, as the planets).

A related technique called concreteness fading, which introduces

an idea in multiple stages using different representations (abstrac-

tions) in decreasing concreteness, also supports this, suggesting

that maintaining the relational structure across the representations

is the key [14, 31, 37]. This design principle for layers of abstraction

inspired us to structure stories and comics to align with the code

structure.

2.2 Supporting Comic Authoring
2.2.1 Design Process & Patterns. The time-consuming, laborious

nature of creating comics poses critical barriers to their use and

adoption. As a result, various approaches have been suggested. For

example, to support ideation in the design process, researchers de-

veloped design patterns and process with clearly delineated stages

to guide authors [6, 38]. Digital authoring tools have been devel-

oped to make it easier to quickly draft and iterate on the design

by offering templates (e.g., panel layout and images) users can add

to the canvas [2, 24, 35]. Our work extends prior work as our tool

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Content

Creation

General

Framework

CodeToon

Graphics

Creation

Translation of

Content to

Comic Description

Comic

Creation

Comic

Description
=>

Code

Story

Code

Story

Content Content

Figure 2: General framework for auto generation of comics
suggested by Zeeders [44] and our framework. In our frame-
work, content used to generate comics are code and story.
CodeToon users add content (code & story), and the system
translates it into comic description and creates a comic strip,
the graphic representation of code & story.

supports the authoring of comics (1) based on code input and (2)

introduces two new mechanisms—story ideation and auto comic

generation—on top of the methods mentioned above.

2.2.2 Automatic Comic Generation. One step forward from sup-

porting a design process with authoring tools, design patterns, and

design guidance is automatically generating comics for users [9, 22,

42]. Zeeders [44]—who surveyed auto comic generation methods—

suggests that, at a high-level, auto comic generation involves three

steps: (1) content creation, (2) translation of content to a comics

description, and (3) graphics creation, as shown in Fig. 2. In prior

work, the sources of content in the first step have been a multitude

of things, e.g., daily activity data [11], chat sessions [26], scripts [29],

and movies [21, 43]. (Their work cannot generalize to our content

type, code, since it, unlike other data types, lacks contextual infor-

mation that can be used to form a narrative for a comic without the

user intervening to help define a story.) In the second step, they are

formatted into a particular format [4, 44] to provide instructions

on how they should be presented graphically. The final step is the

graphics creation stage, where either the composition or screenshot

method is used [44]; the former method composites different im-

ages (e.g., character, background, speech bubble) to create a scene

for panels, the latter embeds existing scenes (e.g., screenshot of

movie scenes) into panels. As we will explain, our work leverages

the composition method to generate comics automatically. Overall,

our work extends research in this area by demonstrating how we

can auto generate comics from a new content type, code.

3 CODETOON
3.1 Design Goals
To develop CodeToon, we first conducted a pilot study with 12

participants. Two participants (age: M=44.5; gender: 1F, 1M) were

teachers with 5+ years of experience teaching programming; ten

other participants (age: M=27.9; gender: 5F, 5M) were undergradu-

ate and graduate students with varying teaching experience (6 0-1

year, 2 1-3 years, 1 5+ years). We chose teacher and student partici-

pants highly experienced in programming (11 Much Experience, 1

Some Experience) as opposed to participants without programming

experience in order to harness the insights they picked up over the

years as teachers and students. Over the course of the pilot sessions,

we improved, added, and tested new features and workflows of

CodeToon (Sections 3.2 and 4) until we could observe that no ma-

jor changes are needed to enable a creative authoring experience.

Based on this pilot study, the literature on multiple representational

systems [3, 8, 37], and creativity support for comics [38], we derived

the following design goals for CodeToon:

D1. Allow users to iterate on their code, story, and comic.
From our pilot study, we found that the authoring process may

not be linear. While creating comics, users can be inspired by their

comics and form additional ideas to add to their story. While work-

ing on the story template, they could also think of a better story and

desire to edit code (e.g., change the value assigned to a variable).

Thus, the tool should make this interaction easy for its users.

D2. Augment, not constrain, users’ creativity with our
story ideation and auto comic generation. Our pilot study re-

vealed that providing story ideas and comic templates can accelerate

the authoring process. But it also showed that some users can al-

ready have some ideas on what they want to create and how to

design their comics. Thus, the tool should not limit users to using

only story ideas and comic templates provided by the tool.

D3. Make mapping clear across code, story, and comic. Re-
search suggests that making the correspondence explicit and consis-

tent is essential when presenting multiple representations [36, 37].

Otherwise, they do more harm than good because they only con-

fuse people. For us, this means that the mapping (↔) between code,

story, and comic should be clear. Previous research on coding strip

also found that the mapping between code and comics needs to be

clear for it to be effective and useful [36].

D4. Use simple, scalable visual vocabulary. Scalability relies
on having a set of basic building blocks that can be combined to

build anything of varying complexity (cf. the composition method

in Section 2.2.2). A set of building blocks in visualizations is called

visual vocabulary. To generate comics that can scale to any code

input, establishing a simple, scalable set of comic templates that

can be easily combined to express any set of code is necessary.

As a whole, our design goals aimed to create a ‘low floor, high

ceiling’ system for generating coding strips. That is, a system that

makes the process of creating coding strips simple, effortless, and

easy, while providing a high ceiling for creative exploration.

3.2 User Interface
CodeToon consists of three panels: code (Fig. 3B), story (Fig. 3D),

and comic (Fig. 3E). Users can select any layout button (Fig. 3H) to

change which panels are shown. The default layout (Both) shows

all three panels (Fig. 3), the Story layout code and story panels, and

the Comic layout the drawing canvas. The layout feature allows

users to customize the workspace—the number and layout of the

panels—for an optimal experience.

The three panels represent stages in the design process for cre-

ating a coding strip [38]. Concretely, the basic workflow consists

of users (1) adding code in the code panel (Fig. 3B), (2) generating

a story template (from the code) and writing a story in the story

panel (Fig. 3D), and (3) using the auto comic generation feature to

instantly generate comic in the comic panel (Fig. 3E). Below, we

describe each panel and how they facilitate this workflow.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

E

F

G

H

A

D E

B
x = 10

if x == 10:

 print(“true”)

C

Figure 3: System interface: (A) drop-down allows users to check potential code examples for basic programming concepts, (B)
code container, (C) button that generates story template from code in code container, (D) story template, (E) drawing canvas
for comics, (F) tool palette, (G) style palette, and (H) buttons for changing the interface layout (between code & story, current,
or canvas-only layout).

Example

Code Code Code

Example Example

Variable Boolean Condition

Loop Function

Ex#1 Ex#1

Ex#1

Ex#2

Ex#2

Ex#1

Ex#2

Ex#2

Ex#1

Ex#2

x = 10

if x == 10:

 print(“true”)

a b c

Figure 4: Users can add code by selecting code example (b)
or by typing (c).

Story Story StoryStory

x

If

is

isx 10

10

True

alarm clcok 10 o’clocksays

If is 10

True

alarm clock 10 o’clock

10 o’clock

says

saysIf alarm clcok

Wake up

alarm clock 10 o’clock

10 o’clock

says

saysIf alarm clcok

Wake up

alarm clock 10 o’clocksays

If is 10

True

cba

airplane

aircraft
carrier

alarm clock

ambulance

Apple

Figure 5: Users can add story (to story template) by selecting
a list of ideas in dropdown (b) or by typing into input box.

3.2.1 Code. In the code panel (Fig. 3B), users can add any number

of programs, each within a different code container. As shown in

Fig. 4, users can add the code to the container by using the code

example repository (Fig. 3A) or manually typing into the code

container. There are two buttons in the top right corner of the

code panel for adding () and deleting () code containers. The

ability to add additional code containers was added during the

pilot phase to make it easy for users to iterate on their code, story,

and comic (D1). After the user adds code, they can press a button

(Fig. 3C,) to generate a story template (Fig. 3D) from code.

3.2.2 Story. When a user generates a story template, it is added to

the story panel, which is initially an empty panel. Fig. 3D shows

what the user would see when a story template is added. Story

templates are linguistic representation of the code, with input boxes

where users can add real-life equivalents for the code expressions.

For instance, the code expression x = 10 generates

(Fig. 5(a-b)) as its story template. Now, a user can add alarm clock
to , says to , and 10 o’clock to . As shown in Fig. 5(b),

CodeToon provides a dropdown containing a list of metaphors to

help users brainstorm story ideas. The dropdown does not appear

for every input box, however. At the time of testing, it appeared

only on input boxes mapped to variables (e.g., x) and assignment

operators (=). The dropdown for the former showed a list of 345

categories (e.g., apple, car) and that of verbs synonymous with

or semantically close or related with the semantics of assignment

operator (e.g., assign, has) for the latter. While dropdowns appear

to help users with story ideation, they do not have to form their

stories around these suggestions; they can type any text into the

input box to create any story (D2).

3.2.3 Comic. As shown in Fig. 6, a user can instantly generate a

comic (Fig. 3E) by selecting any of the two arrow icons (and)

below the trash can icon . The reason for the two arrows is to

offer users the flexibility to expand to the right or below the existing

drawings. If users change the story, they can press the update icon

(below the arrow icons) to instantly update the content of the

auto generated comic to reflect these changes, making iterative

design of their story and comic frictionless (D1). While users can

use the auto comic generation feature to instantly generate comics

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Story

x

If

is

isx 10

10

True

Comic

A

B

Figure 6: Users can generate a comic by selecting either of
the arrow buttons. If canvas already has some drawing ele-
ments, as in this case, they can add the comic to the right (A)
or below (B) the existing elements. If canvas is empty, both
buttons place the comic at the center of the canvas.

from the story template, they can also use the tool palette (Fig. 3F),

style palette (Fig. 3G), and library (Fig. 7) to manually create or

edit/expand on the auto generated comic. The view mode above

the palette (Fig. 3F) provides three checkboxes for turning on/off

different view modes: Grid makes the grid appear in the canvas

for precise alignment and measurement, Zen removes style palette,

and View removes both the tool and style palette and makes the

canvas view only.

Figure 7: The library offers pre-drawn templates, such as
panels, speech bubbles, and characters, for creating comics.

3.3 Usage Scenarios
To further clarify the user interface and workflow, we present two

scenarios to demonstrate how users can use CodeToon.

Teacher. Amanda is a high school teacher. She is teaching a pro-

gramming class to 10th graders who are learning programming for

the first time. She wants her students to discover that programming

is not just about memorizing rules, syntax, and expressions. She

wants her students to realize that computational ideas can also be

found in our daily lives. When the class starts, she explains this as

her goal for her students. To show how they can think of computing

in terms of real-life objects and situations, she opens CodeToon

and shows a sequence of the code-story-comic example shown in

Fig. 1. She explains that while code expressions may appear scary

for now, they can think of code as being no different from words

we use to communicate. To direct their attention to the logic (i.e.,

if-then structure) and not the content, she switches the object in

the story from to and updates the comic (by pressing

the update icon). To make the stories more engaging and help

students connect with them, she also adds contextual details to

the expression , editing it to , gen-

erating a sentence (cf. Fig. 3).

She invites her students to suggest a story and produces comics

for them on the fly. Students suggest diverse stories based on their

experience and learn that programming is not as difficult as they

thought it would be.

x = 90

for i i n range(1 ,3) :

 pr int (x)

	 x -= 10

(B) UPDATED

(A) AUTO-

GENERATED

x x i s 90

9 0

x x = 90 - 10 x = 80

80%

battery battery = 80 - 10 battery = 70

i = 1

t i m e = 2 p m

Figure 8: A simple loop code and (A) auto generated comic.
The bottom two rows represent (B) comic updated with dif-
ferent images (phone) and text (e.g., BATTERY for x). Like
in this example, CodeToon can update specific rows, giving
users fine-grained control over their stories.

Student. Jane is a graduate student working as a teaching assis-

tant in the introductory CS course. While overseeing a lab, a student

asks for help, saying his code is not working the way he wants it to.

She takes a look at the code and feels that a piece of code involving

loop may be the culprit. She tells the student but realizes that he

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

does not have a good grip on the concept of loop and how to debug

the code. She opens CodeToon and adds the code in his assignment

and generates a comic to show the student how loop works. Fig. 8

shows an example of a code with loop and its corresponding comic.

Jane explains to the student how the first row of the comic maps

to the first line of the code (x = 90) and that the next two rows

represents the two lines in the loop; She notes that the program

then moves to the next iteration and points to i = 1 as an indicator

of which iteration the program is running at. To help the student

connect the concept to a real-life situation, Jane adds a story to

the story template: she replaces with , with

, with , and with and presses the update

icon to update the comic, which shows a comic with a story that

shows the phone having a battery initially at 90% and decreasing

by 10% every hour, as shown in Fig. 8. Jane creates another code

container and shows the student another loop example to help him

master the concept. After the student is done receiving help from

Jane, he asks Jane for the URL of CodeToon so that he can use it to

review and assist his studies in the class.

4 CODE-DRIVEN STORYTELLING
CodeToon supports code-driven storytelling by generating comics

from code using two mechanisms—story ideation and auto comic

generation. In this section, we describe how we designed them. The

implementation details of the computational pipeline are described

in Fig. 18 in Appendix.

4.1 Story Ideation

if x == True:

x = True

 print(“True”)

x

If

is

isx

True

True

True

x

If

is

isx

True

True

True

structure mapping

code story template

x

If

is

isx

True

True

True

If isx

is

True

True

If

is

isx

True

True

True

True
airplane

angel

apple

banana

barn

banana

content composition

Figure 9: Our story ideation consists of generating a story
template aligned with the code structure (structure map-
ping) and allowing users to fill the template with the help
of metaphor suggestions (content composition).

CodeToon aims tomake the generation of comics from codemore

efficient, and the first step in that process is rapid story ideation.

To understand how we can turn code into a story, we first went

through code expressions and turned them into a story. Table 1

shows some examples. We found that any code expression can be

parameterized and replaced with metaphors of corresponding form

(cf. Section 2.1). For instance, variables (e.g., x) can be metaphors in

noun (e.g., wallet) or phrases (e.g., message in my email); assign-
ment operator (=) can be be verbs (e.g., am, is, are) and transitive &
intransitive verbs (e.g.,wallet has 5 parking coins,my dog feels sick);
values can be contextualized (e.g., 5→5 o’clock, True/False→on/off,
‘‘hello’’→“hello, John”); keywords (e.g., def) and (built-in/user-

defined) function names (e.g., print()) can be replaced with se-

mantically related verbs/phrases. For instance, print can be say.
Therefore, in the story template, we (1) provided a list of metaphors

they can choose from and (2) converted code expressions into text

fields, to allow users to be creative with the story authoring (D2).

Table 1: Examples of code and corresponding stories

code hybrid (code & story) story

x = 5

time = 5 time is 5 o’clock
wallet = 5 wallet has 5 parking coins
student = 5 student received 5 dollars

x = True

switch = on switch is on
my_schedule = busy my schedule is busy
this = True this is expensive

x = ‘‘hello’’ message = “hello” message reads, “hello”

print(‘‘Even’’) print(“it’s even”) say, “It’s even!”

4.2 Auto Comic Generation
Auto comic generation requires the conversion of different types

of code expressions into a visual panel arrangement (e.g., panels,

characters, speech bubbles). We approach this problem by defining

in advance a specific design template for each code expression (e.g.,

variable assignment, loop). Specifically, we leveraged the theory of

Visual Narrative Grammar (VNG) [13], which suggests that each

panel of a comic can be categorized into one of the five phases of

a narrative: (1) Establisher, which sets up a scene; (2) Initial,

which depicts the start of an action; (3) Prolongation, which

shows moments between the start of an action and its peak; (4)

Peak, which marks the point in the action when the tension reaches

the peak; (5) Release, which shows moments after the action has

ended. Below, we provide two examples of code expression template,

and the thought process that went into designing these templates

using VNG.

(a) Code (b) Template (c) Template + Story

x = True

apple apple tastes good
Establisher Initial

Figure 10: Variable assignment: code, template, example

Fig. 10 shows the variable assignment x = True (Fig. 10(a)),

its template (Fig. 10(b)), and the first row of the comic in Fig. 1

(Fig. 10(c)) that uses this template. Variable assignment can be

defined by two operations: first, computers allocate a memory space

for a variable; then they assign value to the variable. The first

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

operation is (semantically speaking) analogous to Establisher in

that it sets up a scene (for assigning value). The second step can be

considered as Initial as it initiates the action of assigning value to

this variable. Hence, we use two panels, Establisher and Initial,

as shown in Fig. 10. While it can also be valid to have just one panel

(e.g., Initial instead of Establisher + Initial), one consideration

that led us to choose the Establisher + Initial combination is

design. Typical computer programs will contain multiple variable

assignments, which means that the auto generated comic will have

several templates like this, stacked on top of each other. Having

two or more panels in each row, aligned and stacked on top of each

other, can make the final comic design look more structured (cf.

Fig. 1) than the design where multiple rows have only one panel

in each row. Additionally, this design can be more useful in the

classroom.When teaching variable assignment, for example, having

illustrations for space allocation and value assignment can allow

teachers to teach what happens at the memory level.

(a) Code (b) Template (c) Template + Story

if x == True:

?
Initial Prolongation

does apple taste good? yes

Figure 11: Conditional expression: code, template, example

As another example, Fig. 11 shows the conditional expression if

x == True: (Fig. 11(a)), its template (Fig. 11(b)), and the second row

of the comic in Fig. 1 (Fig. 10(c)) that uses this template. A similar

thought process went into designing this template: the conditional

expression first checks whether the statement is True or False; as

this initiates an action, the first panel is an Initial panel and has a

placeholder for text that ends with a question mark to indicate the

checking action. The following panel is used to report (hence the

speech bubble) whether the expression evaluates to True or False;

this panel is a Prolongation panel, as it sits between Initial and

Peak (code wrapped around the conditional expression that would

run if the expression evaluates to True).

There can be more than one way to define these templates for

coding strips depending on the goal(s), programming language

and paradigm. In our case, the goals were: ensuring scalability,

conveying semantics and executions, and offering design variations

(e.g., if possible, avoid using only a single panel within a row); also,

our visual vocabulary was created using Python (code expressions,

syntax, and conventions). Understanding various nuances required

to construct visual vocabularies for various programming languages

is not within the scope of this research; we leave that as future work.

A key challenge in generating comics from code is maintaining a

clear mapping between code, story, and comic (D3), so that learners
can tell which line of codemaps to which line of the story andwhich

panel of the comic. We achieved this design goal (D3) by generating
story template and comics that map 1-to-1 to lines of the code, as

shown in Figs.1 and 9. In addition to the 1-to-1 mapping, visual cues

were also used to make the correspondence easily perceptible. For

example, if there was an indentation in the code, this was carried

over to the story template. For comics, an empty gray panel was

Establisher

Counted

Loop

Conditional

Loop

Define

Function

Call

Function

Indentation

Initial

Establisher

Initial

Establisher

What’s the weather like today?

While weather is nice ...

Create routine call_friends that take: 
contact_list

let’s call_friends

tornado tornado is expected

Day = Monday

Day = Tuesday

Figure 12: Other comic templates (left) and examples (right):
the gray panels represent indentation; the dotted panels
comic templates (e.g., variable assignment, counted loop);
the gray boxes inside panels text (e.g., Day = Monday,while
weather is nice); the dotted squares inside panels objects
(e.g., stick figure, tornado, apple, banana).

used to indicate indentation, as shown in Fig. 12. Note that, as

shown in Fig. 8, when code has loop, the 1-to-1 mapping cannot be

maintained as the comic needs to visualize the iterations.

5 EVALUATION
To test whether CodeToon successfully supports the creative design

process and generates quality comics from code, we conducted a

two-part evaluation: a user study and a comic evaluation survey.

In the user study, we aimed to answer: (RQ1) Does CodeToon
support the authoring of coding strip, in terms of story ideation and

comic creation; (RQ2) Does CodeToon make the process of author-

ing coding strip more efficient; and (RQ3) What are the perceived

utility and use cases of CodeToon for teaching and learning pro-

gramming? Note that RQ3 does not focus on how well CodeToon

supports the authoring of coding strip but on the perceived peda-

gogical value of CodeToon. While recent studies [36, 38] revealed

learning benefits in participating in the process of creating coding

strips and learning with coding strips, these studies were not done

with CodeToon. This motivated us to explore RQ3, as it can reveal

potential benefits and guide future work. Further, based on the

comics created from the user study, in our comic evaluation study,

we aimed to investigate: (RQ4) Does CodeToon help generate high-

quality comics, and how consistent is the quality?

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

5.1 Part 1: User Study (RQ1–RQ3)
Our user study employed a between-subjects design with two con-

ditions: Baseline (B) and CodeToon (C). Baseline was the same as

CodeToon, but without the story ideation and auto comic gener-

ation features. Baseline users could generate story template from

code. However, they did not have access to metaphor suggestions

(Fig. 9) and buttons (Fig. 6) to instantly generate comics from the

story template. Baseline users had to brainstorm story ideas on

their own and manually create comics using the templates from

the library (Fig. 7) and drawing tools (Fig. 3 (F&G)).

5.1.1 Participants. We recruited all 24 participants (12 for each

condition) from a local R1 university’s study participant recruitment

platform. Participants were required to have (1) basic programming

knowledge, (2) a mouse, and (3) Chrome browser on their device.

Most Baseline users (age: M=23.3, SD=2.5; gender: 8F, 4M) had

decent programming experience (6 Some Experience, 6 Much Ex-

perience), some experience with digital drawing tools (2 No Experi-

ence, 9 Some Experience, 1 Much Experience), and mostly positive

perception towards the comics’ usefulness as a tool for teaching and

learning programming (1 Slightly, 1 Moderately, 6 Very, 4 Extremely

Useful). Many were in the middle in terms of their confidence in

drawing (4 Not Confident, 5 Somewhat confident, 3 Confident)

and creating comics for teaching programming concepts (3 Not

Confident, 8 Somewhat Confident, 1 Confident). They had varied

experience with teaching programming (6 No Experience, 2 0-1

year, 4 1-3 years).

CodeToon users (age: M=27.3, SD=4.8; gender: 2F, 10M) also

had decent programming experience (9 Some Experience, 3 Much

Experience), some experience with digital drawing tools (3 No

Experience, 7 Some Experience, 2 Much Experience), and similar

perception towards the comics’ usefulness (1 Slightly, 2 Moderately,

4 Very, 5 Extremely Useful). Many of them were not confident in

drawing (7 Not Confident, 4 Somewhat Confident, 1 Confident)

and creating comics for teaching programming concepts (8 Not

Confident, 3 Somewhat Confident, 1 Confident). They had little to

some experience teaching programming (3 No Experience, 5 0-1

year, 2 1-3 years, 1 3-5 years, 1 5+ years).

5.1.2 Procedure. Baseline and CodeToon users followed the same

study procedure. The study was conducted remotely using video

conference software. Participants first completed a pre-study survey.

The survey included questions about their demographic informa-

tion. Then, they went through tutorial videos that explained the

interface and how to use the tool, after which participants con-

ducted practice tasks—replication tasks by following the videos.

CodeToon users spent more time (at least 8 min) in the tutorial

phase as they needed to learn and try story ideation and auto comic

generation features.

Next, participants entered the task phase. The task was to create

a comic about a programming concept of their choice. They were

instructed that the end goal is to have code and corresponding comic

that can be used together to teach students about the concept. Time

limit was not imposed to study how users perform the task in a

natural setting. Through pilot studies, we knew that participants

generally had enough time to complete the task.

After the task phase, we administered three surveys: (1) post-

study survey with creativity support index (CSI) [10], (2) paired fac-

tor comparison (PFC) [10], and (3) system usability survey (SUS) [7].

We also conducted a short interview to ask participants to elabo-

rate on their survey response to get a better understanding of what

worked and what did not work. The study lasted between 1.5-2

hours and the participants received a $30 Amazon gift card for their

participation.

5.2 Part 2: Comic Evaluation Study (RQ4)
Our comic evaluation study followed the same procedure as in prior

work [28], comparing comics resulting from two different condi-

tions (Baseline and CodeToon) to understand whether CodeToon

helped generate comics of better quality.

5.2.1 Study Dataset. After our user study, our comic dataset
1
con-

sisted of 24 comics covering variable (1B, 0C), condition (7B,

7C), loop (2B, 2C), and function (2B, 3C). We selected a subset

instead of all comics for our survey for two reasons. First, it was not

realistic to ask participants to rate all coding strips, as that can take

approximately 2 hours (if 5 minutes per comic). We did not want

to risk a survey receiving poor responses due to its length [15, 25].

Second, the quality of Baseline comics varied greatly. Since the

amount of effort participants exerted ranged from very little to very

high, we chose to select quality comics that participants put effort

into (e.g., those who indicated they were satisfied with their work).

In this way, we could minimize variability and keep the survey at a

reasonable length.

Thus, we formed pair of comics (Baseline vs CodeToon) for the

concepts by filtering for comics where participants answered in the

post-study survey that they were ‘highly satisfied’ with their comics

(9 or 10 out of 10 on ‘I was satisfied with what I got out of the
tool’), because participants’ level of satisfaction varied (B: M=8.4,

SD=1.6, Range=[6,10]; C: M=8.9, SD=1.3, Range=[6,10]). Then we

grouped them into sets based on their concepts. This resulted in 2

sets for condition, 1 set for loop, and 1 set for function, in total

8 comics to rate for a 30 to 55-minute survey.

5.2.2 Participants. We recruited 20 participants (age: M=24,

SD=3.9) who can read and understand basic Python code through

R1 university’s study participant recruitment platform. Participants

were mostly proficient in coding (1 Beginner, 1 Semi-Amateur, 4

Amateur, 8 Semi-pro, 6 Pro) and had moderate attitude towards

comics’ usefulness as a tool for teaching (2 Not At All, 3 Slightly, 8

Moderately, 4 Very, 1 Extremely Useful) and learning (3 Not At All,

1 Slightly, 9 Moderately, 4 Very, 2 Extremely Useful).

5.2.3 Procedure. After signing up to participate, participants re-

ceived the Qualtrics survey URL. After demographic questions, the

survey presented eight comics in random order. Each page started

with the programming concept the comic is based on, the comic, the

code the comic is based on, and then a set of evaluation questions

related to (1) how well the comic maps to code, (2) how well the

comic illustrates code and concept, and (3) how useful they think

the comic is for teaching and learning the concept it is based on.

Participants received $10 Amazon gift card for their participation.

1
Downloadable at https://codetoon-research.github.io/download/

https://codetoon-research.github.io/download/

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

6 RESULTS
Baseline comics were generally inconsistent in their design lan-

guage compared to CodeToon comics, as Baseline users manually

designed their comics while CodeToon users incorporated auto

generated comics. Thus, CodeToon comics were generally longer

and more structured than Baseline comics. As for usability, both the

Baseline and CodeToon users found the tool highly usable (SUSB :

78.5, SD=20.5; SUSC : 81.0, SD=9.6), giving usability scores well past

the cutoff score (68) for production. For anonymity, we use B1. . . B12

and C1. . .C12 to refer to Baseline and CodeToon users, respectively.

6.1 RQ1: Does CodeToon support the authoring
of coding strips?

We analyze a mix of responses from the survey, interview, and CSI

results. We review the effectiveness of the proposed two features—

story ideation and auto comic generation—as well as whether par-

ticipants found the code-to-comic mapping accurate and the tool

helped them be creative. We begin with Fig. 13, which summarizes

the participants’ ratings on the usefulness of the two novel features.

1 2 3 4 5

Story Ideation

1 8 3
1 2 3 4 5

Auto Comic Generation

7 5

Median IQR

Figure 13: CodeToon (1: Not At All; 5: Extremely Useful)

6.1.1 Feature 1. Story Ideation. CodeToon users liked how story

ideation helped “spark creativity” (C5) and “think of creative ideas”

(C3). C6 noted that “the options [in the dropdown]” provided “initial

push of ideas” to get started on figuring out what kinds of “objects

or things” could be thought of. C8 was quite surprised that seeing

the list of ideas could inspire him to create “much more content

beyond this object.” C2 appreciated the fact that even though they

had “the extensive list of the objects that [they] could choose” from,

they could also write anything inside the input boxes (suggesting

CodeToon satisfied one of our design goals, D2).

6.1.2 Feature 2. Auto Comic Generation. CodeToon users liked the

auto comic generation feature because it saves “a lot of time creating

the layout” (C12). C3 complimented CodeToon as a system that—

even compared to other commercial comic drawing tools—is more

useful, because it “automatically generates the comics,” decreasing

the “workload by a big factor.” Several participants identified the

auto comic generation as a novel feature, asking whether there has

been work like this before.

6.1.3 Impact of Two Features. Fig. 14 provides further evidence

that the two features facilitated the authoring of coding strips.

Through the comparison, where the difference between CodeToon

and Baseline is the presence of the two features, we see that they

increased the perceived usefulness of the tool and decreased the

perceived difficulty of the task.

1 2 3 4 5

Baseline

3 6 3
1 2 3 4 5

CodeToon

1 6 5

Median IQR

(a) Usefulness (1: Not At All, 5: Extremely Useful)

1 2 3 4 5

Baseline

2 6 4
1 2 3 4 5

CodeToon

7 3 2

Median IQR

(b) Difficulty (1: Not At All, 5: Extremely Difficult)

Figure 14: Baseline vs CodeToon comparison on the (1) use-
fulness of the tool for the task and (2) the difficulty of the
task with the tool. CodeToon users found the tool more use-
ful for creating comics from code and the task less difficult.

6.1.4 Code-to-Comic Mapping Accuracy. To understand whether

CodeToon users think that the generated comics illustrate code

executions and semantics accurately, we asked them in the sur-

vey. As shown in Fig. 15, they mostly found the generated comics’

overall accuracy and their accuracy with the code executions and

semantics very accurate. Many participants supported our design

decision to map each line of the code to each row of the comic. C5

explained that she gave a high score to these accuracy questions

because the generated comics mapped to the code line by line. C3

explained that this is why, compared to before the task, he feels

comics are more useful. C3 said, “I never thought [you] can teach

the if conditions and conditional loops and everything to a student

in the form of comics [in this manner].” C5, who prior to using

CodeToon thought about an alternative “event-by-event approach,”

acknowledged that this design choice is better, saying: “. . . it is very

helpful to have comics that go along with every single line just so

that they can see what each line is actually doing. It is kind of like

walking through the code step by step in a visual way. . . I think it

is better that it is line by line, because [it] makes it a lot easier for

learners to make that connection.” C8 made an interesting remark

that accurate mapping between the comic and code can help ad-

dress concerns about metaphors sometimes failing to communicate

the ideas accurately and that if one were to use comics to teach

programming, it has to be mapped to code like in CodeToon:

“I find that this tool maps the comic to the code very

well. . .more accurate than I have ever expected. . . this

balances the tradeoff between the barrier of learn-

ing the code and the inaccuracy of the metaphor. If

teachers are to tell the student that the [comic] frames

map to certain parts of the code, it has to be like this.

Strictly mapped to the structure [of the code]. . . this

changed my thoughts on how helpful comic is.” (C8)

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

1 2 3 4 5

Overall

2 9 1
1 2 3 4 5

Execution

2 9 1
1 2 3 4 5

Semantics

3 8 1

Median IQR

Figure 15: Mapping accuracy for auto generated comics. (1:
Not At All, 5: Extremely Accurate)

6.1.5 Creativity Support Index. As shown in Table 2, CodeToon

scored high and better than Baseline in all factors of the Creativity

Support Index. There was a statistically significant difference in

enjoyment, suggesting participants highly enjoyed using CodeToon.

In fact, during the interview, many CodeToon users mentioned how

fun the tool was. C1 said, “This is a really interesting work. I really

enjoyed playing with it.” Moreover, all the CodeToon users except

for one (11 More Confident, 1 Same as Before) who was already

‘Somewhat Confident’ in creating comics about programming con-

cepts before the task answered that they feel ‘More Confident’ about

creating comics about programming concepts after this task.

Table 2: Creativity Support Index Results. CodeToon per-
formed better on every factor in creativity support. Statis-
tical significance (p < 0.05) is marked with ∗.

Baseline CodeToon Sig.

Factor Score (SD) Score (SD) p

Enjoyment
∗

15.9 (1.56) 17.6 (2.0) 0.01
Expressiveness 16 (3.1) 16.8 (1.5) 0.21

Exploration 16 (3.1) 16.4 (1.6) 0.39

Immersion 15.8 (4.1) 16.8 (2.6) 0.24

Results Worth Effort 16.6 (2.4) 17.8 (2.1) 0.10

Overall CSI Score 80 (14.6) 85.2 (7.5) 0.14

6.2 RQ2: Does CodeToon make the process of
authoring coding strips more efficient?

Our analysis showed that CodeToon users were able to save more

than 6 minutes on average for the comic authoring (T-test: p=0.08;
Baseline: M=18:35, SD=11:17; CodeToon: M=11:45, SD=6:20) and the

overall authoring time (Baseline: M=24:47, SD=13:43; CodeToon:

M=18:27, SD=9:16). The average time spent on creating a story,

on the other hand, was almost the same (T-test: p=0.7; Baseline:
M=6:11, SD=3:13; CodeToon: M=6:41, SD=3:38), which can be at-

tributed to the relatively less time-consuming and less challenging

nature of creating stories when compared to creating a comic.While

CodeToon saved more than 6 minutes, the overall time difference

was statistically insignificant (T-test: p=0.19).
That CodeToon users spent less time is not surprising, given

that CodeToon can instantly produce comics. After CodeToon users

generated comics, they either submitted them as they are or spent

some time simply adding a few details, e.g., additional panels before

or after the generated comics to add additional context to the story.

CodeToon users generally seemed satisfied with the layout of the

generated comics. Although they were told they could edit them,

none of them did. C3, who uses a PowerPoint in the workplace

to explain code flow to coworkers, was impressed with how well

CodeToon automatically generates a nice visualization to illustrate

the code flow, saying “[after CodeToon] automatically generates

[comics,] the only thing [left to do] is the finishing touch.”

6.3 RQ3: What are the perceived utility and use
cases of CodeToon for teaching and
learning programming?

6.3.1 Perceived Utility. As shown in Fig. 16, most CodeToon users

perceived CodeToon as a very and extremely useful tool for teach-

ing, learning, and novice learners. Most of them (8/12) said they

would like to use the tool for teaching; the others (4/12) who an-

swered ‘Maybe’ explained that this is because whether CodeToon is

the right tool can depend on “age,” “programming level,” or “learn-

ing styles.”
2
Likewise, there were variations in the perceived utility

of CodeToon. While several participants mentioned that the tool

would be especially useful for “younger students” (C9), others sug-

gested that it can be useful for older students (C8), such as under-

graduate students (C5), and even for experienced programmers, e.g,.

for “debugging” (C12). One thing everyone seemed to agree was

that CodeToon provides a fun, creative way to learn programming.

How useful can this tool be for ...

teaching?

learning?

novice learners?

1 - Not at all useful 2 - Slightly 3 - Moderately 4 - Very 5 - Extremely useful

(a) Baseline

teaching?

learning?

novice learners?

1 - Not at all useful 2 - Slightly 3 - Moderately 4 - Very 5 - Extremely useful

How useful can this tool be for ...

(b) CodeToon

Figure 16: Perceived utility of Baseline and CodeToon for
teaching and learning programming

Participants provided several reasons for positively rating its util-

ity. They thought that CodeToon can help students master “impor-

tant programming concepts,” namely loop and function (C12). C12

said, “especially in loop where [automatically generated comics]

show i=0, i=1, . . . comics give a visual explanation very well.” C2

2
While we do not acknowledge the notion of “learning styles,” it has been added to

avoid any loss of information or connotation.

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

p = 3.6e-5, U = 375, Z = -4.06

p = 4.5e-4, U = 395, Z = -3.48

p = 1.3e-4, U = 373, Z = -3.78

p = 1.4e-3, U = 383.5, Z = -3.18

p = 1.8e-3, U = 344.5, Z = -3.11

p = 2.9e-3, U = 383.5, Z = -2.96

p = 2.4e-6, U = 380.5, Z = -4.64*
*

*
*

*
*

*

CodeToonBaseline
Overall accuracy

Code execution accuracy

Code semantic accuracy

Code illustration

Concept illustration

Useful for learning

Useful for teaching

1 - not at all 2 3 - neutral 4 5 - extremely

Figure 17: Comic evaluation results. Statistical significance (p <0.05) is marked with *.

suggested that CodeToon would be useful for teaching data types

to beginner students as it can show various examples (e.g., integer:

apple costs 10 dollars; boolean: apple tastes good) to help develop

intuitive understanding. C6 and C10 stated that the “scaffolding”

in CodeToon would help students develop computational thinking,

enabling them to see computational ideas in real-life situations

and vice versa (i.e., moving between different abstraction levels, as

shown in Fig. 1). C6 noted that learning with CodeToon can show

how “computer science can be engaged beyond looking at codes

on a screen. . . [and that comic] is a very good lens to use.”

Most CodeToon participants (9 More Useful, 3 Same as Before)

stated that the experience of using CodeToon made them realize

that teaching/learning with comics (created from this tool) can be

more useful than they had thought. Several participants explained

that they had no idea that comics could be used in such ameaningful

way. They explained that they thought comics were going to be used

to merely narrate programming concepts. But seeing CodeToon

generate comics that map to code line by line made them realize

that comics can be “very useful” (C3).

6.3.2 Use Cases. Participants provided several ways the tool can

be used for teaching and learning programming. One group of

related ideas was using the task as an exercise in “classroom” or

“tutoring settings” as well as a group or individual assignment, after

which they can “present to class [their] story and understanding of

the code.” Another idea was holding a “special programming class”

where students learn to read code after learning their correspond-

ing comic expressions and then using it for exams or quiz where

students—instead of explaining what a piece of code means—“can

make comics to show what they mean.” Participants also made

several suggestions pertaining to how to use the tool. B6 suggested

“start[ing] with the comic first and then go[ing] to the story [and

then] to the actual code,” saying that “this would help generalize

the topic very easily.” Several participants suggested using it to

“visualize” basic programming concepts including “data types” as

well as complicated concepts such as “pointer” (B12). Explaining

how teachers utilize funny comic strips or memes in their teach-

ing slides, participants also suggested that teachers can use the

tool to quickly create and add visuals (comic) to their slides. C3

noted that the story ideation feature can also help teachers come

up with appropriate examples and metaphors to explain the code

and programming concept.

6.4 RQ4: Does CodeToon help generate
high-quality comics?

Fig. 17 shows how Baseline and CodeToon comics compare across

the measures we investigated. As shown, there were statistically

significant differences (Exact Wilcoxon-Mann-Whitney Test) be-

tween Baseline and CodeToon comics across all measures (accuracy,

illustration, usefulness). In all measures, CodeToon comics were

rated better than Baseline comics. That is, CodeToon comics were

perceived as more accurate, illustrative, and useful for teaching and

learning. Even in individual pair comparisons, CodeToon comics

were also rated more positively (cf. Fig. 19 in Appendix).

Another important metric is whether CodeToon consistently pro-

duces high-quality comics. Along with the general observation that

Baseline comics vary in quality while CodeToon provides comics of

consistent quality (cf. Fig. 19), responses to two agree/disagree state-

ments from the CSI survey provide support. The two statements

are: (1)What I was able to produce was worth the effort I had to
exert to produce it; (2) I was satisfied with what I got out of the tool.
In both statements (1 as Highly Disagree, 10 as Highly Agree), on

average, CodeToon users ((1): M=8.83, SD=1.0; (2): M=8.92, SD=1.3)

rated higher than Baseline users ((1): M=8.16, SD=1.5; (2): M=8.42,

SD=1.6), suggesting that CodeToon users consistently produced

comics of the quality they are satisfied with.

7 DISCUSSION
7.1 Implications & Opportunities
Code-Driven Storytelling. The storytelling in CodeToon differs

from prior work that leveraged storytelling in computer program-

ming, as stories in CodeToon are structured around code. Whereas

code has traditionally been used to define programmable aspects

of stories such as animation and interaction (e.g., Scratch [30], Al-

ice [23]), in code-driven storytelling, code functions as a blueprint

for stories: the three logic/control structures (sequential, selection,

and iteration logic) in code become the structures of the story and

comic. As it preserves the code’s abstract structure across story

and comic, learners can quickly recognize how they correspond to

each other and make sense of code expressions, syntax, and conven-

tions in the natural language and visual language of comics while

engaging in the creative storytelling process. As general ideas in

this approach will likely work with any programming language,

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

this work opens up exciting opportunities to explore how we can

leverage story ideation, auto comic generation, and structure map-

ping in a similar manner for other programming and computational

languages (e.g., math).

Storytelling with Text-based Programming. CodeToon en-

ables a way to learn computer programming through storytelling

using text-based programming languages. Learning programming

through storytelling has traditionally been done using block-based

programming languages and environments [23, 30]. Our computa-

tional pipeline for transforming text-based code to story and story

to comic opens up a whole new direction to explore. For example,

this approach could potentially enable us to teach young students

who, due to their age, have first been introduced to coding via block-

based programming languages. We could test whether they can

learn with text-based programming languages using this approach

or whether they can learn comic expressions and then use them to

learn corresponding text-based programming expressions. Since

some students who learn coding first with block-based program-

ming need to re-learn text-based programming when they grow

older, this approach could potentially lessen this gap and provide

an additional pathway to learning.

Comics for Computational Languages. The feasibility of our
approach means that we can explore how other programming lan-

guages and paradigms can also leverage comics. For instance, object-

oriented programming is an area where its concepts and code are

often presented in terms of real-life equivalents [39]. Comics could

benefit students learning object-oriented programming. Other pro-

gramming paradigms such as functional programming may require

identifying abstractions (e.g., pointers) important to them for cus-

tom visual vocabulary, which would help expand the set of visual

vocabularies and advance our understanding of mental models for

programming.

Design Implications. Our work has interesting design impli-

cations for various domains. Our user study results suggest that

the 1-to-1 mapping can be an effective, useful design when using

comics as a complementary representation for code. This confirms

the suggestion in the literature on multiple representational sys-

tems, which recommends making the mapping between multiple

representations clear. For research areas—such as data and stats

comics [5, 41]—that also leverage comics in much the same way

coding strip does, our insights concerning 1-to-1 mapping and

the process of building comic expressions can help them explore

a similar direction where they can also explore methods to auto

generate comics from languages in their domain (e.g., R program-

ming). Our work also leads to many interesting questions for comic

authoring tools and coding tools. For instance, how can comic au-

thoring tools utilize our idea of generating comics from language

semantics and computational steps to enhance and diversify the

authoring process? How can we design coding tools that offer ways

to switch between code and other levels of abstraction (e.g., stories

and comics)? How can we leverage such interaction to support vari-

ous tasks programmers perform, e.g., reading and writing code, and

debugging? What representations or abstractions can we support

in these coding tools? How can we make their transitions seamless?

How should we design these transitions and interactions so that

we maximize the benefits of multiple representations?

Visual Programming Environment for Artistic Activities.
Using coding strips to teach and learn computer programming is

a new and promising approach. Recent work showed that it can

enhance student learning and address some challenges in teaching

programming [33, 36, 38]. But there is still muchwork to be done. To

ease its adoption, we need a curriculum containing a set of learning

activities and guidelines in an accessible form, such as a cheat sheet,

so that teachers can quickly reference and apply it to their teaching

and lessons. Moreover, understanding the nature and impact of

this approach needs to be further investigated. For instance, what

separates CodeToon from other visual programming environments

like Scratch is that it can host artistic activities such as drawing.

Recent efforts to combine art and programming—known as creative
coding—teach and use programming as the primary medium for

creating visual artifacts.While CodeToon also allows users to do this

to some extent with comic generation, its drawing canvas opens up

opportunities for us to potentially explore a different direction—one

that does not center around generating art with programming and

allows students to learn computational ideas from artistic activities

without having to first learn programming. This leads to several

questions: What artistic activities can we develop? How can we

incorporate them into teaching and learning programming? How

can they improve teaching and learning in CS education?

7.2 Limitations & Future Work
Educational Benefits. While prior work on coding strips demon-

strated various learning benefits to using coding strips [33, 36],

learning with CodeToon is a different process that needs to be

examined for several reasons. First, our findings on pedagogical

usefulness are participants’ perceived usefulness. A rigorous study

measuring its impact on learning would provide a more accurate

assessment of its usefulness. Second, while our study participants

included those with experience in teaching programming and learn-

ing as former students, their experience in programming and teach-

ing varied. Finally, while CodeToon is a tool for teachers and stu-

dents not yet proficient in programming, our user study participants

were students with experience in programming. This was inten-

tional, as we placed a higher priority on understanding possible

usage scenarios and assessing the accuracy of the mapping between

comics and code executions and semantics—which learners with

little to no programming knowledge would be less qualified to do.

Now that we tested CodeToon, we plan to do a study in the future

with students who have little or no prior programming experience.

Quality & Limited Set. For the drawings in the auto gener-

ated comics, we used the dataset from the Google’s Quick, Draw!

game [27], which offers sketches of 345 categories. Since they are

quick sketches people drew under pressure in a short time, the

quality was mostly sub par. For better quality, we chose the AI

correctly-guessed drawings. However, we saw several participants

who were not satisfied switch to different objects. We suspect this

may have given the impression for some that the tool is not for

a professional audience but for a young audience. To address this

quality issue and the challenge of having a limited set of categories,

we plan to explore how we can leverage machine learning to con-

vert existing pictures into comic-style sketches and then use them

in the auto generated comics.

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Lack of Options. Another limitation in CodeToon is a lack of

support for different design languages and workflows. For instance,

because we aimed to express semantics for every line, this led to

auto generated comics illustrating code that is not executed. For ex-

ample, for code inside the if block where the conditional expression

evaluates to False, CodeToon still visualized this code even though

it was not executed. To indicate this, some participants suggested

changing the opacity of these panels, whereas others suggested not

showing them. While some were surprised they were shown (thus

4/5 instead of 5/5 for mapping accuracy on semantics), they recog-

nized that this design would be helpful for teaching. Participants

also shared alternative design ideas for auto generated comics—

such as including code in the auto generated comic—and ideas for

improving the workflow, such as real-time rendering. When a user

adds a story to the story template, the comic is immediately ren-

dered (or updated). Bi-directional mapping/rendering idea was also

discussed—e.g., if the user edits comics, the story and code update

accordingly in real-time. Suggestions like these show that users

might desire different designs and workflows depending on the con-

text. Therefore, we plan to implement a system preferences panel

where users can customize, e.g., the design of the auto generated

comics and rendering behaviors.

Generative Models. One exciting avenue to explore next is

generative deep learning models. Recently, large language models

such as GPT-3 and Codex have shown impressive performance at

language-related tasks, including generating code and translating

natural language into code and vice versa. Generative model-based

support can be an exciting addition to CodeToon. On user’s request,

generative conversational AI can generate or fill the gap in stories or

code. Recentwork showed that it can also generate stories from code

or code examples for different programming concepts [34]. Based

on the analysis of the drawings on the canvas, it can also provide

various creativity support, such as generating new drawings to add

to the existing comic and providing design guidance in real-time.

For instance, if a user modifies the comic and it loses the relational

structure carried over from code, it can notify the user and ask if that

is the user’s intention. These generative model-based interactions

would make the authoring process and learning experience more

interactive, creative, and collaborative.

8 CONCLUSION
We introduce CodeToon, a comic authoring tool for facilitating

the creation of coding strips by supporting story ideation and

enabling auto generation of comics from code. To support this

code-story-comic mapping, we used structure mapping theory and

developed a visual vocabulary for coding strip. Then we tested

whether CodeToon successfully supports the authoring of coding

strips and helps generate high-quality comics through a two-part

user study. The results of our user and comic evaluation studies

show CodeToon not only supports the authoring of coding strips

well but also reduces the comic authoring time by a significant

amount while producing accurate, informative, and useful coding

strips. In addition to contributing CodeToon and the two-part user

study, our work lays the groundwork for code-driven storytelling

by contributing computational pipeline and design guidelines for

effective code-story-comic mapping.

ACKNOWLEDGMENTS
This research was funded by the Learning Innovation and Technol-

ogy Enhancement (LITE) Grant at the University of Waterloo. The

authors also thank our study participants for their participation

and reviewers for their feedback and suggestions.

REFERENCES
[1] 2019. Coding Strip. https://codingstrip.github.io/ Accessed: 2021-08-05.

[2] 2019. Pixton. https://www.pixton.com/ Accessed: 2020-01-05.

[3] Shaaron Ainsworth. 2006. DeFT: A conceptual framework for considering learn-

ing with multiple representations. Learning and instruction 16, 3 (2006), 183–198.

https://doi.org/10.1016/j.learninstruc.2006.03.001

[4] Tiago Alves, Adrian McMichael, Ana Simões, Marco Vala, Ana Paiva, and Ruth

Aylett. 2007. Comics2D: Describing and creating comics from story-based appli-

cations with autonomous characters. Proceedings of CASA (2007).

[5] Benjamin Bach, Nathalie Henry Riche, Sheelagh Carpendale, and Hanspeter

Pfister. 2017. The emerging genre of data comics. IEEE computer graphics and
applications 37, 3 (2017), 6–13. https://doi.org/10.1109/MCG.2017.33

[6] Benjamin Bach, Zezhong Wang, Matteo Farinella, Dave Murray-Rust, and

Nathalie Henry Riche. 2018. Design patterns for data comics. In Proceed-
ings of the 2018 chi conference on human factors in computing systems. 1–12.
https://doi.org/10.1145/3173574.3173612

[7] Aaron Bangor, Philip T Kortum, and James TMiller. 2008. An empirical evaluation

of the system usability scale. Intl. Journal of Human–Computer Interaction 24, 6

(2008), 574–594. https://doi.org/10.1080/10447310802205776

[8] Kirsten Berthold and Alexander Renkl. 2009. Instructional aids to support a

conceptual understanding of multiple representations. Journal of Educational
Psychology 101, 1 (2009), 70. https://doi.org/10.1037/a0013247

[9] Ying Cao, Antoni B Chan, and Rynson WH Lau. 2012. Automatic stylistic manga

layout. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1–10. https://doi.org/

10.1145/2366145.2366160

[10] Erin Cherry and Celine Latulipe. 2014. Quantifying the creativity support of

digital tools through the creativity support index. ACM Transactions on Computer-
Human Interaction (TOCHI) 21, 4 (2014), 1–25. https://doi.org/10.1145/2617588

[11] Sung-Bae Cho, Kyung-Joong Kim, and Keum-Sung Hwang. 2007. Generating

cartoon-style summary of daily life with multimedia mobile devices. In Interna-
tional Conference on Industrial, Engineering and Other Applications of Applied Intel-
ligent Systems. Springer, 135–144. https://doi.org/10.1007/978-3-540-73325-6_14

[12] Neil Cohn. 2013. The Visual Language of Comics: Introduction to the Structure and
Cognition of Sequential Images. A&C Black.

[13] Neil Cohn. 2015. How to analyze visual narratives: A tutorial in Visual Narrative

Grammar. (2015). http://visuallanguagelab.com/P/VNG_Tutorial.pdf Accessed:

2021-06-01.

[14] Emily R Fyfe and Mitchell J Nathan. 2018. Making “concreteness fading” more

concrete as a theory of instruction for promoting transfer. Educational Review
(2018), 1–20. https://doi.org/10.1080/00131911.2018.1424116

[15] Mirta Galesic and Michael Bosnjak. 2009. Effects of questionnaire length on

participation and indicators of response quality in a web survey. Public opinion
quarterly 73, 2 (2009), 349–360. https://doi.org/10.1093/poq/nfp031

[16] Dedre Gentner. 1983. Structure-mapping: A theoretical framework for analogy.

Cognitive science 7, 2 (1983), 155–170. https://doi.org/10.1207/s15516709cog0702_

3

[17] Dedre Gentner. 1988. Metaphor as structure mapping: The relational shift. Child
development (1988), 47–59. https://doi.org/10.2307/1130388

[18] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-

ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584. https://doi.org/10.1145/2445196.2445368

[19] Juris Hartmanis. 1994. Turing award lecture: On computational complexity and

the nature of computer science. Commun. ACM 37, 10 (1994), 37–44. https:

//doi.org/10.1145/194313.214781

[20] Samuel Ichiyé Hayakawa. 1947. Language in action. (1947).

[21] Richang Hong, Xiao-Tong Yuan, Mengdi Xu, Meng Wang, Shuicheng Yan, and

Tat-Seng Chua. 2010. Movie2comics: a feast of multimedia artwork. In Proceedings
of the 18th ACM international conference on Multimedia. ACM, 611–614. https:

//doi.org/10.1145/1873951.1874033

[22] DaYe Kang, Tony Ho, Nicolai Marquardt, Bilge Mutlu, and Andrea Bianchi. 2021.

Toonnote: Improving communication in computational notebooks using interac-

tive data comics. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–14. https://doi.org/10.1145/3411764.3445434

[23] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice motivates

middle school girls to learn computer programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 1455–1464. https://doi.org/

10.1145/1240624.1240844

[24] Nam Wook Kim, Nathalie Henry Riche, Benjamin Bach, Guanpeng Xu, Matthew

Brehmer, Ken Hinckley, Michel Pahud, Haijun Xia, Michael J McGuffin, and

https://codingstrip.github.io/
https://www.pixton.com/
https://doi.org/10.1016/j.learninstruc.2006.03.001
https://doi.org/10.1109/MCG.2017.33
https://doi.org/10.1145/3173574.3173612
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1037/a0013247
https://doi.org/10.1145/2366145.2366160
https://doi.org/10.1145/2366145.2366160
https://doi.org/10.1145/2617588
https://doi.org/10.1007/978-3-540-73325-6_14
http://visuallanguagelab.com/P/VNG_Tutorial.pdf
https://doi.org/10.1080/00131911.2018.1424116
https://doi.org/10.1093/poq/nfp031
https://doi.org/10.1207/s15516709cog0702_3
https://doi.org/10.1207/s15516709cog0702_3
https://doi.org/10.2307/1130388
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/194313.214781
https://doi.org/10.1145/194313.214781
https://doi.org/10.1145/1873951.1874033
https://doi.org/10.1145/1873951.1874033
https://doi.org/10.1145/3411764.3445434
https://doi.org/10.1145/1240624.1240844
https://doi.org/10.1145/1240624.1240844

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

Hanspeter Pfister. 2019. Datatoon: Drawing dynamic network comics with pen+

touch interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–12. https://doi.org/10.1145/3290605.3300335

[25] Rhonda G Kost and Joel Correa da Rosa. 2018. Impact of survey length and

compensation on validity, reliability, and sample characteristics for Ultrashort-,

Short-, and Long-Research Participant Perception Surveys. Journal of clinical
and translational science 2, 1 (2018), 31–37. https://doi.org/10.1017/cts.2018.18

[26] David Kurlander, Tim Skelly, and David Salesin. 1996. Comic chat. In Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques.
ACM, 225–236. https://doi.org/10.1145/237170.237260

[27] Google Creative Lab. 2017. Quickdraw. https://github.com/googlecreativelab/

quickdraw-dataset Accessed: 2021-08-14.

[28] Tricia J Ngoon, Joy O Kim, and Scott Klemmer. 2021. Shöwn: Adaptive Conceptual

Guidance Aids Example Use in Creative Tasks. In Designing Interactive Systems
Conference 2021. 1834–1845. https://doi.org/10.1145/3461778.3462072

[29] Kesiev Norimaki. 2011. https://www.kesiev.com/stripthis/. Accessed: 2021-10-17.

[30] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S Silver, Brian

Silverman, et al. 2009. Scratch: Programming for all. Commun. Acm 52, 11 (2009),

60–67. https://doi.org/10.1145/1592761.1592779

[31] Sangho Suh. 2019. Using concreteness fading to model & design learning process.

In Proceedings of the 2019 ACM Conference on International Computing Education
Research. 353–354. https://doi.org/10.1145/3291279.3339445

[32] Sangho Suh. 2020. Promoting Meaningful Learning by Supporting Interplay

within Abstraction Ladder. In 2020 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 1–2. https://doi.org/10.1109/VL/

HCC50065.2020.9127251

[33] Sangho Suh. 2022. Coding Strip: A Tool for Supporting Interplay within Abstraction
Ladder for Computational Thinking. Ph.D. Dissertation. University of Waterloo.

http://hdl.handle.net/10012/18318

[34] Sangho Suh and Pengcheng An. 2022. Leveraging Generative Conversational

AI to Develop a Creative Learning Environment for Computational Thinking.

In 27th International Conference on Intelligent User Interfaces. 73–76. https:

//doi.org/10.1145/3490100.3516473

[35] Sangho Suh, Sydney Lamorea, Edith Law, and Leah Zhang-Kennedy. 2022. Priva-

cyToon: Concept-driven Storytelling with Creativity Support for Privacy Con-

cepts. (2022). https://doi.org/10.1145/3532106.3533557

[36] Sangho Suh, Celine Latulipe, Ken Jen Lee, Bernadette Cheng, and Edith Law.

2021. Using Comics to Introduce and Reinforce Programming Concepts in CS1. In

Proceedings of the 52nd ACM technical symposium on Computer science education.
585–590. https://doi.org/10.1145/3408877.3432465

[37] Sangho Suh, Martinet Lee, and Edith Law. 2020. How do we design for con-

creteness fading? survey, general framework, and design dimensions. In Pro-
ceedings of the Interaction Design and Children Conference. 581–588. https:

//doi.org/10.1145/3392063.3394413

[38] Sangho Suh, Martinet Lee, Gracie Xia, et al. 2020. Coding strip: A pedagogical

tool for teaching and learning programming concepts through comics. In 2020
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 1–10. https://doi.org/10.1109/VL/HCC50065.2020.9127262

[39] Tevita Tanielu, Raymond ’Akau’ola, Elliot Varoy, and Nasser Giacaman. 2019.

Combining analogies and virtual reality for active and visual object-oriented

programming. In Proceedings of the acm conference on global computing education.
92–98. https://doi.org/10.1145/3300115.3309513

[40] Bret Victor. 2011. Up and Down the Ladder of Abstraction. http://worrydream.

com/LadderOfAbstraction/ Accessed: 2021-11-16.

[41] ZezhongWang, Jacob Ritchie, Jingtao Zhou, Fanny Chevalier, and Benjamin Bach.

2020. Data Comics for Reporting Controlled User Studies in Human-Computer

Interaction. IEEE Transactions on Visualization and Computer Graphics (2020).
https://doi.org/10.1109/tvcg.2020.3030433

[42] Zezhong Wang, Hugo Romat, Fanny Chevalier, Nathalie Henry Riche, Dave

Murray-Rust, and Benjamin Bach. 2021. Interactive Data Comics. IEEE Trans-
actions on Visualization and Computer Graphics 28, 1 (2021), 944–954. https:

//doi.org/10.1109/TVCG.2021.3114849

[43] Xin Yang, Zongliang Ma, Letian Yu, Ying Cao, Baocai Yin, Xiaopeng Wei, Qiang

Zhang, and Rynson WH Lau. 2021. Automatic Comic Generation with Stylistic

Multi-page Layouts and Emotion-driven Text Balloon Generation. ACM Transac-
tions on Multimedia Computing, Communications, and Applications (TOMM) 17, 2
(2021), 1–19. https://doi.org/10.1145/3440053

[44] R Zeeders. 2010. Comics-comic generation from story content graphs. Ph.D.

Dissertation. Master’s thesis, University of Twente, Department of Electrical

Engineering, Mathematics and Computer Science.

https://doi.org/10.1145/3290605.3300335
https://doi.org/10.1017/cts.2018.18
https://doi.org/10.1145/237170.237260
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://doi.org/10.1145/3461778.3462072
https://www.kesiev.com/stripthis/
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3291279.3339445
https://doi.org/10.1109/VL/HCC50065.2020.9127251
https://doi.org/10.1109/VL/HCC50065.2020.9127251
http://hdl.handle.net/10012/18318
https://doi.org/10.1145/3490100.3516473
https://doi.org/10.1145/3490100.3516473
https://doi.org/10.1145/3532106.3533557
https://doi.org/10.1145/3408877.3432465
https://doi.org/10.1145/3392063.3394413
https://doi.org/10.1145/3392063.3394413
https://doi.org/10.1109/VL/HCC50065.2020.9127262
https://doi.org/10.1145/3300115.3309513
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
https://doi.org/10.1109/tvcg.2020.3030433
https://doi.org/10.1109/TVCG.2021.3114849
https://doi.org/10.1109/TVCG.2021.3114849
https://doi.org/10.1145/3440053

Code-Driven Storytelling UIST ’22, October 29-November 2, 2022, Bend, OR, USA

A APPENDIX

GENERATE STORY TEMPLATE

Front end Back end Preprocessing

Code

Story

Template

Parse

Code

Construct

AST

Transpile to

Story AST

Build Story

Template (HTML)

Save

A

(a) Pipeline for generating story template. When a user clicks the ‘generate story’ button (Fig. 3C), the code is sent to the back-
end and parsed into an abstract syntax tree (AST) in JSON. To build a story template, the program traverses through the code
AST (JSON) recursively. As it traverses, it checks node types (e.g., <Assign>) and extracts relevant information to build the story
template, which consists mostly of <input> HTML tag. Once the story template has been generated, it is sent to the front end
to be rendered in the story section (Fig. 3D).

Front end Back end Preprocessing

 Input

from

Story Template

Code &

Canvas

Elements

Parse

Code

Object

Input

Text

Input

Search

DB

Get

Object Vector

Construct

AST

Transpile to
Comic AST

Update

Canvas Elements

Get

Canvas Elements

GENERATE & COMIC UPDATEB

(b) Pipeline for generating and updating comic from story. When a user clicks the ‘generate comic’ button (Fig. 6), CodeToon
collects (1) code that was used to generate the story template and (2) values in the story template and makes an Ajax request. In
the back-end, the program parses code and turns it into comic AST, which is essentially an instruction of how comic should be
presented graphically (cf. Fig. 2). At the same time, the back-end checks whether any text made reference to the object in the
object database. If there is a match, the back-end returns the vector information so they can be added to the comic. Once these
information come together, they are sent to the front-end to render the comic in the canvas. As for updating the comic, when
a user clicks the ‘update comic’ button, it follows the same procedure (highlighted in bold), except that code is not sent to the
back-end, because we are not generating a new comic. Note that ‘Get Canvas Elements’ in the pipeline captures the elements
currently present in the canvas. This is used to avoid (1) overwriting the entire canvas with new comic elements and (2) placing
newly generated comic on top of existing elements.

Figure 18: Implementation of computational pipeline for (a) generating story template and (b) generating and updating comic
from story.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Sangho Suh, Jian Zhao, Edith Law

x = 10

y = 10

z = 5

k = 15

if x == y :

 print("___")

elif x < z :

 print("___")

elif k > z :

 print("___")

Code

Code x = 100

if x > 90:

 print("it's A")

elif x > 80:

 print("it's B")

else:

 print("it's C")

Code

x = True

if x is True:

 print("true")

Code

x = "green"

if x == "green":

 print("___")

elif x == "yellow":

 print("___")

else:

 print("___")

*

*

*

*

*

*

*

Code

x = 0

if x == 0:

 for i in range(3):

 print("___")

Code x = 5

for i in range(3):

 print(x)

 x -= 1

 if x==3:

 print("___")

Code

def func(x, y):

 print(x + y)

func(3, 5)

Code

def func(x):

 print(x)

func(5)

Concept: Function

Concept: Loop

Concept: Condition

Concept: Condition

CodeToon

CodeToon

CodeToon

CodeToon

CodeToon

CodeToon

CodeToon

CodeToon

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Overall accuracy

Overall accuracy

Overall accuracy

Overall accuracy*

Code execution accuracy

Code execution accuracy

Code execution accuracy

Code execution accuracy*

Code semantic accuracy

Code semantic accuracy

Code semantic accuracy

Code semantic accuracy*

Code illustration

Code illustration

Code illustration

Code illustration*

Concept illustration

Concept illustration

Concept illustration

Concept illustration*

Useful for learning

Useful for learning

Useful for learning

Useful for learning*

Useful for teaching

Useful for teaching

Useful for teaching

Useful for teaching*

1 - not at all 2 3 - neutral 4 5 - extremely

1 - not at all 2 3 - neutral 4 5 - extremely

1 - not at all 2 3 - neutral 4 5 - extremely

1 - not at all 2 3 - neutral 4 5 - extremely

Figure 19: Comparisons of individual pairs according to their concepts. CodeToon comics were rated as being as good or better
than Baseline comics in all cases across all measures.

	Abstract
	1 Introduction
	2 Background
	2.1 Building Ladder of Abstraction
	2.2 Supporting Comic Authoring

	3 CodeToon
	3.1 Design Goals
	3.2 User Interface
	3.3 Usage Scenarios

	4 Code-Driven Storytelling
	4.1 Story Ideation
	4.2 Auto Comic Generation

	5 Evaluation
	5.1 Part 1: User Study (RQ1–RQ3)
	5.2 Part 2: Comic Evaluation Study (RQ4)

	6 Results
	6.1 RQ1: Does CodeToon support the authoring of coding strips?
	6.2 RQ2: Does CodeToon make the process of authoring coding strips more efficient?
	6.3 RQ3: What are the perceived utility and use cases of CodeToon for teaching and learning programming?
	6.4 RQ4: Does CodeToon help generate high-quality comics?

	7 Discussion
	7.1 Implications & Opportunities
	7.2 Limitations & Future Work

	8 Conclusion
	Acknowledgments
	References
	A Appendix

